活动介绍

#缺失值处理 import pandas as pd df1 = pd.read_excel(r'E:\\data\\蔬菜相关数据.xlsx') df1 #查看各元素是否为空值 df1.isnull() #查看各列是否存在空值 #只要该列有空值,就为True df1.isnull().any() #各列含空值的具体数目 df1.isnull().sum()解析代码

时间: 2023-12-06 12:40:31 浏览: 120
这段代码是用来处理缺失值的。具体而言,它首先导入了 pandas 库,并读取了一个 Excel 文件,存储在变量 df1 中。然后,它通过 df1.isnull() 这一方法来检查 df1 中的每个元素是否为空值,返回一个布尔型的 DataFrame。接着,它通过 df1.isnull().any() 这一方法来检查每一列是否存在空值,并返回一个布尔型的 Series,如果该列有空值则为 True。最后,通过 df1.isnull().sum() 这一方法,可以得到各列含空值的具体数目,返回一个 Series。这些操作可以帮助我们更好地理解数据集中缺失值的情况,从而选择合适的方法进行处理。
相关问题

дпудргопс LID site -packages #使取Excel又仟 df1 = pd. read excel("C:/Users/ Administrator/Desktop/ df2 = pd.read excel("C: /Users/Administrator/Desktop/ coll=list(df1.columns) col2-list(df2.columns) print (col1) print (col2) #-删除第一列《序号列〉 df1.drop(df1.columns [[0]],axis=1, inplace=True) # 合并列头单元格(假设列头占两行,将其合并〉 max_column = df1. idxmax() for col in range(1, max column + 1): -cella = df1.cell (row-1, column-col) cell2 = df1.cell(row-2, column=col) if cell2.value: cell1. value = celli.value + + cel12. value df1. delete_ rows(2) # 数据清洗:将所有NaN值替换为指定填充值 cleaned df1 = df1.fil1na(fi11_ value) - dfa fillnolfill valual

<think>我们面对的问题涉及多个步骤:读取Excel、处理合并的列头、删除第一列、处理NaN值。下面我将结合Pandas的功能和引用中的信息,逐步解决这些问题。 ### 1. 读取Excel文件 使用`pd.read_excel()`读取Excel文件,注意可能遇到的数值字段读取为NaN的问题(引用[2][4])。我们可以通过指定参数来避免: - `dtype`:指定列的数据类型,避免自动推断错误 - `na_values`:指定哪些值被视为NaN - `keep_default_na`:控制是否使用默认的NaN标记 ### 2. 处理合并的列头 当Excel表格有合并的列头时,直接读取会导致列名混乱。我们可以: - 使用`header`参数指定使用哪一行作为列名(通常为0,即第一行) - 如果合并单元格导致第一行部分列名为空,我们可以先读取多行,然后手动处理列名。 例如,如果表头有两行合并,我们可以这样读取: ```python df = pd.read_excel('file.xlsx', header=[0,1]) # 读取前两行作为多级列索引 ``` 然后,我们可以将多级列索引合并为单级索引,例如用空格连接: ```python df.columns = [' '.join(col).strip() for col in df.columns.values] ``` ### 3. 删除第一列 使用`df.drop()`删除第一列: ```python df = df.drop(df.columns[0], axis=1) ``` ### 4. 处理NaN值 根据引用[2][4],NaN值可能由多种原因引起,我们可以: - 用特定值填充:`df.fillna(value, inplace=True)` - 删除包含NaN的行:`df.dropna(inplace=True)` - 使用插值方法:`df.interpolate()` ### 完整代码示例 假设我们有一个Excel文件,其表头有两行(有合并单元格),第一列是索引列(需要删除),并且有NaN值需要处理。 ```python import pandas as pd # 步骤1:读取Excel,指定header=[0,1]表示前两行为列索引 df = pd.read_excel('test.xlsx', header=[0,1]) # 步骤2:将多级列索引合并为单级索引 df.columns = [' '.join(map(str, col)).strip() for col in df.columns.values] # 步骤3:删除第一列 df = df.drop(df.columns[0], axis=1) # 步骤4:处理NaN值,这里用0填充 df.fillna(0, inplace=True) # 显示处理后的DataFrame print(df.head()) ``` ### 处理合并列头的另一种情况 如果合并的列头比较复杂,可能需要先读取整个表头区域,然后手动处理。例如,我们可以先读取前两行,然后组合成我们需要的列名。 ### 注意事项 1. **读取时处理NaN**:在`read_excel`中,可以通过`na_values`参数指定哪些字符串被视为NaN,例如:`na_values=['NA', 'N/A']`。 2. **数据类型问题**:如果某些列应该是字符串,但被读取为数字(或反之),可以在读取时用`dtype`参数指定,例如:`dtype={'列名': str}`。 3. **大文件处理**:如果文件很大,可以使用`chunksize`参数分块读取。 ### 相关问题 1. 如何用Pandas读取包含多行列头的Excel文件? 2. 在Pandas中删除列有哪些方法? 3. 处理NaN值有哪些常用方法? 以上步骤应该能解决用户提出的问题。如果遇到更复杂的合并单元格情况,可能需要使用`openpyxl`库来直接操作Excel文件(如引用[1]所述),但一般情况下Pandas的上述方法可以应对。</think>### 解决 Excel 数据处理全流程方案 针对您提出的问题(读取Excel、处理合并表头、删除列、处理NaN值),结合引用[1][2][3][4]的信息,以下是完整解决方案: --- #### 1. **读取含合并表头的 Excel 文件** 使用 `header` 参数指定表头行,并通过 `fillna` 填充合并单元格导致的空值(引用[1][3]): ```python import pandas as pd # 读取Excel,指定第0行为表头,填充合并单元格的NaN df = pd.read_excel('data.xlsx', header=0).fillna(method='ffill', axis=1) print("处理合并表头后:\n", df.head()) ``` --- #### 2. **删除第一列** 使用 `iloc` 按位置删除列(引用[3]): ```python # 删除第一列(索引0) df = df.iloc[:, 1:] print("\n删除首列后:\n", df.head()) ``` --- #### 3. **处理 NaN 值** 根据引用[2][4],分场景处理 NaN: ```python # 场景1:文本型数字被误判为NaN → 转换数据类型 df = df.apply(lambda x: x.astype(str) if x.dtype == object else x) # 场景2:空值处理 → 填充特定值 df.fillna({'数值列': 0, '文本列': 'N/A'}, inplace=True) # 场景3:特殊字符导致NaN → 正则清洗 df['金额列'] = df['金额列'].str.replace(r'[$,¥]', '', regex=True).astype(float) ``` --- #### 4. **完整处理流程** ```python import pandas as pd def process_excel(file_path): # 读取 + 处理合并表头 df = pd.read_excel(file_path, header=0).fillna(method='ffill', axis=1) # 删除第一列 df = df.iloc[:, 1:] # 处理NaN:转换数据类型 + 填充 + 清洗 df = df.apply(lambda x: x.astype(str) if x.dtype == object else x) df.fillna(0, inplace=True) for col in df.select_dtypes(include='object'): df[col] = df[col].str.replace(r'[^\w\s]', '', regex=True) return df cleaned_data = process_excel('财务数据.xlsx') cleaned_data.to_excel('清洗后数据.xlsx', index=False) ``` --- ### 关键问题解析 1. **合并表头处理原理** `fillna(method='ffill', axis=1)` 沿水平方向向前填充,将合并单元格的标题复制到右侧子列(引用[1]) 2. **NaN 值根本原因** - 文本格式数字被误判为字符串(引用[2][4]) - 特殊字符(如 `$1,000`)导致解析失败 - 空单元格未被正确处理 3. **删除列的最佳实践** `iloc[:, 1:]` 比 `drop()` 效率更高,尤其适合大数据集(引用[3]) --- ### 处理效果对比 | 步骤 | 原始数据问题 | 处理后结果 | |--------------|-----------------------|----------------------| | 表头处理 | 合并单元格导致列名缺失 | 完整列名体系 | | 删除首列 | 冗余索引列 | 纯数据列 | | NaN处理 | 数值显示为NaN | 正确数值/合理占位符 | | 特殊字符 | `$1,200` 无法计算 | 纯数字 `1200` | > 输出文件可直接用于统计分析或导入数据库

for i in list: if str(i) != 'nan' df1[df1['支撑中心']==i].to_excel(address1+'\\'+str(i)+'.xlsx',index=False)

### 修正后的Python代码 为了确保能够正确遍历列表并将符合条件的`DataFrame`行保存为单独的Excel文件,以下是经过修改和完善后的代码: ```python import os import pandas as pd # 假设list_of_centers是一个包含支撑中心名称的列表 for center in list_of_centers: if pd.notna(center): # 使用pandas内置函数判断是否为空值 filtered_df = df1[df1['支撑中心'] == center] if not filtered_df.empty: # 防止空的数据框被写出 file_path = os.path.join(address1, f"{center}.xlsx") # 构建正确的路径字符串 with pd.ExcelWriter(file_path) as writer: filtered_df.to_excel(writer, index=False) ``` 上述代码做了以下几个方面的改进[^1]: - 将循环变量名改为更具描述性的`center`; - 利用`pd.notna()`来替代原始代码中的`str(i) != 'nan'`,这是一种更可靠的方式去检测缺失值; - 添加了一个额外检查以确认过滤后的数据帧不为空再执行写操作; - 改进了文件路径拼接方式,采用`os.path.join()`以及f-string格式化字符串构建目标文件路径。 ### 处理多个工作表的情况 如果希望在一个Excel文件中创建多张工作表而不是生成多个独立文件,则可调整策略如下所示: ```python with pd.ExcelWriter('output.xlsx') as writer: for center in list_of_centers: if pd.notna(center): sheet_name = str(center)[:31] # Excel单个工作表名字长度限制为31字符以内 df_center = df1[df1['支撑中心'] == center] if not df_center.empty: df_center.to_excel(writer, sheet_name=sheet_name, index=False) ``` 此版本会在名为`output.xlsx`的一个文件里按不同支撑中心分别建立相应的工作表[^2]。
阅读全文

相关推荐

import numpy as np import pandas as pd import math def left_boundary(t): # 左边值 return 0 def right_boundary(t): # 右边值 return 0 def initial_T(x_max, t_max, delta_x, delta_t, m, n): # 给温度T初始化 T = np.zeros((n + 1, m + 1)) for i in range(m + 1): # 初值 T[0, i] = math.sin(i * delta_x) T[1, i] = delta_t*math.sin(i * delta_x)+math.sin(i * delta_x) for i in range(1, n + 1): # 注意不包括T[0,0]与T[0,-1] T[i, 0] = left_boundary(i * delta_t) # 左边值 T[i, -1] = right_boundary(i * delta_t) # 右边值 return T # 一、显格式 def one_dimensional_heat_conduction1(T, m, n, r,delta_t,delta_x): for k in range(2, n): # 时间层 for i in range(1, m): # 空间层 T[k, i] = (2 - 2 * r) * T[k - 1, i] + r * (T[k - 1, i - 1] + T[k - 1, i + 1]) - T[k - 1, i-1]+(delta_t)^2*2*np.exp(k * delta_t )*sin(i *delta_x) return T a = 1 # 热传导系数 x_max = 1j*math.pi/10 t_max = 0.8 delta_t = 1/50 # 时间步长 delta_x = math.pi/100 # 空间步长 m = int(x_max / delta_x) # 长度等分成m份 n = int(t_max / delta_t) # 时间等分成n份 t_grid = np.arange(0, t_max + delta_t, delta_t) # 时间网格 x_grid = np.arange(0, x_max + delta_x, delta_x) # 位置网格 r = (a * delta_t / (delta_x ** 2)).__round__(6) # 网格比 T = initial_T(x_max, t_max, delta_x, delta_t, m, n) print('长度等分成{}份'.format(m)) print('时间等分成{}份'.format(n)) print('网格比=', r) p = pd.ExcelWriter('二阶显格式-双曲型方程初边值问题.xlsx') T1 = one_dimensional_heat_conduction1(T, m, n, r,delta_t,delta_x) print('显格式',T1) T1 = pd.DataFrame(T1, columns=x_grid, index=t_grid) # colums是列号,index是行号 如何修改不过

import os import pandas as pd import numpy as np import statsmodels.api as sm def build_logistic_regression(): """构建逻辑回归模型并输出OR值分析结果""" try: # 1. 路径配置 desktop_path = os.path.join(os.path.expanduser('~'), 'Desktop') # 特征工程文件 fe_file1 = os.path.join(desktop_path, "C:/Users\Ran\Desktop\特征工程_附件1.xlsx") fe_file2 = os.path.join(desktop_path, "C:/Users\Ran\Desktop\特征工程_附件2.xlsx") # 原始处理文件 raw_file1 = os.path.join(desktop_path, "C:/Users\Ran\Desktop\处理后附件1.xlsx") raw_file2 = os.path.join(desktop_path, "C:/Users\Ran\Desktop\处理后附件2.xlsx") # 验证文件存在性 for f in [fe_file1, fe_file2, raw_file1, raw_file2]: if not os.path.exists(f): raise FileNotFoundError(f"必要文件 {f} 未找到") # 2. 读取特征工程处理数据 fe_df1 = pd.read_excel(fe_file1) fe_df2 = pd.read_excel(fe_file2) # 3. 读取原始处理数据 raw_df1 = pd.read_excel(raw_file1) raw_df2 = pd.read_excel(raw_file2) # 4. 定义特征工程标记列 fe_columns = { 'transport_duration': ['转运时长'], 'vital_fluctuation': [col for col in fe_df1.columns if '_波动指数' in col], 'pipe_load': ['高危管道负荷'], 'z_score': [col for col in fe_df1.columns if col in ['年龄', '体重', '收缩压', '心率', '转运时长']] } # 5. 合并数据(保留特征工程结果,补充原始指标) def merge_data(fe_df, raw_df): # 保留特征工程处理列 fe_cols = fe_df.columns.tolist() # 提取原始数据中未处理的列 raw_cols = [col for col in raw_df.columns if col not in fe_cols and col != '住院号'] # 合并数据 merged = pd.merge( fe_df, raw_df[['住院号'] + raw_cols], on='住院号', how='left' ) return merged merged_df1 = merge_data(fe_df1, raw_df1) merged_df2 = merge_data(fe_df2, raw_df2) # 6. 数据整合 final_df = pd.concat([merged_df1, merged_df2]).drop_duplicates(subset=['住院号']) # 7. 模型准备 X = final_df.select_dtypes(include=[np.number]) y = final_df['病情变化'].astype(int) # 假设目标变量存在 # 8. 模型训练 X = sm.add_constant(X) model = sm.Logit(y, X).fit(disp=0) # 9. 结果处理 results_df = pd.DataFrame({ 'OR值': np.exp(model.params), '95%CI_lower': np.exp(model.conf_int()[0]), '95%CI_upper': np.exp(model.conf_int()[1]), 'P值': model.pvalues }) # 10. 结果输出 output_path = os.path.join(desktop_path, '逻辑回归结果.xlsx') results_df.to_excel(output_path) print(f"✅ 分析完成,结果已保存至: {output_path}") print("📊 已识别特征工程列:", fe_columns) except Exception as e: print(f"❌ 操作失败: {str(e)}") return False return True if __name__ == "__main__": build_logistic_regression() 在这个代码上改

import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, LSTM, Dense, Dropout, Layer from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau from tensorflow.keras.optimizers import Adam from sklearn.model_selection import TimeSeriesSplit import joblib import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, LSTM, Dense, Dropout, Layer from tensorflow.keras.optimizers import Adam import warnings import tensorflow as tf warnings.filterwarnings('ignore') # ===== 自定义注意力层 ===== class AttentionLayer(Layer): def __init__(self, **kwargs): super(AttentionLayer, self).__init__(**kwargs) def build(self, input_shape): self.time_steps = input_shape[1] self.feature_dim = input_shape[2] # 创建可训练权重 self.W = self.add_weight( name='att_weight', shape=(self.feature_dim, self.feature_dim), initializer='glorot_uniform', trainable=True ) self.b = self.add_weight( name='att_bias', shape=(self.feature_dim,), initializer='zeros', trainable=True ) self.V = self.add_weight( name='att_v', shape=(self.feature_dim, 1), initializer='glorot_uniform', trainable=True ) super(AttentionLayer, self).build(input_shape) def call(self, inputs): # 计算注意力分数 score = tf.tanh(tf.matmul(inputs, self.W) + self.b) # (batch, time_steps, feature_dim) score = tf.matmul(score, self.V) # (batch, time_steps, 1) score = tf.squeeze(score, axis=-1) # (batch, time_steps) # 应用softmax获取注意力权重 alpha = tf.nn.softmax(score, axis=-1) # (batch, time_steps) alpha = tf.expand_dims(alpha, axis=-1) # (batch, time_steps, 1) # 加权求和 context = tf.reduce_sum(alpha * inputs, axis=1) # (batch, feature_dim) return context def compute_output_shape(self, input_shape): return (input_shape[0], input_shape[2]) # (batch_size, feature_dim) # ===== 模型构建函数 ===== def build_attention_lstm_model(input_shape): time_steps, num_features = input_shape inputs = Input(shape=input_shape) # LSTM层 lstm_out = LSTM(128, return_sequences=True)(inputs) lstm_out = Dropout(0.3)(lstm_out) # 使用自定义注意力层 attention_out = AttentionLayer()(lstm_out) # 红球分支 red_branch = Dense(64, activation='relu')(attention_out) red_branch = Dropout(0.2)(red_branch) red_output = Dense(33, activation='sigmoid', name='red_output')(red_branch) # 蓝球分支 blue_branch = Dense(32, activation='relu')(attention_out) blue_branch = Dropout(0.2)(blue_branch) blue_output = Dense(16, activation='sigmoid', name='blue_output')(blue_branch) model = Model(inputs=inputs, outputs=[red_output, blue_output]) optimizer = Adam(learning_rate=0.001) model.compile( optimizer=optimizer, loss={'red_output': 'binary_crossentropy', 'blue_output': 'binary_crossentropy'}, metrics={'red_output': 'binary_accuracy', 'blue_output': 'binary_accuracy'}, # 关键修改:使用字典形式指定损失权重 loss_weights={'red_output': 0.7, 'blue_output': 0.3} ) model.summary() return model # ===== 其他函数保持不变 ===== # step1_format_data, step2_process_data, create_features, prepare_data, # ===== 数据预处理函数 ===== def step1_format_data(): """格式化原始数据""" print("===== 步骤1: 格式化原始数据 =====") df = pd.read_excel('01hand.xlsx', sheet_name='Sheet1', header=None) # 提取A列和C列数据 new_df = pd.DataFrame({ 'A': pd.to_numeric(df.iloc[:, 0], errors='coerce'), 'B': pd.to_numeric(df.iloc[:, 2], errors='coerce') }).dropna() # 保存新文件 new_df.to_excel('01hand2.xlsx', index=False, header=False) print(f"新表格 '01hand2.xlsx' 创建成功! 包含 {len(new_df)} 行数据") def step2_process_data(): """数据去重和排序""" print("\n===== 步骤2: 数据去重和排序 =====") input_file = "01hand2.xlsx" output_file1 = "02resultA.xlsx" # 降序输出 output_file2 = "02resultB.xlsx" # 升序输出 # 读取数据并转换为长格式 df = pd.read_excel(input_file, header=None) all_values = df.stack().dropna().astype(str).tolist() # 确保数据长度是8的倍数 valid_length = len(all_values) - (len(all_values) % 8) if len(all_values) != valid_length: print(f"警告: 数据总量 {len(all_values)} 不符合8的倍数, 截断至 {valid_length} 个元素") all_values = all_values[:valid_length] # 转换数据格式 new_data = [] for i in range(0, len(all_values), 8): group = all_values[i:i+8] try: # 转换日期和数字 date = int(group[0]) numbers = [int(float(num)) if '.' in num else int(num) for num in group[1:]] new_data.append([date] + numbers) except: continue # 创建DataFrame并去重 columns = ['日期', '数字1', '数字2', '数字3', '数字4', '数字5', '数字6', '数字7'] df = pd.DataFrame(new_data, columns=columns) df = df.drop_duplicates(subset='日期').dropna() # 保存降序文件 df.sort_values('日期', ascending=False).to_excel(output_file1, index=False) print(f"降序文件保存至: {output_file1}") # 保存升序文件 df.sort_values('日期', ascending=True).to_excel(output_file2, index=False) print(f"升序文件保存至: {output_file2}") print(f"最终数据维度: {df.shape}") return df # ===== 特征工程函数 ===== def create_features(df, save_features=True): """创建模型特征并保存特征处理器""" print("\n===== 步骤3: 特征工程 =====") features = df[['日期']].copy() red_cols = ['数字1', '数字2', '数字3', '数字4', '数字5', '数字6'] # 基础特征 features['红球和值'] = df[red_cols].sum(axis=1) features['蓝球值'] = df['数字7'] features['奇偶比'] = df[red_cols].applymap(lambda x: x % 2).sum(axis=1) features['大小比'] = df[red_cols].applymap(lambda x: 1 if x > 16 else 0).sum(axis=1) # 窗口特征 (窗口大小10) window_size = 10 for col in ['红球和值', '奇偶比', '大小比']: features[f'{col}_MA{window_size}'] = features[col].rolling(window=window_size).mean() features[f'{col}_STD{window_size}'] = features[col].rolling(window=window_size).std() # 滞后特征 (滞后1-9期) for lag in range(1, 10): for col in red_cols + ['数字7']: features[f'{col}_lag{lag}'] = df[col].shift(lag) # 目标变量 (下一期开奖结果) red_targets = [] blue_targets = [] for i in range(len(df) - 1): next_row = df.iloc[i + 1] # 红球目标 (33选6) red_target = [1 if num in next_row[red_cols].values else 0 for num in range(1, 34)] # 蓝球目标 (16选1) blue_target = [1 if i == next_row['数字7'] else 0 for i in range(1, 17)] red_targets.append(red_target) blue_targets.append(blue_target) # 转换为numpy数组 red_targets = np.array(red_targets) blue_targets = np.array(blue_targets) # 移除无效数据 (前window_size行和最后一行) features = features.iloc[window_size:-1].reset_index(drop=True) red_targets = red_targets[window_size-1:-1] # 对齐索引 blue_targets = blue_targets[window_size-1:-1] # 保存特征处理器 feature_columns = features.drop(columns=['日期']).columns.tolist() joblib.dump(feature_columns, 'feature_columns.pkl') print(f"特征列名已保存: {len(feature_columns)}个特征") if save_features: features.to_excel('04_features.xlsx', index=False) print(f"特征工程完成, 维度: {features.shape}") return features, red_targets, blue_targets # ===== 模型构建函数 ===== def prepare_data(features, red_targets, blue_targets): """准备训练数据并保存数据处理器""" print("\n===== 步骤4: 数据准备 =====") scaler_X = MinMaxScaler() X_scaled = scaler_X.fit_transform(features.drop(columns=['日期'])) # 保存特征处理器 joblib.dump(scaler_X, 'scaler_X.save') print("特征缩放器已保存") # 创建时间序列数据 time_steps = 10 X_seq, y_red_seq, y_blue_seq = [], [], [] for i in range(time_steps, len(X_scaled)): X_seq.append(X_scaled[i-time_steps:i, :]) y_red_seq.append(red_targets[i-1]) # 使用当前时间步的目标 y_blue_seq.append(blue_targets[i-1]) X_seq = np.array(X_seq) y_red_seq = np.array(y_red_seq) y_blue_seq = np.array(y_blue_seq) print(f"时间序列数据形状: X={X_seq.shape}, y_red={y_red_seq.shape}, y_blue={y_blue_seq.shape}") # 保存历史数据用于预测 joblib.dump(X_scaled[-10:], 'historical_data.pkl') print("历史数据已保存用于预测") return X_seq, y_red_seq, y_blue_seq, scaler_X # train_model, plot_training_history, prepare_prediction_input, predict_next_period, main # ===== 模型训练函数 ===== def train_model(X, y_red, y_blue): """训练模型""" print("\n===== 步骤5: 模型训练 =====") best_models = [] tscv = TimeSeriesSplit(n_splits=3) for fold, (train_index, val_index) in enumerate(tscv.split(X)): print(f"\n===== 训练 Fold {fold+1}/3 =====") X_train, X_val = X[train_index], X[val_index] y_red_train, y_red_val = y_red[train_index], y_red[val_index] y_blue_train, y_blue_val = y_blue[train_index], y_blue[val_index] model = build_attention_lstm_model((X_train.shape[1], X_train.shape[2])) callbacks = [ EarlyStopping(monitor='val_loss', patience=15, restore_best_weights=True, verbose=1), ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=7, min_lr=1e-6, verbose=1) ] history = model.fit( X_train, {'red_output': y_red_train, 'blue_output': y_blue_train}, epochs=100, batch_size=32, validation_data=(X_val, {'red_output': y_red_val, 'blue_output': y_blue_val}), callbacks=callbacks, verbose=1 ) model.save(f'best_model_fold{fold+1}.h5') best_models.append(model) # 保存训练历史图 plot_training_history(history, fold+1) return best_models def plot_training_history(history, fold): """绘制训练历史图表""" plt.figure(figsize=(15, 10)) # 损失曲线 plt.subplot(2, 2, 1) plt.plot(history.history['loss'], label='训练损失') plt.plot(history.history['val_loss'], label='验证损失') plt.title(f'Fold {fold} - 总损失曲线') plt.ylabel('损失') plt.xlabel('Epoch') plt.legend() # 红球准确率 plt.subplot(2, 2, 2) plt.plot(history.history['red_output_binary_accuracy'], label='红球训练准确率') plt.plot(history.history['val_red_output_binary_accuracy'], label='红球验证准确率') plt.title(f'Fold {fold} - 红球准确率') plt.ylabel('准确率') plt.xlabel('Epoch') plt.legend() # 蓝球准确率 plt.subplot(2, 2, 3) plt.plot(history.history['blue_output_binary_accuracy'], label='蓝球训练准确率') plt.plot(history.history['val_blue_output_binary_accuracy'], label='蓝球验证准确率') plt.title(f'Fold {fold} - 蓝球准确率') plt.ylabel('准确率') plt.xlabel('Epoch') plt.legend() # 学习率 plt.subplot(2, 2, 4) if 'lr' in history.history: plt.plot(history.history['lr'], label='学习率') plt.title(f'Fold {fold} - 学习率变化') plt.ylabel('学习率') plt.xlabel('Epoch') plt.legend() plt.tight_layout() plt.savefig(f'training_history_fold{fold}.png') plt.close() # ===== 预测准备函数 ===== def prepare_prediction_input(df, features, scaler_X): """准备预测输入,确保特征一致性""" print("\n===== 准备预测输入 =====") # 加载特征列名 feature_columns = joblib.load('feature_columns.pkl') print(f"预期特征数量: {len(feature_columns)}") # 创建空DataFrame prediction_features = pd.DataFrame(columns=feature_columns) # 获取最后10行有效数据 last_10 = features.iloc[-10:] # 填充基础特征 red_cols = ['数字1', '数字2', '数字3', '数字4', '数字5', '数字6'] current_row = df.iloc[-1] prediction_features.loc[0, '红球和值'] = current_row[red_cols].sum() prediction_features.loc[0, '蓝球值'] = current_row['数字7'] prediction_features.loc[0, '奇偶比'] = current_row[red_cols].apply(lambda x: x % 2).sum() prediction_features.loc[0, '大小比'] = current_row[red_cols].apply(lambda x: 1 if x > 16 else 0).sum() # 填充窗口特征 window_size = 10 for col in ['红球和值', '奇偶比', '大小比']: col_values = features[col].iloc[-window_size:] prediction_features.loc[0, f'{col}_MA{window_size}'] = col_values.mean() prediction_features.loc[0, f'{col}_STD{window_size}'] = col_values.std() # 填充滞后特征 - 修正逻辑 for lag in range(1, 10): # 确保滞后索引有效 lag_index = -lag - 1 # 从当前行向前追溯 for col in red_cols + ['数字7']: feature_name = f'{col}_lag{lag}' if feature_name in feature_columns: if len(df) > lag: prediction_features.loc[0, feature_name] = df[col].iloc[lag_index] else: # 数据不足时使用平均值 prediction_features.loc[0, feature_name] = df[col].mean() # 处理缺失特征 missing_cols = set(feature_columns) - set(prediction_features.columns) for col in missing_cols: prediction_features[col] = 0 # 默认填充0 # 确保顺序一致 prediction_features = prediction_features[feature_columns] # 标准化 X_pred = scaler_X.transform(prediction_features) print(f"预测输入形状: {X_pred.shape}") return X_pred # ===== 预测函数 ===== def predict_next_period(models): """预测下一期开奖结果""" print("\n===== 步骤6: 预测 =====") # 加载历史数据和缩放器 scaler_X = joblib.load('scaler_X.save') historical_data = joblib.load('historical_data.pkl') # 获取特征列名 feature_columns = joblib.load('feature_columns.pkl') n_features = len(feature_columns) # 构建时间序列输入 time_steps = 10 if len(historical_data) >= time_steps: # 使用完整的历史数据 X_seq = historical_data[-time_steps:].reshape(1, time_steps, n_features) else: # 数据不足时复制最后一个时间点 X_seq = np.repeat(historical_data[-1:], time_steps, axis=0).reshape(1, time_steps, n_features) print(f"模型输入序列形状: {X_seq.shape}") # 集成模型预测 red_probs = np.zeros((1, 33)) blue_probs = np.zeros((1, 16)) total_weight = 0 for i, model in enumerate(models): r_prob, b_prob = model.predict(X_seq, verbose=0) weight = 0.3 + i * 0.2 # 加权集成 red_probs += r_prob * weight blue_probs += b_prob * weight total_weight += weight # 归一化概率 red_probs /= total_weight blue_probs /= total_weight # 获取预测结果 red_indices = np.argsort(red_probs[0])[::-1][:6] blue_indices = np.argsort(blue_probs[0])[::-1][:3] return ( [i+1 for i in red_indices], [red_probs[0][i] for i in red_indices], [i+1 for i in blue_indices], [blue_probs[0][i] for i in blue_indices] ) # ===== 主函数 ===== def main(): # 执行数据处理步骤 step1_format_data() df = step2_process_data() # 特征工程 features, red_targets, blue_targets = create_features(df) # 准备训练数据 X, y_red, y_blue, scaler_X = prepare_data(features, red_targets, blue_targets) # 训练模型 models = train_model(X, y_red, y_blue) # 预测 red_nums, red_probs, blue_nums, blue_probs = predict_next_period(models) # 打印结果 print("\n" + "="*50) print("双色球下一期预测结果") print("="*50) print("\n红球预测 (前6个):") for num, prob in zip(red_nums, red_probs): print(f"号码 {num:2d} : 概率 {prob:.4f}") print("\n蓝球预测 (前3个):") for num, prob in zip(blue_nums, blue_probs): print(f"号码 {num:2d} : 概率 {prob:.4f}") # 保存结果 result_df = pd.DataFrame({ '红球预测': red_nums, '红球概率': red_probs, '蓝球预测': blue_nums, '蓝球概率': blue_probs }) result_df.to_excel('prediction_results.xlsx', index=False) print("\n预测结果已保存至: prediction_results.xlsx") if __name__ == "__main__": main() # main.py import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, LSTM, Dense, Dropout, Layer from tensorflow.keras.optimizers import Adam # 内联定义自定义层(避免导入问题) class AttentionLayer(Layer): """自定义注意力层""" def __init__(self, **kwargs): super(AttentionLayer, self).__init__(**kwargs) def build(self, input_shape): self.time_steps = input_shape[1] self.feature_dim = input_shape[2] self.W = self.add_weight( name='att_weight', shape=(self.feature_dim, self.feature_dim), initializer='glorot_uniform', trainable=True ) self.b = self.add_weight( name='att_bias', shape=(self.feature_dim,), initializer='zeros', trainable=True ) self.V = self.add_weight( name='att_v', shape=(self.feature_dim, 1), initializer='glorot_uniform', trainable=True ) super(AttentionLayer, self).build(input_shape) def call(self, inputs): score = tf.tanh(tf.matmul(inputs, self.W) + self.b) score = tf.matmul(score, self.V) score = tf.squeeze(score, axis=-1) alpha = tf.nn.softmax(score, axis=-1) alpha = tf.expand_dims(alpha, axis=-1) context = tf.reduce_sum(alpha * inputs, axis=1) return context def compute_output_shape(self, input_shape): return (input_shape[0], input_shape[2]) # 模型构建函数 def build_attention_lstm_model(input_shape): inputs = Input(shape=input_shape) # LSTM层 lstm_out = LSTM(128, return_sequences=True)(inputs) lstm_out = Dropout(0.3)(lstm_out) # 使用自定义层 attention_out = AttentionLayer()(lstm_out) # 输出分支 red_branch = Dense(64, activation='relu')(attention_out) red_output = Dense(33, activation='sigmoid', name='red_output')(red_branch) blue_branch = Dense(32, activation='relu')(attention_out) blue_output = Dense(16, activation='sigmoid', name='blue_output')(blue_branch) model = Model(inputs=inputs, outputs=[red_output, blue_output]) model.compile( optimizer=Adam(0.001), loss={'red_output': 'binary_crossentropy', 'blue_output': 'binary_crossentropy'}, # 这里也需要修改为字典形式 loss_weights={'red_output': 0.7, 'blue_output': 0.3} ) return model # 测试模型构建 if __name__ == "__main__": model = build_attention_lstm_model(input_shape=(10, 20)) model.summary() print("模型构建成功!") #报错:All arrays must be of the same length

最新推荐

recommend-type

新能源车电机控制器:基于TI芯片的FOC算法源代码与实际应用

内容概要:本文详细介绍了基于TI芯片的FOC(场向量控制)算法在新能源车电机控制器中的应用。文章首先阐述了新能源车电机控制器的重要性及其对车辆性能的影响,接着深入探讨了FOC算法的工作原理,强调其在提高电机控制精度和能效方面的优势。随后,文章展示了完整的源代码资料,涵盖采样模块、CAN通信模块等多个关键部分,并指出这些代码不仅限于理论演示,而是来自实际量产的应用程序。此外,文中还特别提到代码遵循严格的规范,有助于读者理解和学习电机控制软件的最佳实践。 适合人群:从事新能源车研发的技术人员、电机控制工程师、嵌入式系统开发者以及对电机控制感兴趣的电子工程学生。 使用场景及目标:① 学习并掌握基于TI芯片的FOC算法的具体实现;② 理解电机控制器各模块的功能和交互方式;③ 提升实际项目开发能力,减少开发过程中遇到的问题。 其他说明:本文提供的源代码资料来源于早期已量产的新能源车控制器,因此具有较高的实用价值和参考意义。
recommend-type

掌握XFireSpring整合技术:HELLOworld原代码使用教程

标题:“xfirespring整合使用原代码”中提到的“xfirespring”是指将XFire和Spring框架进行整合使用。XFire是一个基于SOAP的Web服务框架,而Spring是一个轻量级的Java/Java EE全功能栈的应用程序框架。在Web服务开发中,将XFire与Spring整合能够发挥两者的优势,例如Spring的依赖注入、事务管理等特性,与XFire的简洁的Web服务开发模型相结合。 描述:“xfirespring整合使用HELLOworld原代码”说明了在这个整合过程中实现了一个非常基本的Web服务示例,即“HELLOworld”。这通常意味着创建了一个能够返回"HELLO world"字符串作为响应的Web服务方法。这个简单的例子用来展示如何设置环境、编写服务类、定义Web服务接口以及部署和测试整合后的应用程序。 标签:“xfirespring”表明文档、代码示例或者讨论集中于XFire和Spring的整合技术。 文件列表中的“index.jsp”通常是一个Web应用程序的入口点,它可能用于提供一个用户界面,通过这个界面调用Web服务或者展示Web服务的调用结果。“WEB-INF”是Java Web应用中的一个特殊目录,它存放了应用服务器加载的Servlet类文件和相关的配置文件,例如web.xml。web.xml文件中定义了Web应用程序的配置信息,如Servlet映射、初始化参数、安全约束等。“META-INF”目录包含了元数据信息,这些信息通常由部署工具使用,用于描述应用的元数据,如manifest文件,它记录了归档文件中的包信息以及相关的依赖关系。 整合XFire和Spring框架,具体知识点可以分为以下几个部分: 1. XFire框架概述 XFire是一个开源的Web服务框架,它是基于SOAP协议的,提供了一种简化的方式来创建、部署和调用Web服务。XFire支持多种数据绑定,包括XML、JSON和Java数据对象等。开发人员可以使用注解或者基于XML的配置来定义服务接口和服务实现。 2. Spring框架概述 Spring是一个全面的企业应用开发框架,它提供了丰富的功能,包括但不限于依赖注入、面向切面编程(AOP)、数据访问/集成、消息传递、事务管理等。Spring的核心特性是依赖注入,通过依赖注入能够将应用程序的组件解耦合,从而提高应用程序的灵活性和可测试性。 3. XFire和Spring整合的目的 整合这两个框架的目的是为了利用各自的优势。XFire可以用来创建Web服务,而Spring可以管理这些Web服务的生命周期,提供企业级服务,如事务管理、安全性、数据访问等。整合后,开发者可以享受Spring的依赖注入、事务管理等企业级功能,同时利用XFire的简洁的Web服务开发模型。 4. XFire与Spring整合的基本步骤 整合的基本步骤可能包括添加必要的依赖到项目中,配置Spring的applicationContext.xml,以包括XFire特定的bean配置。比如,需要配置XFire的ServiceExporter和ServicePublisher beans,使得Spring可以管理XFire的Web服务。同时,需要定义服务接口以及服务实现类,并通过注解或者XML配置将其关联起来。 5. Web服务实现示例:“HELLOworld” 实现一个Web服务通常涉及到定义服务接口和服务实现类。服务接口定义了服务的方法,而服务实现类则提供了这些方法的具体实现。在XFire和Spring整合的上下文中,“HELLOworld”示例可能包含一个接口定义,比如`HelloWorldService`,和一个实现类`HelloWorldServiceImpl`,该类有一个`sayHello`方法返回"HELLO world"字符串。 6. 部署和测试 部署Web服务时,需要将应用程序打包成WAR文件,并部署到支持Servlet 2.3及以上版本的Web应用服务器上。部署后,可以通过客户端或浏览器测试Web服务的功能,例如通过访问XFire提供的服务描述页面(WSDL)来了解如何调用服务。 7. JSP与Web服务交互 如果在应用程序中使用了JSP页面,那么JSP可以用来作为用户与Web服务交互的界面。例如,JSP可以包含JavaScript代码来发送异步的AJAX请求到Web服务,并展示返回的结果给用户。在这个过程中,JSP页面可能使用XMLHttpRequest对象或者现代的Fetch API与Web服务进行通信。 8. 项目配置文件说明 项目配置文件如web.xml和applicationContext.xml分别在Web应用和服务配置中扮演关键角色。web.xml负责定义Web组件,比如Servlet、过滤器和监听器,而applicationContext.xml则负责定义Spring容器中的bean,包括数据源、事务管理器、业务逻辑组件和服务访问器等。 总之,通过上述整合使用原代码的知识点,可以深入理解XFire与Spring框架的结合使用,以及如何开发和部署基本的Web服务。这些技术知识有助于进行更高层次的Web服务开发,以及在复杂的IT环境中灵活运用各种框架和工具。
recommend-type

【Unity2018汉化大揭秘】:一步到位优化中文用户体验

# 摘要 本论文详细介绍了Unity2018汉化项目的实施过程,从理论准备到实践步骤,再到后期的测试与优化,最终分享了汉化经验和心得。首先,强调了汉化项目对于用户体验提升和产品国际化的重要性,并分析了汉化资源的分类、识别与管理方法。接着,详细阐述了汉化工具的选择、脚本编写、资源手动调整等实践步骤,以及汉化质量测试、体验优化和项目维护更新的重要性。论文最后通过案例研究,分析了汉化中的挑战和应对策略,并预测了汉化技术未来的发展方向。整个汉化过程不仅涉及技术层面的操作,还包含了深入的理论研究和实践心得分享,对提升汉化项目的效率和质量具有指导意义。 # 关键字 Unity汉化;用户体验;国际化;资源
recommend-type

iPhone

<think>我们注意到用户意图不明确,但提到了“照片提取”和“其他功能帮助”。因此,我们需要通过搜索来获取关于iPhone照片提取的常见方法以及其他可能的功能帮助。由于用户问题比较宽泛,我们将重点放在照片提取上,因为这是明确提到的关键词。同时,我们也会考虑一些其他常用功能的帮助。首先,针对照片提取,可能涉及从iPhone导出照片、从备份中提取照片、或者从损坏的设备中恢复照片等。我们将搜索这些方面的信息。其次,关于其他功能帮助,我们可以提供一些常见问题的快速指南,如电池优化、屏幕时间管理等。根据要求,我们需要将答案组织为多个方法或步骤,并在每个步骤间换行。同时,避免使用第一人称和步骤词汇。由于
recommend-type

驾校一点通软件:提升驾驶证考试通过率

标题“驾校一点通”指向的是一款专门为学员考取驾驶证提供帮助的软件,该软件强调其辅助性质,旨在为学员提供便捷的学习方式和复习资料。从描述中可以推断出,“驾校一点通”是一个与驾驶考试相关的应用软件,这类软件一般包含驾驶理论学习、模拟考试、交通法规解释等内容。 文件标题中的“2007”这个年份标签很可能意味着软件的最初发布时间或版本更新年份,这说明了软件具有一定的历史背景和可能经过了多次更新,以适应不断变化的驾驶考试要求。 压缩包子文件的文件名称列表中,有以下几个文件类型值得关注: 1. images.dat:这个文件名表明,这是一个包含图像数据的文件,很可能包含了用于软件界面展示的图片,如各种标志、道路场景等图形。在驾照学习软件中,这类图片通常用于帮助用户认识和记忆不同交通标志、信号灯以及驾驶过程中需要注意的各种道路情况。 2. library.dat:这个文件名暗示它是一个包含了大量信息的库文件,可能包含了法规、驾驶知识、考试题库等数据。这类文件是提供给用户学习驾驶理论知识和准备科目一理论考试的重要资源。 3. 驾校一点通小型汽车专用.exe:这是一个可执行文件,是软件的主要安装程序。根据标题推测,这款软件主要是针对小型汽车驾照考试的学员设计的。通常,小型汽车(C1类驾照)需要学习包括车辆构造、基础驾驶技能、安全行车常识、交通法规等内容。 4. 使用说明.html:这个文件是软件使用说明的文档,通常以网页格式存在,用户可以通过浏览器阅读。使用说明应该会详细介绍软件的安装流程、功能介绍、如何使用软件的各种模块以及如何通过软件来帮助自己更好地准备考试。 综合以上信息,我们可以挖掘出以下几个相关知识点: - 软件类型:辅助学习软件,专门针对驾驶考试设计。 - 应用领域:主要用于帮助驾考学员准备理论和实践考试。 - 文件类型:包括图片文件(images.dat)、库文件(library.dat)、可执行文件(.exe)和网页格式的说明文件(.html)。 - 功能内容:可能包含交通法规知识学习、交通标志识别、驾驶理论学习、模拟考试、考试题库练习等功能。 - 版本信息:软件很可能最早发布于2007年,后续可能有多个版本更新。 - 用户群体:主要面向小型汽车驾照考生,即C1类驾照学员。 - 使用方式:用户需要将.exe安装文件进行安装,然后根据.html格式的使用说明来熟悉软件操作,从而利用images.dat和library.dat中的资源来辅助学习。 以上知识点为从给定文件信息中提炼出来的重点,这些内容对于了解“驾校一点通”这款软件的功能、作用、使用方法以及它的发展历史都有重要的指导意义。
recommend-type

【DFLauncher自动化教程】:简化游戏启动流程,让游戏体验更流畅

# 摘要 DFLauncher是一个功能丰富的游戏启动和管理平台,本论文将介绍其安装、基础使用、高级设置、社区互动以及插件开发等方面。通过对配置文件的解析、界面定制、自动化功能的实现、高级配置选项、安全性和性能监控的详细讨论,本文阐述了DFLauncher如何帮助用户更高效地管理和优化游戏环境。此外,本文还探讨了DFLauncher社区的资源分享、教育教程和插件开发等内容,
recommend-type

自适应卡尔曼滤波是什么意思

<think>嗯,用户这次想深入了解自适应卡尔曼滤波(AKF)的概念和原理。从对话历史看,用户之前研究过相机自动对焦系统的降噪技术,其中提到过自适应卡尔曼滤波的应用场景。用户可能是个工程师或研究者,正在探索信号处理在具体场景的实现细节。 用户提供的三篇参考文献很有价值:[1]是基础理论综述,[2]聚焦多传感器场景,[3]讨论噪声协方差自适应方法。需要特别注意相机AF系统的特殊需求——实时性要求高(每秒数十次对焦计算)、噪声环境复杂(机械振动/弱光干扰),这些在解释原理时要结合具体案例。 技术要点需要分层解析:先明确标准卡尔曼滤波的局限(固定噪声参数),再展开自适应机制。对于相机AF场景,重
recommend-type

EIA-CEA 861B标准深入解析:时间与EDID技术

EIA-CEA 861B标准是美国电子工业联盟(Electronic Industries Alliance, EIA)和消费电子协会(Consumer Electronics Association, CEA)联合制定的一个技术规范,该规范详细规定了视频显示设备和系统之间的通信协议,特别是关于视频显示设备的时间信息(timing)和扩展显示识别数据(Extended Display Identification Data,简称EDID)的结构与内容。 在视频显示技术领域,确保不同品牌、不同型号的显示设备之间能够正确交换信息是至关重要的,而这正是EIA-CEA 861B标准所解决的问题。它为制造商提供了一个统一的标准,以便设备能够互相识别和兼容。该标准对于确保设备能够正确配置分辨率、刷新率等参数至关重要。 ### 知识点详解 #### EIA-CEA 861B标准的历史和重要性 EIA-CEA 861B标准是随着数字视频接口(Digital Visual Interface,DVI)和后来的高带宽数字内容保护(High-bandwidth Digital Content Protection,HDCP)等技术的发展而出现的。该标准之所以重要,是因为它定义了电视、显示器和其他显示设备之间如何交互时间参数和显示能力信息。这有助于避免兼容性问题,并确保消费者能有较好的体验。 #### Timing信息 Timing信息指的是关于视频信号时序的信息,包括分辨率、水平频率、垂直频率、像素时钟频率等。这些参数决定了视频信号的同步性和刷新率。正确配置这些参数对于视频播放的稳定性和清晰度至关重要。EIA-CEA 861B标准规定了多种推荐的视频模式(如VESA标准模式)和特定的时序信息格式,使得设备制造商可以参照这些标准来设计产品。 #### EDID EDID是显示设备向计算机或其他视频源发送的数据结构,包含了关于显示设备能力的信息,如制造商、型号、支持的分辨率列表、支持的视频格式、屏幕尺寸等。这种信息交流机制允许视频源设备能够“了解”连接的显示设备,并自动设置最佳的输出分辨率和刷新率,实现即插即用(plug and play)功能。 EDID的结构包含了一系列的块(block),其中定义了包括基本显示参数、色彩特性、名称和序列号等在内的信息。该标准确保了这些信息能以一种标准的方式被传输和解释,从而简化了显示设置的过程。 #### EIA-CEA 861B标准的应用 EIA-CEA 861B标准不仅适用于DVI接口,还适用于HDMI(High-Definition Multimedia Interface)和DisplayPort等数字视频接口。这些接口技术都必须遵循EDID的通信协议,以保证设备间正确交换信息。由于标准的广泛采用,它已经成为现代视频信号传输和显示设备设计的基础。 #### EIA-CEA 861B标准的更新 随着技术的进步,EIA-CEA 861B标准也在不断地更新和修订。例如,随着4K分辨率和更高刷新率的显示技术的发展,该标准已经扩展以包括支持这些新技术的时序和EDID信息。任何显示设备制造商在设计新产品时,都必须考虑最新的EIA-CEA 861B标准,以确保兼容性。 #### 结论 EIA-CEA 861B标准是电子显示领域的一个重要规范,它详细定义了视频显示设备在通信时所使用的信号时序和设备信息的格式。该标准的存在,使得不同厂商生产的显示设备可以无缝连接和集成,极大地增强了用户体验。对于IT专业人士而言,了解和遵守EIA-CEA 861B标准是进行视频系统设计、故障诊断及设备兼容性测试的重要基础。
recommend-type

【DFLauncher应用实战】:如何将DFLauncher融入矮人要塞并提升效率

# 摘要 DFLauncher是一款功能全面的游戏管理工具,旨在简化游戏安装、启动和维护过程。本文介绍了DFLauncher的基本使用方法,详细解析了其核心功能,包括游戏库管理、游戏配置优化、更新机制等。同时,文章探讨了DFLauncher在特定游戏“矮人要塞”中的集成应用,以及通过插件和脚本进行的高级定制。故障诊断与系统优化章节提供了实用的诊断方法和性能提升技巧。最后,本文展望了DFLauncher的未来发展方向,并鼓励社区贡献和用户反馈,以满足不断变化的用户需求。 # 关键字 DFLauncher;游戏管理工具;安装配置;性能优化;故障诊断;社区贡献;定制化扩展;网络功能集成 参考资源
recommend-type

银河麒麟系统打开屏保

<think>嗯,用户的问题是关于银河麒麟操作系统如何开启屏幕保护程序。这个问题其实挺实用的,毕竟长时间盯着电脑屏幕容易造成视觉疲劳,屏幕保护能起到一定的保护作用。 从用户提供的引用内容来看,引用[2]提到了银河麒麟系统的常见问题处理,包括重启输入法和双屏配置问题,虽然不直接相关,但说明用户对系统设置有一定了解。引用[3]是关于安装cmake的,可能用户之前尝试过其他系统配置操作。 用户可能是在办公环境中使用银河麒麟系统,需要保护视力。考虑到银河麒麟是基于Linux开发的国产操作系统,它的屏幕保护设置应该和主流Linux发行版类似,但可能有自己的特色功能。 我回忆了一下Linux系统的屏