The frame range is smaller than the flipbook tile count. The flipbook will contain some blank tiles. Python error: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "labs::Driver/flipbook_textures::1.0, PythonModule", line 1328, in renderAndExport File "labs::Driver/flipbook_textures::1.0, PythonModule", line 1122, in renderAll File "labs::Driver/flipbook_textures::1.0, PythonModule", line 1115, in renderAll File "labs::Driver/flipbook_textures::1.0, PythonModule", line 1084, in renderDepth File "labs::Driver/flipbook_textures::1.0, PythonModule", line 1077, in renderDepth File "C:\PROGRA~1/SIDEEF~1/HOUDIN~1.303/houdini/python3.9libs\houpythonportion\ui.py", line 1112, in decorator return func(*args, **kwargs) File "C:\PROGRA~1/SIDEEF~1/HOUDIN~1.303/houdini/python3.9libs\hou.py", line 74137, in render return _hou.RopNode_render(self, *args, **kwargs) hou.OperationFailed: The attempted operation failed. Error: The specified resolution exceeds the maximum of 1280x720 allowed in the Non-Commercial Edition.
时间: 2024-04-27 21:19:15 浏览: 198
这个错误包含了两个问题:
1. 第一个问题是帧范围小于翻页瓷砖数,这意味着翻页将包含一些空白瓷砖。你需要增加帧范围或减少翻页瓷砖数,以确保每个瓷砖都有对应的帧图像。
2. 第二个问题是分辨率超出了非商业版允许的最大分辨率1280x720。如果你正在使用非商业版Houdini,你需要将分辨率降低到1280x720或以下,或者升级到商业版以支持更高的分辨率。如果你已经在使用商业版,你需要检查设置中的分辨率是否正确设置,并且确保你的系统可以支持所需的分辨率。
相关问题
(lq) sll@sll:~/lq/CoordFill-master$ python test.py --config /home/sll/lq/CoordFill-master/configs/test/test-Place2.yaml --model /home/sll/lq/CoordFill-master/train_Place2/encoder-epoch-last.pth /home/sll/micromamba/envs/lq/lib/python3.8/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and will be removed in 0.15, please use 'weights' instead. warnings.warn( /home/sll/micromamba/envs/lq/lib/python3.8/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and will be removed in 0.15. The current behavior is equivalent to passing `weights=AlexNet_Weights.IMAGENET1K_V1`. You can also use `weights=AlexNet_Weights.DEFAULT` to get the most up-to-date weights. warnings.warn(msg) Loading model from: /home/sll/lq/CoordFill-master/models/LPIPS/weights/v0.1/alex.pth Traceback (most recent call last): File "test.py", line 141, in <module> res = eval_psnr(loader, model, File "test.py", line 104, in eval_psnr psnr, ssim, l1 = metric_fn(model, pred, batch['gt_rgb']) File "/home/sll/lq/CoordFill-master/utils.py", line 143, in calc_psnr ssim += compare_ssim(pred, gt, data_range=255, multichannel=True, win_size=11) File "/home/sll/micromamba/envs/lq/lib/python3.8/site-packages/skimage/metrics/_structural_similarity.py", line 178, in structural_similarity raise ValueError( ValueError: win_size exceeds image extent. Either ensure that your images are at least 7x7; or pass win_size explicitly in the function call, with an odd value less than or equal to the smaller side of your images. If your images are multichannel (with color channels), set channel_axis to the axis number corresponding to the channels.
### 关于SSIM计算时Win_size超出图像范围引发的ValueError
当使用`skimage.measure.compare_ssim`或者新版本中的`skimage.metrics.structural_similarity`来计算彩色图像之间的结构相似度指数(SSIM),如果设置了参数`multichannel=True`仍然抛出了异常 `ValueError: win_size exceeds image extent.`,这意味着窗口尺寸超过了输入图片的实际大小[^1]。
对于这个问题的一个解决方案是在调用该函数之前先检查并调整`win_size`参数值。默认情况下,这个值被设为11×11像素的小窗格用于局部统计特性估计;然而,在处理非常小分辨率的图象样本时,则可能需要减小此数值以适应实际状况:
```python
import numpy as np
from skimage import metrics
def safe_ssim(img1, img2, channel_axis=-1):
min_shape = tuple(min(s1, s2) for s1, s2 in zip(img1.shape[:-1], img2.shape[:-1]))
# Ensure window size does not exceed any dimension of the images.
adjusted_win_size = min(metrics._ssim.DEFAULT_WINDOW_SIZE, *min_shape)
ssim_val = metrics.structural_similarity(
img1[:min_shape[0], :min_shape[1]],
img2[:min_shape[0], :min_shape[1]],
win_size=adjusted_win_size,
multichannel=True,
channel_axis=channel_axis
)
return ssim_val
```
上述代码片段定义了一个名为`safessim()`的安全版SSIM评估器,它会自动根据传入两张图片较小的一方裁剪后的形状来自适应调节`win_size`参数,并确保其不超过任何一个维度上的长度。
另外需要注意的是,如果遇到其他类型的错误提示,比如关于强度值超出了预期的数据类型范围的情况,应该考虑手动指定`data_range`参数给定正确的动态范围信息[^2]。
Attempted to access index 0 of an array with smaller dimension sizes. The valid index range is 1 to 86. This error will stop the simulation.
这个错误信息通常出现在数组索引超出范围的情况下。具体来说,错误信息表明尝试访问一个维度大小较小的数组的索引0,但有效的索引范围是从1到86。这意味着数组的有效索引是从1开始到86,而不是从0开始。
以下是一些可能的原因和解决方法:
1. **数组索引从1开始**:
某些编程语言或特定的数组实现可能从1开始索引,而不是从0开始。确保你的代码中访问数组的索引是从1开始,而不是从0开始。
2. **数组初始化问题**:
确认数组是否正确初始化,并且其大小确实包含索引0。如果数组的大小只有86个元素,那么有效的索引范围应该是0到85,而不是1到86。
3. **循环或条件语句错误**:
检查代码中是否有循环或条件语句可能导致数组索引超出范围。例如,循环条件可能没有正确设置,导致访问了无效的索引。
4. **调试和日志记录**:
在访问数组之前,添加调试语句或日志记录,打印当前索引和数组的大小,以便更容易定位问题。
以下是一个简单的示例代码,展示了如何避免这种错误:
```python
# 假设我们有一个长度为87的数组
array = [0] * 87
# 正确的索引访问方式
for i in range(1, 87):
print(array[i])
# 错误的索引访问方式
try:
print(array[0]) # 这将导致索引超出范围错误
except IndexError as e:
print(f"错误: {e}")
```
在这个示例中,数组`array`的长度是87,索引范围是0到86。通过使用`range(1, 87)`,我们确保访问的索引是从1到86,避免了索引0的问题。
阅读全文
相关推荐

















