val timerdd: RDD[(String, Iterable[(String, Int)])] = data.map( line=>{ val time = line.split(" ")(3) val sdf = new SimpleDateFormat("dd/MM/yyyy:HH:mm:ss") val date:Date = sdf.parse(time) val sdf1 = new SimpleDateFormat("HH") val hour =sdf1.format(date) (hour,1) } )groupBy(_._1) 翻译这段scala代码
时间: 2024-02-26 07:54:27 浏览: 206
这段Scala代码主要是对一个RDD进行了转换和分组操作。具体实现过程如下:
1. 调用`map`函数对数据RDD进行转换,将每一行数据按空格分隔并取出第4个元素(即时间),然后将其转换为`Date`类型。
2. 构造`SimpleDateFormat`对象,将时间格式化为小时数,并将其作为键值对的键,将1作为键值对的值。
3. 调用`groupBy`函数对RDD进行分组操作,按照键(即小时数)进行分组,返回一个RDD,其中每个元素都是一个键值对,键是小时数,值是由该小时数对应的所有键值对组成的迭代器。
因此,最终的结果是一个RDD,其中每个元素都是一个键值对,键是小时数,值是该小时数对应的所有键值对组成的迭代器。
相关问题
def main(args: Array[String]): Unit = { val conf = new SparkConf().setMaster("local[*]").setAppName("SessionRatio") val sc = new SparkContext(conf) val actionRDD: RDD[UserVisitAction] = FileUtils.loadFile(sc, "data/user_visit_action") //获取按session_id分组后的RDD(session_id,Iterable[UserVisitAction]) val sessionId2action1 = actionRDD.map(item => (item.session_id, item)) val sessionId2action = sessionId2action1.groupByKey() sessionId2action.cache() //缓存 val sessionId2FullInfoRDD = getSessionFullInfo(sessionId2action) //使用自定义累加器 val sessionStatisticAccumulator = new SessionStatAccumulator //三、创建sparkConf val sparkConf = new SparkConf().setMaster("local[*]").setAppName("SessionStat") val sparkSession = SparkSession.builder().config(sparkConf).getOrCreate() sparkSession.sparkContext.register(sessionStatisticAccumulator) val sessionIdParamRDD: RDD[(String, String)] = paramRdd(sessionStatisticAccumulator, sessionId2FullInfoRDD) //触发算子 sessionIdParamRDD.collect() sessionRandomExtract(sparkSession, null, sessionId2FullInfoRDD) sc.stop() }}这是我的主函数代码,以上的错误出现怎么解决
根据你提供的代码,我没有看到出现错误的地方。但是如果你遇到了错误,可以尝试以下方法:
1. 检查代码中是否有语法错误或拼写错误。
2. 确保你的依赖包和版本号正确。
3. 检查运行环境是否配置正确。
4. 仔细阅读错误提示信息,看看能否找到错误的位置和原因。
5. 如果以上方法都无法解决问题,可以尝试在社区或论坛上提问,寻求帮助。
val groupRDD: RDD[(String, Iterable[Int])] = mapRDD1.groupByKey()解释一下这段Scala代码
这段Scala代码使用了Spark的RDD(弹性分布式数据集)操作。首先,我们有一个名为`mapRDD1`的RDD,它包含键值对(key-value pairs)。`groupByKey()`操作将这个RDD按照键(key)进行分组,并返回一个新的RDD,其中每个键与一个可迭代的值(Iterable)相关联。
具体来说,`groupByKey()`操作会将相同的键(key)的值(value)进行分组,生成一个新的RDD,其中每个键与一个由其相关的值组成的可迭代集合(Iterable)相关联。这个返回的RDD的类型是`RDD[(String, Iterable[Int])]`,表示键为String类型,值为Int类型的键值对。每个键都与一个包含相关值的可迭代集合相关联。
换句话说,这段代码的目的是根据`mapRDD1`中的键将其值进行分组,最终得到一个以键为字符串类型,值为整数类型的RDD。
阅读全文
相关推荐













