import cv2 import numpy as np import matplotlib.pyplot as plt def build_filters(): filters = [] ksize = 9 for theta in np.arange(0, np.pi, np.pi / 8): for sigma in range(1, 6): for frequency in (0.1, 0.2): kernel = cv2.getGaborKernel((ksize, ksize), sigma, theta, frequency, 0.5, 0, ktype=cv2.CV_32F) kernel /= 1.5 * kernel.sum() filters.append(kernel) return filters def process(img, filters): features = np.zeros((img.shape[0], img.shape[1], len(filters)), dtype=np.float32) for i, kernel in enumerate(filters): filtered = cv2.filter2D(img, cv2.CV_8UC3, kernel) features[:, :, i] = filtered return features # 读取图像并转为灰度图 img = cv2.imread('lena.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 构建gabor滤波器组 filters = build_filters() # 对图像进行gabor特征提取 features = process(gray, filters) # 显示gabor滤波后的特征图像 fig, axes = plt.subplots(nrows=5, ncols=8, figsize=(16, 10)) for i, ax in enumerate(axes.flat): ax.imshow(features[:, :, i], cmap='gray') ax.set_xticks([]) ax.set_yticks([]) plt.show()用矩阵将这段代码中特征提取后的图像表示出来

时间: 2024-03-19 14:40:13 浏览: 90
很抱歉,我无法将图像在这里直接显示出来。但是,你可以将代码复制到你的本地环境中运行,然后查看生成的图像。在这段代码中,使用了OpenCV库和NumPy库构建了Gabor滤波器组,然后对图像进行Gabor特征提取,并使用Matplotlib库将每个滤波器返回的特征图像显示出来。features是一个三维数组,其中第一维和第二维表示图像的高度和宽度,第三维是每个滤波器返回的特征图像。所以你可以使用features[:, :, i]来获取第i个特征图像的矩阵表示。
相关问题

如何用python实现基于概率分布的超声图像与自然图像性质差异分析这一课题,需要分析大量图像以确保结果的真实性,超声图像的文件路径是‘D:\zzz\zus2’,自然图像的文件路径是‘D:\zzz\zna2’,需要对比两种图像的特征必须有颜色,纹理,形状,差异性分析方法也需要多种,包括完整详细复杂代码,不使用greycomatrix, greycoprops

这是一个复杂的图像处理问题,需要使用多种图像处理技术和机器学习方法。以下是一个简单的代码示例,用于说明如何从大量超声图像和自然图像中提取特征,并使用概率分布进行差异性分析。 首先,我们需要导入必要的库: ```python import os import cv2 import numpy as np from sklearn.utils import shuffle from sklearn.model_selection import train_test_split from matplotlib import pyplot as plt ``` 接下来,我们需要定义一些函数来提取图像的不同特征。在这个示例中,我们将使用颜色直方图、Gabor滤波器和形状描述符。 ```python def color_histogram(image, mask=None, bins=(8, 8, 8)): hist = cv2.calcHist([image], [0, 1, 2], mask, bins, [0, 256, 0, 256, 0, 256]) hist = cv2.normalize(hist, hist) return hist.flatten() def gabor_filter(image, ksize=(31, 31), sigma=5.0, theta=np.pi/4, lambd=10.0, gamma=0.5): kernel = cv2.getGaborKernel(ksize, sigma, theta, lambd, gamma) filtered = cv2.filter2D(image, cv2.CV_8UC3, kernel) return filtered.flatten() def shape_descriptor(image): contours, _ = cv2.findContours(image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contour = max(contours, key=cv2.contourArea) moments = cv2.moments(contour) hu_moments = cv2.HuMoments(moments) return hu_moments.flatten() ``` 接下来,我们需要定义一个函数来加载图像并提取所需的特征。 ```python def load_images(path, feature_extractor): images = [] labels = [] for label, directory in enumerate(os.listdir(path)): subdirectory = os.path.join(path, directory) for filename in os.listdir(subdirectory): filepath = os.path.join(subdirectory, filename) image = cv2.imread(filepath) feature = feature_extractor(image) images.append(feature) labels.append(label) return np.array(images), np.array(labels) ``` 现在我们可以使用这些函数来加载图像并提取所需的特征。 ```python # Load ultrasound images ultrasound_path = 'D:\\zzz\\zus2' ultrasound_images, ultrasound_labels = load_images(ultrasound_path, lambda x: np.concatenate(( color_histogram(x), gabor_filter(x), shape_descriptor(cv2.cvtColor(x, cv2.COLOR_BGR2GRAY)) ))) # Load natural images natural_path = 'D:\\zzz\\zna2' natural_images, natural_labels = load_images(natural_path, lambda x: np.concatenate(( color_histogram(x), gabor_filter(x), shape_descriptor(cv2.cvtColor(x, cv2.COLOR_BGR2GRAY)) ))) ``` 现在我们可以将数据集拆分为训练集和测试集,并训练一个简单的分类器来区分超声图像和自然图像。 ```python # Combine ultrasound and natural images images = np.concatenate((ultrasound_images, natural_images)) labels = np.concatenate((ultrasound_labels, natural_labels)) # Shuffle data images, labels = shuffle(images, labels) # Split data into train and test sets x_train, x_test, y_train, y_test = train_test_split(images, labels, test_size=0.2) # Train a classifier (e.g. SVM) from sklearn.svm import SVC classifier = SVC(kernel='linear') classifier.fit(x_train, y_train) # Evaluate classifier on test set accuracy = classifier.score(x_test, y_test) print('Accuracy:', accuracy) ``` 最后,我们可以使用概率分布来比较超声图像和自然图像的特征差异。 ```python # Compute probability distributions for ultrasound and natural images ultrasound_prob = np.mean(classifier.predict_proba(ultrasound_images), axis=0) natural_prob = np.mean(classifier.predict_proba(natural_images), axis=0) # Plot probability distributions plt.bar(range(2), ultrasound_prob, color='blue', label='Ultrasound') plt.bar(range(2), natural_prob, color='green', bottom=ultrasound_prob, label='Natural') plt.xticks(range(2), ('Ultrasound', 'Natural')) plt.xlabel('Image Type') plt.ylabel('Probability') plt.legend() plt.show() ``` 这些代码片段只是一个示例,您可能需要根据您的数据和实际情况进行修改。但是,这应该足以为您提供一个基本的框架来处理这个问题。

2D-Gabor指纹增强

### 使用2D Gabor滤波器进行指纹图像增强 #### 1. 指纹图像预处理 为了提高后续Gabor滤波的效果,在应用Gabor滤波之前通常会对原始指纹图像进行一些基本的预处理操作。这些预处理步骤可能包括灰度化、去噪以及对比度调整等。 对于指纹图像而言,由于其具有明显的周期性和方向性特点,因此非常适合采用基于频率和方向的选择性响应机制来突出细节特征并抑制噪声干扰[^1]。 #### 2. 构建Gabor滤波器组 构建一组不同尺度(scale)和方向(orientation)参数设置下的2D Gabor滤波器用于捕捉多分辨率层次上的局部结构信息。具体来说: - **尺度**:对应于不同的空间频率范围; - **方向**:反映纹理的方向特性; 通过调节这两个主要参数可以在一定程度上控制所提取出来的模式类型及其精细程度。例如,在实际应用中可能会创建多个角度间隔均匀分布的方向子带,并针对每一个方向设计若干个不同大小的感受野窗口以适应各种复杂情况下的需求[^2]。 #### 3. 应用Gabor滤波器 利用OpenCV库中的`cv2.getGaborKernel()`函数定义所需的Gabor内核之后,就可以将其应用于输入图像从而获得经过变换后的频谱表示形式。此过程能够有效地强调那些与设定好的模板相匹配的部分——即指纹脊线区域内的高频成分,同时削弱背景杂乱无章的变化趋势所带来的影响[^3]。 ```python import cv2 import numpy as np from matplotlib import pyplot as plt def build_filters(ksize=31, sigma=1.0, theta=np.pi/4, lambd=np.pi*2., gamma=0.5): """ returns a list of filters """ filters = [] for theta in np.arange(0, np.pi, np.pi / 8): # 不同方向的角度 kern = cv2.getGaborKernel((ksize, ksize), sigma, theta, lambd, gamma, 0, ktype=cv2.CV_32F) kern /= 1.5 * kern.sum() # 归一化能量 filters.append(kern) return filters def process(img, filters): """ applies the filter and returns the filtered images. """ accum = np.zeros_like(img) for kern in filters: fimg = cv2.filter2D(img, cv2.CV_8UC3, kern) np.maximum(accum, fimg, accum) return accum # 加载指纹图像 fingerprint_image = cv2.imread('path_to_fingerprint_image', 0) # 创建Gabor滤波器集合 gabor_filters = build_filters() # 对指纹图象施加Gabor滤波 enhanced_img = process(fingerprint_image, gabor_filters) plt.figure(figsize=(12,6)) plt.subplot(121), plt.imshow(fingerprint_image,cmap='gray'), plt.title('Original Image') plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(enhanced_img,cmap='gray'), plt.title('Enhanced Fingerprint') plt.xticks([]), plt.yticks([]) plt.show() ``` 上述代码片段展示了如何使用Python结合OpenCV库实现简单的2D Gabor滤波器对指纹图像进行增强的过程。这里选择了八个固定间距排列的不同方位角作为候选集成员之一参与到最终合成结果当中去。
阅读全文

相关推荐

最新推荐

recommend-type

2018年小程序发展状况报告.pdf

2018年小程序发展状况报告.pdf
recommend-type

构建基于ajax, jsp, Hibernate的博客网站源码解析

根据提供的文件信息,本篇内容将专注于解释和阐述ajax、jsp、Hibernate以及构建博客网站的相关知识点。 ### AJAX AJAX(Asynchronous JavaScript and XML)是一种用于创建快速动态网页的技术,它允许网页在不重新加载整个页面的情况下,与服务器交换数据并更新部分网页内容。AJAX的核心是JavaScript中的XMLHttpRequest对象,通过这个对象,JavaScript可以异步地向服务器请求数据。此外,现代AJAX开发中,常常用到jQuery中的$.ajax()方法,因为其简化了AJAX请求的处理过程。 AJAX的特点主要包括: - 异步性:用户操作与数据传输是异步进行的,不会影响用户体验。 - 局部更新:只更新需要更新的内容,而不是整个页面,提高了数据交互效率。 - 前后端分离:AJAX技术允许前后端分离开发,让前端开发者专注于界面和用户体验,后端开发者专注于业务逻辑和数据处理。 ### JSP JSP(Java Server Pages)是一种动态网页技术标准,它允许开发者将Java代码嵌入到HTML页面中,从而实现动态内容的生成。JSP页面在服务器端执行,并将生成的HTML发送到客户端浏览器。JSP是Java EE(Java Platform, Enterprise Edition)的一部分。 JSP的基本工作原理: - 当客户端首次请求JSP页面时,服务器会将JSP文件转换为Servlet。 - 服务器上的JSP容器(如Apache Tomcat)负责编译并执行转换后的Servlet。 - Servlet生成HTML内容,并发送给客户端浏览器。 JSP页面中常见的元素包括: - 指令(Directives):如page、include、taglib等。 - 脚本元素:脚本声明(Script declarations)、脚本表达式(Scriptlet)和脚本片段(Expression)。 - 标准动作:如jsp:useBean、jsp:setProperty、jsp:getProperty等。 - 注释:在客户端浏览器中不可见的注释。 ### Hibernate Hibernate是一个开源的对象关系映射(ORM)框架,它提供了从Java对象到数据库表的映射,简化了数据库编程。通过Hibernate,开发者可以将Java对象持久化到数据库中,并从数据库中检索它们,而无需直接编写SQL语句或掌握复杂的JDBC编程。 Hibernate的主要优点包括: - ORM映射:将对象模型映射到关系型数据库的表结构。 - 缓存机制:提供了二级缓存,优化数据访问性能。 - 数据查询:提供HQL(Hibernate Query Language)和Criteria API等查询方式。 - 延迟加载:可以配置对象或对象集合的延迟加载,以提高性能。 ### 博客网站开发 构建一个博客网站涉及到前端页面设计、后端逻辑处理、数据库设计等多个方面。使用ajax、jsp、Hibernate技术栈,开发者可以更高效地构建功能完备的博客系统。 #### 前端页面设计 前端主要通过HTML、CSS和JavaScript来实现,其中ajax技术可以用来异步获取文章内容、用户评论等,无需刷新页面即可更新内容。 #### 后端逻辑处理 JSP可以在服务器端动态生成HTML内容,根据用户请求和数据库中的数据渲染页面。Hibernate作为ORM框架,可以处理Java对象与数据库表之间的映射,并提供数据库的CRUD(创建、读取、更新、删除)操作。 #### 数据库设计 博客网站的数据库设计通常包含多个表,如用户表(存储用户信息)、文章表(存储文章信息)、评论表(存储用户评论信息)等。使用Hibernate框架可以简化数据库操作,同时确保数据的一致性和安全性。 #### 安全性和性能优化 安全性是构建网站时需要考虑的重要方面,包括但不限于SQL注入防护、XSS攻击防护、会话管理等。性能优化方面,可以利用Hibernate的缓存机制,以及对JSP页面和ajax请求进行适当的缓存处理。 ### 结论 ajax、jsp、Hibernate技术结合可以构建出高效、动态、易于维护的博客网站。在开发过程中,应当关注前后端分离、用户体验优化、系统性能和安全性等关键要素,确保博客网站的稳定和长期可用性。通过本篇文章,读者应该已经对这些技术有了初步了解,并能够结合文件提供的源码开始进行相关开发实践。
recommend-type

【Unity Sunny Land关卡设计高级指南】:打造完美关卡的8大技巧

# 1. Unity关卡设计概述 ## 1.1 关卡设计的核心要素 关卡设计作为游戏开发中不可或缺的一环,承担着构建游戏世界、呈现故事背景、引导玩家体验和激发玩家兴趣的责任。一个优秀的关卡不仅需要有吸引人的视觉效果和有趣的挑战,还需平衡玩家体验,提供连贯的游戏故事。 ## 1.2 关卡设计师的角色 在Unity引擎的环境下,关卡设计师需要具备对场景布局、角色互动、剧情
recommend-type

C++ 模版

<think>我们正在讨论C++模板的使用和常见问题。根据用户要求,所有行内数学表达式使用$...$,独立公式使用$$...$$,用中文回答,并生成相关问题。同时,回答要结构清晰,帮助用户逐步解决问题。 首先,回顾用户的问题:用户想了解C++模板的使用和常见问题。我们将从以下几个方面展开: 1. 模板的基本概念和用途 2. 函数模板和类模板 3. 模板特化和偏特化 4. 模板元编程简介 5. 常见问题及解决方案 注意:在回答中,我们会引用站内提供的引用内容(引用[1]和引用[2])作为参考,但主要围绕模板展开。 ### 1. 模板的基本概念和用途 C++模板是一种支持泛型编程的特性,允许
recommend-type

C#随机数摇奖系统功能及隐藏开关揭秘

### C#摇奖系统知识点梳理 #### 1. C#语言基础 C#(发音为“看井”)是由微软开发的一种面向对象的、类型安全的编程语言。它是.NET框架的核心语言之一,广泛用于开发Windows应用程序、ASP.NET网站、Web服务等。C#提供丰富的数据类型、控制结构和异常处理机制,这使得它在构建复杂应用程序时具有很强的表达能力。 #### 2. 随机数的生成 在编程中,随机数生成是常见的需求之一,尤其在需要模拟抽奖、游戏等场景时。C#提供了System.Random类来生成随机数。Random类的实例可以生成一个伪随机数序列,这些数在统计学上被认为是随机的,但它们是由确定的算法生成,因此每次运行程序时产生的随机数序列相同,除非改变种子值。 ```csharp using System; class Program { static void Main() { Random rand = new Random(); for(int i = 0; i < 10; i++) { Console.WriteLine(rand.Next(1, 101)); // 生成1到100之间的随机数 } } } ``` #### 3. 摇奖系统设计 摇奖系统通常需要以下功能: - 用户界面:显示摇奖结果的界面。 - 随机数生成:用于确定摇奖结果的随机数。 - 动画效果:模拟摇奖的视觉效果。 - 奖项管理:定义摇奖中可能获得的奖品。 - 规则设置:定义摇奖规则,比如中奖概率等。 在C#中,可以使用Windows Forms或WPF技术构建用户界面,并集成上述功能以创建一个完整的摇奖系统。 #### 4. 暗藏的开关(隐藏控制) 标题中提到的“暗藏的开关”通常是指在程序中实现的一个不易被察觉的控制逻辑,用于在特定条件下改变程序的行为。在摇奖系统中,这样的开关可能用于控制中奖的概率、启动或停止摇奖、强制显示特定的结果等。 #### 5. 测试 对于摇奖系统来说,测试是一个非常重要的环节。测试可以确保程序按照预期工作,随机数生成器的随机性符合要求,用户界面友好,以及隐藏的控制逻辑不会被轻易发现或利用。测试可能包括单元测试、集成测试、压力测试等多个方面。 #### 6. System.Random类的局限性 System.Random虽然方便使用,但也有其局限性。其生成的随机数序列具有一定的周期性,并且如果使用不当(例如使用相同的种子创建多个实例),可能会导致生成相同的随机数序列。在安全性要求较高的场合,如密码学应用,推荐使用更加安全的随机数生成方式,比如RNGCryptoServiceProvider。 #### 7. Windows Forms技术 Windows Forms是.NET框架中用于创建图形用户界面应用程序的库。它提供了一套丰富的控件,如按钮、文本框、标签等,以及它们的事件处理机制,允许开发者设计出视觉效果良好且功能丰富的桌面应用程序。 #### 8. WPF技术 WPF(Windows Presentation Foundation)是.NET框架中用于构建桌面应用程序用户界面的另一种技术。与Windows Forms相比,WPF提供了更现代化的控件集,支持更复杂的布局和样式,以及3D图形和动画效果。WPF的XAML标记语言允许开发者以声明性的方式设计用户界面,与C#代码分离,易于维护和更新。 #### 9. 压缩包子文件TransBallDemo分析 从文件名“TransBallDemo”可以推测,这可能是一个C#的示例程序或者演示程序,其中“TransBall”可能表示旋转的球体,暗示该程序包含了动画效果,可能是用来模拟转动的球体(如转盘或摇奖球)。该文件可能是用来展示如何实现一个带有视觉动画效果的摇奖系统的C#程序。 总结以上内容,我们可以得出构建一个C#摇奖系统需要深入理解C#语言及其随机数生成机制,设计用户界面,集成动画效果,确保隐藏控制逻辑的安全性,以及全面测试系统以保证其正确性和公平性。通过掌握Windows Forms或WPF技术,可以进一步增强系统的视觉和交互体验。
recommend-type

【数据驱动的力量】:管道缺陷判别方法论与实践经验

# 摘要 数据驱动技术在管道缺陷检测领域展现出强大的力量,本文首先概述了数据驱动的力量和管道缺陷判别的基础理论。接着,重点探讨了管道缺陷的类型与特征、数据采集与预处理、数据驱动模型的选择与构建。在实践技巧章节,本文详述了实战数据集的准备与处理、缺陷识别算法的应用、以及性能评估与模型优化。此外,高级应用章节深入讨论了实时数据处理分析、多模态数据融合技术、以及深度学习在缺
recommend-type

FatalError: `Segmentation fault` is detected by the operating system. [TimeInfo: *** Aborted at 1752568501 (unix time) try "date -d @1752568501" if you are using GNU date ***] [SignalInfo: *** SIGSEGV (@0x0) received by PID 3203 (TID 0x7f8a04143340) from PID 0 ***],训练模型中出现上述错误,怎么解决

<think>我们面对的是一个模型训练过程中出现的Segmentation fault错误。根据引用[1],Segmentation Fault通常是由非法内存访问引起的,常见原因包括空指针解引用、数组越界、使用未初始化指针等。在深度学习训练场景中,还可能涉及显存溢出、CUDA内核错误等。 引用[2]展示了一个具体案例:在PaddlePaddle框架中遇到Segmentation fault,并提示了C++ Traceback。这通常表明底层C++代码出现了问题。而引用[3]则提到Python环境下的Segmentation fault,可能涉及Python扩展模块的错误。 解决步骤: 1
recommend-type

EditPlus中实现COBOL语言语法高亮的设置

标题中的“editplus”指的是一个轻量级的代码编辑器,特别受到程序员和软件开发者的欢迎,因为它支持多种编程语言。标题中的“mfcobol”指的是一种特定的编程语言,即“Micro Focus COBOL”。COBOL语言全称为“Common Business-Oriented Language”,是一种高级编程语言,主要用于商业、金融和行政管理领域的数据处理。它最初开发于1959年,是历史上最早的高级编程语言之一。 描述中的“cobol语言颜色显示”指的是在EditPlus这款编辑器中为COBOL代码提供语法高亮功能。语法高亮是一种编辑器功能,它可以将代码中的不同部分(如关键字、变量、字符串、注释等)用不同的颜色和样式显示,以便于编程者阅读和理解代码结构,提高代码的可读性和编辑的效率。在EditPlus中,要实现这一功能通常需要用户安装相应的语言语法文件。 标签“cobol”是与描述中提到的COBOL语言直接相关的一个词汇,它是对描述中提到的功能或者内容的分类或者指代。标签在互联网内容管理系统中用来帮助组织内容和便于检索。 在提供的“压缩包子文件的文件名称列表”中只有一个文件名:“Java.stx”。这个文件名可能是指一个语法高亮的模板文件(Syntax Template eXtension),通常以“.stx”为文件扩展名。这样的文件包含了特定语言语法高亮的规则定义,可用于EditPlus等支持自定义语法高亮的编辑器中。不过,Java.stx文件是为Java语言设计的语法高亮文件,与COBOL语言颜色显示并不直接相关。这可能意味着在文件列表中实际上缺少了为COBOL语言定义的相应.stx文件。对于EditPlus编辑器,要实现COBOL语言的颜色显示,需要的是一个COBOL.stx文件,或者需要在EditPlus中进行相应的语法高亮设置以支持COBOL。 为了在EditPlus中使用COBOL语法高亮,用户通常需要做以下几步操作: 1. 确保已经安装了支持COBOL的EditPlus版本。 2. 从Micro Focus或者第三方资源下载COBOL的语法高亮文件(COBOL.stx)。 3. 打开EditPlus,进入到“工具”菜单中的“配置用户工具”选项。 4. 在用户工具配置中,选择“语法高亮”选项卡,然后选择“添加”来载入下载的COBOL.stx文件。 5. 根据需要选择其他语法高亮的选项,比如是否开启自动完成、代码折叠等。 6. 确认并保存设置。 完成上述步骤后,在EditPlus中打开COBOL代码文件时,应该就能看到语法高亮显示了。语法高亮不仅仅是颜色的区分,它还可以包括字体加粗、斜体、下划线等样式,以及在某些情况下,语法错误的高亮显示。这对于提高编码效率和准确性有着重要意义。
recommend-type

影子系统(windows)问题排查:常见故障诊断与修复

# 摘要 本文旨在深入探讨影子系统的概念、工作原理以及故障诊断基础。首先,介绍影子系统的定义及其运作机制,并分析其故障诊断的理论基础,包括系统故障的分类和特征。接着,详细探讨各种故障诊断工具和方法,并提供实际操作中的故障排查步骤。文中还深入分析了影子系统常见故障案例,涵盖系统启动问题、软件兼容性和网络连通性问题,并提供相应的诊断与解决方案。高级故障诊断与修复
recommend-type

nt!DbgBreakPointWithStatus: fffff805`7affd0b0 cc int 3 kd> g KDTARGET: Refreshing KD connection *** Fatal System Error: 0x0000001a (0x0000000000061941,0xFFFFF8057B20E1C0,0x0000000000000019,0xFFFFFC89CACA7190) Break instruction exception - code 80000003 (first chance) A fatal system error has occurred. Debugger entered on first try; Bugcheck callbacks have not been invoked. A fatal system error has occurred. For analysis of this file, run !analyze -v nt!DbgBreakPointWithStatus: fffff805`7affd0b0 cc int 3 kd> !analyze -v Connected to Windows 10 19041 x64 target at (Tue Jul 15 23:02:04.588 2025 (UTC + 8:00)), ptr64 TRUE Loading Kernel Symbols ............. Press ctrl-c (cdb, kd, ntsd) or ctrl-break (windbg) to abort symbol loads that take too long. Run !sym noisy before .reload to track down problems loading symbols. .................................................. ................................................................ ..................................................... Loading User Symbols Loading unloaded module list ...... ERROR: FindPlugIns 8007007b ******************************************************************************* * * * Bugcheck Analysis * * * ******************************************************************************* MEMORY_MANAGEMENT (1a) # Any other values for parameter 1 must be individually examined. Arguments: Arg1: 0000000000061941, The subtype of the BugCheck. Arg2: fffff8057b20e1c0 Arg3: 0000000000000019 Arg4: fffffc89caca7190 Debugging Details: ------------------ Press ctrl-c (cdb, kd, ntsd) or ctrl-break (windbg) to abort symbol loads that take too long. Run !sym noisy before .reload to track down problems loading symbols. 蓝屏了,但原帖子代码能正常执行,帖子作者说:我win10是专门针对2mb大页,win7是专门针对4kb小页的,蓝屏的原因我只能想到是因为没有做大页和小页的处理了。你做了2mb和4kb之类的处理吗,还有2mb的大页的物理地址要2mb对齐,不然电脑会卡死,我win10蓝屏的原因就是因为没有物理地址2mb对齐,我这代码是专门针对我那个虚拟机的环境,其他环境蓝屏你要是懂分页的话自己就会处理了。最重要的细节就是物理地址要对齐,2mb就2mb的对齐,1gb就1gb的对齐。

<think>我们之前讨论的代码中已经包含了对大页(2MB)和小页(4KB)的处理。但是,根据蓝屏信息(MEMORY_MANAGEMENT, 0x1a)和参数,问题可能出在内存对齐或页表项设置上。 原帖作者提到:2MB大页的物理地址必须2MB对齐,否则会导致系统不稳定甚至蓝屏。在之前的代码中,我们确实处理了大页的情况,但在分配2MB内存时,我们使用了`MmAllocateContiguousMemorySpecifyCache`,这个函数分配的内存不一定满足2MB对齐(尽管它分配的是连续内存)。因此,我们需要确保分配的内存地址是2MB对齐的。 解决方案: 1. 在分配2MB内存时,要