C++如何将欧拉角转为旋转矩阵

时间: 2024-03-13 16:44:46 浏览: 97
在 C++ 中,可以使用数学库如 Eigen 或者 glm 来进行矩阵计算和向量运算,实现欧拉角转换为旋转矩阵。以下是一个示例代码,使用 Eigen 来实现将欧拉角转换为旋转矩阵: ```c++ #include <Eigen/Core> #include <Eigen/Geometry> // 定义欧拉角 double alpha = 30.0; double beta = 45.0; double gamma = 60.0; // 将欧拉角转换为弧度制 double rad_alpha = alpha * M_PI / 180.0; double rad_beta = beta * M_PI / 180.0; double rad_gamma = gamma * M_PI / 180.0; // 定义旋转矩阵 Eigen::Matrix3d rotation; // 设置旋转矩阵 rotation = Eigen::AngleAxisd(rad_alpha, Eigen::Vector3d::UnitX()) * Eigen::AngleAxisd(rad_beta, Eigen::Vector3d::UnitY()) * Eigen::AngleAxisd(rad_gamma, Eigen::Vector3d::UnitZ()); // 使用旋转矩阵旋转向量 Eigen::Vector3d v(1, 0, 0); // 原始向量 Eigen::Vector3d v_rotated = rotation * v; // 旋转后的向量 ``` 在上面的示例代码中,首先将欧拉角转换为弧度制,然后依次绕 $x$ 轴、$y$ 轴和 $z$ 轴旋转,得到旋转矩阵。最后使用旋转矩阵将原始向量旋转到新的坐标系中。
阅读全文

相关推荐

#include <map> #include <vector> #include <Eigen/Eigen> #include <opencv2/opencv.hpp> #include <cv_bridge/cv_bridge.h> #include <iostream> #include <fstream> // 棋盘格检测器类,用于检测棋盘格并计算机器人/相机坐标系转换 class ChessboardDetector_cls { private: cv::Mat rvec; // 旋转向量(世界坐标系到相机坐标系的旋转) cv::Mat tvec; // 平移向量(世界坐标系原点到相机坐标系原点的平移) // 相机内参矩阵 [fx, 0, cx; 0, fy, cy; 0, 0, 1] cv::Mat cameraMatrix; // 畸变系数 [k1, k2, p1, p2, k3] cv::Mat distCoeffs; // 棋盘格方块物理尺寸(单位:米,需与实际应用场景一致) float squareSize; int boardWidth = 7; // 棋盘格宽度(单位:内角点) int boardHeight = 7; // 棋盘格高度(单位:内角点) bool cvVerPlus45 = false; // OpenCV版本判断标志 public: // 构造函数,初始化相机参数和棋盘格尺寸 ChessboardDetector_cls(float square_size = 12.5,int nDevType=1) // 默认1cm方块,1=r1d,0=r8c { if(nDevType == 0){ // ✅ 相机内参矩阵 cameraMatrix: // [[1.04969613e+03 0.00000000e+00 5.73570763e+02] // [0.00000000e+00 1.05086275e+03 4.05877726e+02] // [0.00000000e+00 0.00000000e+00 1.00000000e+00]] // ✅ 畸变系数 distCoeffs: // [[-1.85926395e-03 1.61417431e-03 1.14303737e-03 7.58650886e-05 // -1.17211371e-03]] this->cameraMatrix = (cv::Mat_<double>(3, 3) << 593.52455247, 0, 359.99576897, 0, 591.1469869, 231.48422218, 0, 0, 1); this->distCoeffs = (cv::Mat_<double>(1, 5) << 0.03468398, 0.44016135, -0.00044522, 0.01792056, -1.15909218); }else{ // ✅ 相机内参矩阵 cameraMatrix: // [[1.05382819e+03 0.00000000e+00 5.72604459e+02] // [0.00000000e+00 1.05425060e+03 4.02170466e+02] // [0.00000000e+00 0.00000000e+00 1.00000000e+00]] // ✅ 畸变系数 distCoeffs: // [[ 0.00272168 -0.04679861 0.00091088 -0.00053716 0.14500516]] this->cameraMatrix = (cv::Mat_<double>(3, 3) << 1.05382819e+03, 0.00000000e+00, 5.72604459e+02, 0.00000000e+00, 1.05425060e+03, 4.02170466e+02, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00); this->distCoeffs = (cv::Mat_<double>(1, 5) << 0.00272168, -0.04679861, 0.00091088, -0.00053716, 0.14500516); } this->squareSize = square_size; // 初始化棋盘格方块尺寸 int major_ver = 0, minor_ver = 0; std::sscanf(CV_VERSION, "%d.%d", &major_ver, &minor_ver); // 使用自适应阈值检测棋盘格角点 // 这里的版本判断是为了兼容OpenCV 4.5+和4.4-的不同函数调用 // 4.5+版本使用findChessboardCornersSB函数,4.4-版本使用findChessboardCorners函数 if (major_ver > 4 || (major_ver == 4 && minor_ver >= 5)){ // OpenCV 4.5+ cvVerPlus45 = true; } } // 棋盘格检测服务回调函数 // 输入:原始图像,输出:位姿向量[x,y,z](相机坐标系下的棋盘格原点坐标) bool ChessboardDetectionCallback(cv::Mat image, std::vector<float>& vecRt) { if(!ChessboardDetection(image)) { // 执行检测 return false; // 检测失败返回false } // 生成唯一文件名 auto now = std::chrono::system_clock::now(); auto timestamp = std::chrono::duration_cast<std::chrono::milliseconds>( now.time_since_epoch()).count(); std::string filename = "/home/nvidia/YaLongR8/src/bringup/detected_" + std::to_string(timestamp) + ".jpg"; // 保存带角点的图像 if(!cv::imwrite(filename, image)){ std::cerr << "Failed to save image: " << filename << std::endl; } else { std::cout << "Saved image with corners: " << filename << std::endl; } vecRt = PoseCalculation(); // 计算并返回位姿 return true; } // 计算标定板坐标系到相机坐标系的转换矩阵 cv::Point3f transformToCameraFrame(const cv::Point3f& obj_in_board) { cv::Mat R; cv::Rodrigues(rvec, R); // 将旋转向量转为旋转矩阵 cv::Mat pt_board = (cv::Mat_<double>(3,1) << obj_in_board.x, obj_in_board.y, obj_in_board.z); cv::Mat pt_camera = R * pt_board + tvec; return cv::Point3f( static_cast<float>(pt_camera.at<double>(0)), static_cast<float>(pt_camera.at<double>(1)), static_cast<float>(pt_camera.at<double>(2)) ); } private: // 核心检测函数 bool ChessboardDetection(cv::Mat image) { if(image.empty()) { std::cerr << "图像为空!" << std::endl; return false; } const cv::Size boardSize(boardWidth, boardHeight); // 棋盘格内部角点数量(7x7网格) std::vector<cv::Point2f> corners; // 存储检测到的角点坐标 // 转换为灰度图(棋盘格检测需要灰度图像) cv::Mat gray_image; cv::cvtColor(image, gray_image, cv::COLOR_BGR2GRAY); // 使用自适应阈值检测棋盘格角点 bool found = false; if (cvVerPlus45) { ROS_INFO("OpenCV version >= 4.5 detected, using findChessboardCornersSB."); // OpenCV 4.5+ found = cv::findChessboardCornersSB( gray_image, boardSize, corners, cv::CALIB_CB_EXHAUSTIVE | cv::CALIB_CB_ACCURACY ); } else { ROS_INFO("OpenCV version < 4.5 detected, using findChessboardCorners."); // OpenCV 4.4- or earlier fallback // found = cv::findChessboardCorners(gray_image, boardSize, corners); found = cv::findChessboardCorners( gray_image, boardSize, corners, cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_NORMALIZE_IMAGE + cv::CALIB_CB_FAST_CHECK ); } if (!found) { // std::cerr << "未检测到棋盘格!" << std::endl; // cv::imshow("检测结果", image); // 显示原始图像辅助调试 // cv::waitKey(1000); // 显示1秒后自动关闭 // cv::destroyWindow("检测结果"); ROS_ERROR("Chessboard not found!"); return false; } // 亚像素级角点精确化 cv::cornerSubPix( gray_image, corners, cv::Size(11, 11), // 搜索窗口大小 cv::Size(-1, -1), // 死区大小(-1表示无死区) cv::TermCriteria( cv::TermCriteria::EPS + cv::TermCriteria::COUNT, 30, // 最大迭代次数 0.1 // 精度阈值 ) ); // 绘制角点(绿色) cv::drawChessboardCorners(image, boardSize, cv::Mat(corners), found); // 生成三维物体点(假设棋盘格在Z=0平面) std::vector<cv::Point3f> objectPoints; // 棋盘格原点在左上第一个角点处 // for (int i = 0; i < boardSize.height; ++i) { // for (int j = 0; j < boardSize.width; ++j) { // objectPoints.emplace_back( // j * squareSize, // X坐标(沿宽度方向) // i * squareSize, // Y坐标(沿高度方向) // 0 // Z坐标固定为0 // ); // } // } // 棋盘格原点在中心位置 for (int i = 0; i < boardSize.height; ++i) { for (int j = 0; j < boardSize.width; ++j) { objectPoints.emplace_back( (j - (boardSize.width - 1) / 2.0) * squareSize, // X坐标(沿宽度方向) (i - (boardSize.height - 1) / 2.0) * squareSize, // Y坐标(沿高度方向) 0 // Z坐标固定为0 ); } } // 求解PnP问题(透视n点定位) // if (this->rvec.empty() || this->tvec.empty()){ // cv::solvePnP( // objectPoints, // 物体坐标系中的3D点 // corners, // 图像坐标系中的2D点 // cameraMatrix, // 相机内参矩阵 // distCoeffs, // 畸变系数 // rvec, // 输出旋转向量 // tvec, // 输出平移向量 // false, // 使用初始估计(连续帧时提高稳定性) // cv::SOLVEPNP_ITERATIVE // 使用迭代算法 // ); // } else { // cv::solvePnP( // objectPoints, // 物体坐标系中的3D点 // corners, // 图像坐标系中的2D点 // cameraMatrix, // 相机内参矩阵 // distCoeffs, // 畸变系数 // rvec, // 输出旋转向量 // tvec, // 输出平移向量 // true, // 使用初始估计(连续帧时提高稳定性) // cv::SOLVEPNP_ITERATIVE // 使用迭代算法 // ); // } std::vector<int> inliers; cv::solvePnPRansac( objectPoints, corners, cameraMatrix, distCoeffs, rvec, tvec, false, // 不使用初始估计 100, // 最大迭代次数 8.0, // 重投影误差阈值(像素) 0.99, // 置信度 inliers, // 返回的内点索引 cv::SOLVEPNP_ITERATIVE ); return true; } // 位姿计算函数 std::vector<float> PoseCalculation() { // 欧拉角(ZYX) cv::Mat R; cv::Rodrigues(rvec, R); float roll = atan2(R.at<double>(2,1), R.at<double>(2,2)); float pitch = atan2(-R.at<double>(2,0), sqrt(R.at<double>(2,1)*R.at<double>(2,1) + R.at<double>(2,2)*R.at<double>(2,2))); float yaw = atan2(R.at<double>(1,0), R.at<double>(0,0)); return { static_cast<float>(tvec.at<double>(0)), // X static_cast<float>(tvec.at<double>(1)), // Y static_cast<float>(tvec.at<double>(2)), // Z // static_cast<float>(rvec.at<double>(0)), // Rx // static_cast<float>(rvec.at<double>(1)), // Ry // static_cast<float>(rvec.at<double>(2)) // Rz static_cast<float>(roll), // Roll static_cast<float>(pitch), // Pitch static_cast<float>(yaw) // Yaw }; // // 将旋转向量转换为旋转矩阵 // cv::Mat rotationMatrix; // cv::Rodrigues(rvec, rotationMatrix); // // 计算棋盘格原点在相机坐标系中的坐标 // cv::Mat chessboardOrigin = -rotationMatrix.t() * tvec; // // 转换为float类型向量 // return { // static_cast<float>(chessboardOrigin.at<double>(0)), // X坐标 // static_cast<float>(chessboardOrigin.at<double>(1)), // Y坐标 // static_cast<float>(chessboardOrigin.at<double>(2)) // Z坐标 // }; } };这是啥如何使用

#include <ros/ros.h> #include <image_transport/image_transport.h> #include <cv_bridge/cv_bridge.h> #include <sensor_msgs/image_encodings.h> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/highgui/highgui.hpp> #include <stdio.h> #include <stdlib.h> #include "opencv2/opencv.hpp" #include <moveit/move_group_interface/move_group_interface.h> #include <tf/transform_listener.h> #include <moveit/planning_scene_interface/planning_scene_interface.h> #include <moveit/robot_trajectory/robot_trajectory.h> #include "myself_pkg/uart.h" #include <sys/stat.h> #include <cmath> #include <xarm_driver.h> #include <thread> // 引入线程库 #include <atomic> static const std::string OPENCV_WINDOW = "Image window"; #define M_PI 3.14159265358979323846 tf::Vector3 obj_camera_frame1, obj_robot_frame; int flag_start=1; ros::Subscriber rgb_sub; // 相机内参 double fx = 953.4568; // x轴方向的焦距 double fy = 949.837; // y轴方向的焦距 double cx = 658.66659; // x轴方向的光学中心 double cy = 366.82704; // y轴方向的光学中心 // 物体高度 double objectHeight = 0.34432666; // 假设物体的高度为1米 double k1 = 0.133507; // double k2 =-0.213178; // double p1 = 0.006242; // double p2 = 0.005494; // /* double fx = 1084.54479; // x轴方向的焦距 double fy = 950.11576; // y轴方向的焦距 double cx = 642.85519; // x轴方向的光学中心 double cy = 354.52482; // y轴方向的光学中心 // 物体高度 double objectHeight = 0.34432666; // 假设物体的高度为1米 double k1 = 0.141430; // double k2 =-0.384089; // double p1 = 0.003167; // double p2 = 0.002440; // */ cv::Mat K = (cv::Mat_<double>(3, 3) << fx, 0, cx, 0, fy, cy, 0, 0, 1); // 构造畸变参数向量 cv::Mat distCoeffs = (cv::Mat_<double>(5, 1) << k1, k2, p1, p2, 0); // 待校正的像素坐标 cv::Point2d pixelPoint(640, 360); // 假设像素坐标为(320, 240) cv::Mat cameraPointMat = (cv::Mat_<double>(3, 1) << 0, 0,0); /** // 定义一个结构体表示四元数,用于三维空间中的旋转表示 struct Quaternion { double w; // 四元数的实部 double x; // 四元数的虚部 x double y; // 四元数的虚部 y double z; // 四元数的虚部 z }; Quaternion eulerToQuaternion(double roll, double pitch, double yaw) { // 计算半角 double cy = cos(yaw * 0.5); double sy = sin(yaw * 0.5); double cp = cos(pitch * 0.5); double sp = sin(pitch * 0.5); double cr = cos(roll * 0.5); double sr = sin(roll * 0.5); Quaternion q; // 根据欧拉角到四元数的转换公式计算四元数的实部 q.w = cr * cp * cy + sr * sp * sy; // 根据欧拉角到四元数的转换公式计算四元数的虚部 x q.x = sr * cp * cy - cr * sp * sy; // 根据欧拉角到四元数的转换公式计算四元数的虚部 y q.y = cr * sp * cy + sr * cp * sy; // 根据欧拉角到四元数的转换公式计算四元数的虚部 z q.z = cr * cp * sy - sr * sp * cy; return q; } */ int move_lineb_test(xarm_msgs::Move srv, ros::ServiceClient client, float x_mm0, float y_mm0, float z_mm0, double roll0, double pitch0, double yaw0, float x_mm1, float y_mm1, float z_mm1, double roll1, double pitch1, double yaw1, float x_mm2, float y_mm2, float z_mm2, double roll2, double pitch2, double yaw2, float x_mm3, float y_mm3, float z_mm3, double roll3, double pitch3, double yaw3, float x_mm4, float y_mm4, float z_mm4, double roll4, double pitch4, double yaw4); void control_suction_during_move(float x_mm4, float y_mm4, float z_mm4); // 异步吸盘控制 auto suction_control = [](int speed){ std::thread([speed](){ for(int i=0; i<1; i++){ writeSpeed(speed); std::this_thread::sleep_for(std::chrono::milliseconds(800)); } }).detach(); // 分离线程 }; class XArmAPItest { ros::NodeHandle nh_; image_transport::ImageTransport it_; image_transport::Subscriber image_sub_; tf::TransformListener listener_; tf::StampedTransform camera_to_robot_; public: XArmAPItest() : it_(nh_) { moveit::planning_interface::MoveGroupInterface arm("xarm7"); sleep(0.5); moveit::planning_interface::PlanningSceneInterface planning_scene_interface; sleep(0.5); //异步任务处理器,防阻塞 ros::AsyncSpinner spinner(1); spinner.start(); // 创建一个新的障碍物消息 moveit_msgs::CollisionObject collision_object; collision_object.header.frame_id = "world"; // 设置障碍物的参考坐标系,通常为世界坐标系 // 设置障碍物的 ID collision_object.id = "table"; // 定义障碍物的形状和尺寸 shape_msgs::SolidPrimitive primitive; primitive.type = primitive.BOX; primitive.dimensions.resize(3); primitive.dimensions[0] = 2.0; // 长 primitive.dimensions[1] = 2.0; // 宽 primitive.dimensions[2] = 0.1; // 高 // 定义障碍物的姿态 geometry_msgs::Pose obstacle_pose; obstacle_pose.orientation.w = 1.0; // 默认姿态为单位四元数 obstacle_pose.position.x = 0.0; // x 位置 obstacle_pose.position.y = 0.0; // y 位置 obstacle_pose.position.z = -0.06; // z 位置 // 将障碍物的形状和姿态添加到障碍物消息中 collision_object.primitives.push_back(primitive); collision_object.primitive_poses.push_back(obstacle_pose); // 设置操作类型为添加障碍物 collision_object.operation = collision_object.ADD; // 发送障碍物消息到规划场景 moveit_msgs::PlanningScene planning_scene; planning_scene.world.collision_objects.push_back(collision_object); planning_scene.is_diff = true; planning_scene_interface.applyPlanningScene(planning_scene); // 应用障碍物到规划场景 ROS_INFO("Obstacle added"); /** //回初位置 arm.setNamedTarget("home");//设置目标 arm.move();//执行 sleep(0.5); double targetPose[7] = {-0.166690,0.00000, -0.076904,1.173601, 0.015010,1.21220,-0.260379}; std::vector<double> joint_group_positions(7); joint_group_positions[0] = targetPose[0]; joint_group_positions[1] = targetPose[1]; joint_group_positions[2] = targetPose[2]; joint_group_positions[3] = targetPose[3]; joint_group_positions[4] = targetPose[4]; joint_group_positions[5] = targetPose[5]; joint_group_positions[6] = targetPose[6]; arm.setJointValueTarget(joint_group_positions); arm.move(); sleep(0.5); */ try { listener_.waitForTransform("link_base", "camera_link", ros::Time(0), ros::Duration(50.0)); } catch (tf::TransformException &ex) { ROS_ERROR("[adventure_tf]: (wait) %s", ex.what()); ros::Duration(1.0).sleep(); } try { listener_.lookupTransform("link_base", "camera_link", ros::Time(0), camera_to_robot_); tf::Vector3 translation = camera_to_robot_.getOrigin(); objectHeight=translation.getZ(); std::cout << objectHeight << std::endl; } catch (tf::TransformException &ex) { ROS_ERROR("[adventure_tf]: (lookup) %s", ex.what()); } // 订阅相机图像 image_sub_ = it_.subscribe("/camera/color/image_raw", 1, &XArmAPItest::Cam_RGB_Callback, this); sleep(1); } /** // 封装四元数转欧拉角的函数 std::tuple<double, double, double> quaternionToEuler(const geometry_msgs::Quaternion& q) { double x = q.x; double y = q.y; double z = q.z; double w = q.w; // 计算绕 x 轴旋转的弧度(roll) double sinr_cosp = 2 * (w * x + y * z); double cosr_cosp = 1 - 2 * (x * x + y * y); double roll = std::atan2(sinr_cosp, cosr_cosp); // 计算绕 y 轴旋转的弧度(pitch) double sinp = 2 * (w * y - z * x); double pitch; if (std::abs(sinp) >= 1) pitch = std::copysign(M_PI / 2, sinp); // 使用 90 度避免数值问题 else pitch = std::asin(sinp); // 计算绕 z 轴旋转的弧度(yaw) double siny_cosp = 2 * (w * z + x * y); double cosy_cosp = 1 - 2 * (y * y + z * z); double yaw = std::atan2(siny_cosp, cosy_cosp); return std::make_tuple(roll, pitch, yaw); } */ void Grasping(double a, double b, double z, double Angle) { std::cout << "Grasping" << std::endl; // 输出提示信息 moveit::planning_interface::MoveGroupInterface arm("xarm7"); ros::AsyncSpinner spinner(1); spinner.start(); std::string end_effector_link = arm.getEndEffectorLink(); std::string reference_frame = "link_base"; arm.setPoseReferenceFrame(reference_frame); // 声明一个变量用于存储机械臂当前的位姿信息 geometry_msgs::PoseStamped homePose; // 获取机械臂末端执行器当前的位姿并赋值给 homePose 变量 homePose = arm.getCurrentPose(); sleep(1); writeSpeed(1); writeSpeed(1); writeSpeed(1); sleep(0.8); /*******************第1次抓取*********************/ /*** if(flag_start==1) { //移动到抓取方块上方 flag_start=2; //将初始位姿加入路点列表 //waypoints.push_back(target_pose); geometry_msgs::Pose target_pose; target_pose.position.x = x; target_pose.position.y = y; target_pose.position.z = 0; double roll = 180*M_PI/180; // 绕 x 轴旋转的弧度 double pitch = 0; // 绕 y 轴旋转的弧度 double yaw = 0; // 绕 z 轴旋转的弧度 // 将目标姿态的位置坐标从米转换为毫米 float x_mm = static_cast<float>(target_pose.position.x * 1000); float y_mm = static_cast<float>(target_pose.position.y * 1000); float z_mm = static_cast<float>(target_pose.position.z * 1000); } */ double x = a + 0.0001-0.0041; double y = b + 0.0009+0.0082+0.001; /*******************抓取*********************/ if(flag_start>=1&&flag_start<35) { //抓取物块 geometry_msgs::Pose target_pose0; target_pose0 = arm.getCurrentPose(end_effector_link).pose; target_pose0.position.z = 0+0.14+0.013; target_pose0.position.x = x; target_pose0.position.y = y; double roll0 = 180*M_PI/180; // 绕 x 轴旋转的弧度 double pitch0 =0*M_PI/180; // 绕 y 轴旋转的弧度 double yaw0 = 0; // 绕 z 轴旋转的弧度 // 将目标姿态的位置坐标从米转换为毫米 float x_mm0 = static_cast<float>(target_pose0.position.x * 1000); float y_mm0 = static_cast<float>(target_pose0.position.y * 1000); float z_mm0 = static_cast<float>(target_pose0.position.z * 1000); ROS_INFO("zuobiao0: %f, %f, %f", x_mm0, y_mm0, z_mm0); // 定位抓取物块 geometry_msgs::Pose target_pose1; target_pose1 = arm.getCurrentPose(end_effector_link).pose; target_pose1.position.x = x; target_pose1.position.y = y; target_pose1.position.z = 0.09+0.0003+0.01246-0.01; double roll1 = 180*M_PI/180; // 绕 x 轴旋转的弧度 double pitch1 =0*M_PI/180; // 绕 y 轴旋转的弧度 double yaw1 = 0; // 绕 z 轴旋转的弧度 // 将目标姿态的位置坐标从米转换为毫米 float x_mm1 = static_cast<float>(target_pose1.position.x * 1000); float y_mm1 = static_cast<float>(target_pose1.position.y * 1000); float z_mm1 = static_cast<float>(target_pose1.position.z * 1000); ROS_INFO("zuobiao1: %f, %f, %f", x_mm1, y_mm1, z_mm1); //抓取物块 geometry_msgs::Pose target_pose2; target_pose2 = arm.getCurrentPose(end_effector_link).pose; target_pose2.position.z = 0+0.14+0.013; target_pose2.position.x = x; target_pose2.position.y = y; double roll2 = 180*M_PI/180; // 绕 x 轴旋转的弧度 double pitch2 =0*M_PI/180; // 绕 y 轴旋转的弧度 double yaw2 = 0; // 绕 z 轴旋转的弧度 // 将目标姿态的位置坐标从米转换为毫米 float x_mm2 = static_cast<float>(target_pose2.position.x * 1000); float y_mm2 = static_cast<float>(target_pose2.position.y * 1000); float z_mm2 = static_cast<float>(target_pose2.position.z * 1000); ROS_INFO("zuobiao2: %f, %f, %f", x_mm2, y_mm2, z_mm2); geometry_msgs::Pose target_pose3; target_pose3 = arm.getCurrentPose(end_effector_link).pose; //放置物块 target_pose3.position.z= 0.14+0.013; double roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 double pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 double yaw3 = Angle*M_PI/180; // 绕 z 轴旋转的弧度 /**********************************************zi色*************************************/ if(flag_start==1){ target_pose3.position.x = 0.38578-0.023+0.002; target_pose3.position.y = 0.217467-0.052;} if(flag_start==2){ target_pose3.position.x = 0.38578+0.06-0.023; target_pose3.position.y = 0.217467+0.02-0.052;} if(flag_start==3){ target_pose3.position.x = 0.38578+0.08-0.023; target_pose3.position.y = 0.217467-0.052;} /**********************************************橙色*************************************/ if(flag_start==4){ target_pose3.position.x = 0.38578+0.01-0.023; target_pose3.position.y = 0.217467+0.052-0.055;} if(flag_start==5){ target_pose3.position.x = 0.38578+0.05-0.023; target_pose3.position.y = 0.217467+0.052-0.055;} if(flag_start==6){ target_pose3.position.x = 0.38578+0.09-0.023; target_pose3.position.y = 0.217467+0.052-0.055;} /*********************************************hong色 *****************************************/ if(flag_start==7){ target_pose3.position.x = 0.38578-0.023; target_pose3.position.y = 0.217467+0.11-0.055+0.002;} if(flag_start==8){ target_pose3.position.x = 0.38578+0.02-0.023-0.002; target_pose3.position.y = 0.217467+0.11-0.055+0.002;} if(flag_start==9){ target_pose3.position.x = 0.38578+0.04-0.023-0.002; target_pose3.position.y = 0.217467+0.11-0.055;} /********************************************************huang色*****************************/ if(flag_start==10){ target_pose3.position.x = 0.38578-0.023+0.002; target_pose3.position.y = 0.217467+0.18+-0.05-0.001;} if(flag_start==11){ target_pose3.position.x = 0.38578+0.06-0.023-0.002; target_pose3.position.y = 0.217467+0.16-0.05;} if(flag_start==12){ target_pose3.position.x = 0.38578+0.08-0.023; target_pose3.position.y = 0.217467+0.18-0.05;} if(flag_start==13){ target_pose3.position.x = 0.38578+0.14-0.023-0.001; target_pose3.position.y = 0.217467+0.16-0.05;} /*****************************************************hei色*********************************** */ if(flag_start==14){ target_pose3.position.x = 0.38578+0.06-0.023; target_pose3.position.y = 0.217467+0.10-0.05;} if(flag_start==15){ target_pose3.position.x = 0.38578+0.08-0.023; target_pose3.position.y = 0.217467+0.14-0.05-0.001;} /*****************************************************zi色*************************** */ if(flag_start==16){ target_pose3.position.x = 0.38578+0.12-0.023-0.001; target_pose3.position.y = 0.217467+0.08-0.0575;} /***************************************************lan色******************************* */ if(flag_start==17){ target_pose3.position.x = 0.38578+0.11-0.023+0.001; target_pose3.position.y = 0.217467+0.12-0.05-0.001; roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 yaw3 = Angle*M_PI/180 + M_PI/2; // 绕 z 轴旋转的弧度 } if(flag_start==18){ target_pose3.position.x = 0.38578+0.11+0.03-0.02; target_pose3.position.y = 0.217467+0.09-0.05;} if(flag_start==19){ target_pose3.position.x = 0.38578+0.11+0.03+0.04-0.02-0.002; target_pose3.position.y = 0.217467+0.09-0.05+0.001;} if(flag_start==20){ target_pose3.position.x = 0.38578+0.11+0.03+0.04+0.02-0.02-0.02-0.07; target_pose3.position.y = 0.217467+0.09+0.02-0.05+0.002;} /***************************************************ceng色*************************** */ if(flag_start==21){ target_pose3.position.x = 0.38578+0.15-0.02-0.002; target_pose3.position.y = 0.217467+0.13-0.045-0.002;} /*****************************************************lv色**************************************** */ if(flag_start==22){ target_pose3.position.x = 0.38578+0.12-0.02-0.004; target_pose3.position.y = 0.217467+0.03-0.05;} if(flag_start==23){ target_pose3.position.x = 0.38578+0.16-0.02-0.004-0.0005; target_pose3.position.y = 0.217467+0.03-0.05;} if(flag_start==24){ target_pose3.position.x = 0.38578+0.20-0.02-0.004-0.0005; target_pose3.position.y = 0.217467+0.03-0.05;} if(flag_start==25){ target_pose3.position.x = 0.38578+0.17-0.02-0.004-0.0001; target_pose3.position.y = 0.217467+0.11+0.06-0.05-0.005; roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 yaw3 = Angle*M_PI/180 - M_PI/2; // 绕 z 轴旋转的弧度 } /***********************************************************huang色************************************** */ if(flag_start==26){ target_pose3.position.x = 0.38578+0.20-0.022; target_pose3.position.y = 0.217467+0.11+0.08-0.05-0.004-0.004;} /***********************************************************hong色************************************** */ if(flag_start==27){ target_pose3.position.x = 0.38578+0.17-0.021; target_pose3.position.y = 0.217467-0.05; roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 yaw3 = Angle*M_PI/180 - M_PI/2; // 绕 z 轴旋转的弧度 } if(flag_start==28){ target_pose3.position.x = 0.38578+0.17-0.021; target_pose3.position.y = 0.217467+0.06-0.05; roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 yaw3 = Angle*M_PI/180 - M_PI/2; // 绕 z 轴旋转的弧度 } /***************************************************************hei色************************************* */ if(flag_start==29){ target_pose3.position.x = 0.38578+0.22-0.025+0.002; target_pose3.position.y = 0.217467+0.10+0.04-0.05;} if(flag_start==30){ target_pose3.position.x = 0.38578+0.24-0.025; target_pose3.position.y = 0.217467+0.18-0.05;} /*************************************************ceng色*************************** */ if(flag_start==31){ target_pose3.position.x = 0.38578+0.23-0.02-0.002-0.0002; target_pose3.position.y = 0.217467+0.07-0.045-0.002-0.002;} /*************************************************lan色*************************** */ if(flag_start==32){ target_pose3.position.x = 0.38578+0.23-0.024; target_pose3.position.y = 0.217467+0.02-0.051-0.0001; roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 yaw3 = Angle*M_PI/180 + M_PI/2; // 绕 z 轴旋转的弧度 } /*************************************************zi色*************************** */ if(flag_start==33){ target_pose3.position.x = 0.38578+0.26-0.024; target_pose3.position.y = 0.217467-0.051+0.001;} /*************************************************lv色*************************** */ if(flag_start==34){ target_pose3.position.x = 0.38578+0.25-0.024; target_pose3.position.y = 0.217467+0.10-0.051+0.001; target_pose3.position.z= 0.14+0.013+0.002; roll3 = 180*M_PI/180; // 绕 x 轴旋转的弧度 pitch3 =0*M_PI/180; // 绕 y 轴旋转的弧度 yaw3 = Angle*M_PI/180 - M_PI/2; // 绕 z 轴旋转的弧度 } // 将目标姿态的位置坐标从米转换为毫米 float x_mm3 = static_cast<float>(target_pose3.position.x * 1000); float y_mm3 = static_cast<float>(target_pose3.position.y * 1000); float z_mm3 = static_cast<float>(target_pose3.position.z * 1000); ROS_INFO("zuobiao3: %f, %f, %f", x_mm3, y_mm3, z_mm3); geometry_msgs::Pose target_pose4; target_pose4.position.z= 0.109+0.01236-0.0078+0.005; double roll4 = 180*M_PI/180; // 绕 x 轴旋转的弧度 double pitch4 =0*M_PI/180; // 绕 y 轴旋转的弧度 double yaw4 = yaw3; // 绕 z 轴旋转的弧度 float x_mm4 = static_cast<float>(target_pose3.position.x * 1000); float y_mm4 = static_cast<float>(target_pose3.position.y * 1000); float z_mm4 = static_cast<float>(target_pose4.position.z * 1000); ROS_INFO("zuobiao4: %f, %f, %f", x_mm4, y_mm4, z_mm4); // 调用 move_lineb_test 函数并传递坐标 ros::NodeHandle nh; ros::ServiceClient move_lineb_client_ = nh.serviceClient<xarm_msgs::Move>("/xarm/move_lineb"); xarm_msgs::Move move_srv_; if(move_lineb_test(move_srv_, move_lineb_client_, x_mm0, y_mm0, z_mm0, roll0, pitch0, yaw0, x_mm1, y_mm1, z_mm1, roll1, pitch1, yaw1, x_mm2, y_mm2, z_mm2, roll2, pitch2, yaw2, x_mm3, y_mm3, z_mm3, roll3, pitch3, yaw3, x_mm4, y_mm4, z_mm4, roll4, pitch4, yaw4) == 1) return; control_suction_during_move(x_mm4, y_mm4, z_mm4); flag_start++; } else {ros::shutdown(); } } void Cam_RGB_Callback(const sensor_msgs::ImageConstPtr &msg)// 摄像头回调函数 { using namespace cv; image_sub_.shutdown(); // 定义一个cv_bridge指针 cv_bridge::CvImagePtr cv_ptr; try { // 将ROS图像转换为OpenCV图像 cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8); } catch (cv_bridge::Exception &e) { ROS_ERROR("cv_bridge exception:%s", e.what()); } // 获取原始图像 Mat imgOriginal = cv_ptr->image; // 定义亮度增强因子 double brightness_scale = 1.8; // 应用亮度增强 Mat brightened; imgOriginal.convertTo(brightened, -1, brightness_scale); // 图像预处理:高斯模糊 Mat blurred; GaussianBlur(brightened, blurred, Size(5, 5), 0); Mat hsv; cvtColor(blurred, hsv, cv::COLOR_BGR2HSV); // 将原始图像转换为HSV图像 // 分离HSV通道 std::vector<Mat> hsv_channels; split(hsv, hsv_channels); // 增强饱和度(S 通道) double saturation_scale = 1.5; // 饱和度增强因子,可以根据实际情况调整 hsv_channels[1].convertTo(hsv_channels[1], -1, saturation_scale); // 合并通道 merge(hsv_channels, hsv); Mat mask_red, mask_green,mask_blue,mask_orange,mask_brown,mask_yellow,mask_purple; // inRange(blurred, cv::Scalar(0, 0, 130), cv::Scalar(255, 108, 226), mask_red); inRange(blurred, cv::Scalar(0, 0, 144), cv::Scalar(252, 111, 203), mask_red); inRange(blurred, cv::Scalar(0, 112, 174), cv::Scalar(159, 139, 237), mask_orange);//BGR inRange(blurred, cv::Scalar(0, 0, 0), cv::Scalar(123, 112, 108), mask_brown); inRange(blurred, cv::Scalar(0, 127, 97), cv::Scalar(157, 255, 136), mask_green); inRange(blurred, cv::Scalar(156, 119, 0), cv::Scalar(218, 146, 102), mask_blue); inRange(blurred, cv::Scalar(0, 142, 152), cv::Scalar(150, 255, 255), mask_yellow); inRange(hsv, cv::Scalar(99, 33, 120), cv::Scalar(134, 146, 181), mask_purple); Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(5, 5));// 形态学操作的内核大小 //dilate(mask_red, mask_red, kernel); //dilate(mask_green, mask_green, kernel); erode(mask_red, mask_red, kernel);//腐蚀 erode(mask_green, mask_green, kernel); erode(mask_blue, mask_blue, kernel); erode(mask_yellow, mask_yellow, kernel); erode(mask_orange, mask_orange, kernel); erode(mask_purple, mask_purple, kernel); erode(mask_brown, mask_brown, kernel); //erode(mask_purple, mask_purple, kernel); dilate(mask_orange, mask_orange, kernel); dilate(mask_brown, mask_brown, kernel); //imshow("green", mask_green);//显示原始图像 //获取储存不同颜色的灰度图 std::vector<std::vector<cv::Point>> contours_red; std::vector<std::vector<cv::Point>> contours_red_output; cv::findContours(mask_red,contours_red, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); std::vector<std::vector<cv::Point>> contours_orange; std::vector<std::vector<cv::Point>> contours_orange_output; cv::findContours(mask_orange,contours_orange, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); std::vector<std::vector<cv::Point>> contours_brown; std::vector<std::vector<cv::Point>> contours_brown_output; cv::findContours(mask_brown,contours_brown, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); std::vector<std::vector<cv::Point>> contours_green; std::vector<std::vector<cv::Point>> contours_green_output; cv::findContours(mask_green,contours_green, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); std::vector<std::vector<cv::Point>> contours_blue; std::vector<std::vector<cv::Point>> contours_blue_output; cv::findContours(mask_blue,contours_blue, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); std::vector<std::vector<cv::Point>> contours_yellow; std::vector<std::vector<cv::Point>> contours_yellow_output; cv::findContours(mask_yellow,contours_yellow, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); std::vector<std::vector<cv::Point>> contours_purple; std::vector<std::vector<cv::Point>> contours_purple_output; cv::findContours(mask_purple,contours_purple, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE); //drawContours(blurred, contours, -1, Scalar(0, 255, 0), 3);//轮廓 /********************************红色********************/ for (size_t i = 0; i < contours_red.size(); i++) { std::vector<cv::Point>& contour_red = contours_red[i]; if (contour_red.size()>200) { // 检查轮廓是否为空 contours_red_output.push_back(contours_red[i]); } else { ROS_INFO("No red contours found."); } } /********************************橙色********************/ for (size_t i = 0; i < contours_orange.size(); i++) { std::vector<cv::Point>& contour_orange = contours_orange[i]; if (contour_orange.size()>200) { // 检查轮廓是否为空 contours_orange_output.push_back(contours_orange[i]); } else { ROS_INFO("No orange contours found."); } } /********************************棕色********************/ for (size_t i = 0; i < contours_brown.size(); i++) { std::vector<cv::Point>& contour_brown = contours_brown[i]; if (contour_brown.size()>200) { // 检查轮廓是否为空 contours_brown_output.push_back(contours_brown[i]); } else { ROS_INFO("No brown contours found."); } } /********************************绿色********************/ for (size_t i = 0; i < contours_green.size(); i++) { std::vector<cv::Point>& contour_green = contours_green[i]; if (contour_green.size()>200) { // 检查轮廓是否为空 contours_green_output.push_back(contours_green[i]); } else { ROS_INFO("No green contours found."); } } /********************************蓝色********************/ for (size_t i = 0; i < contours_blue.size(); i++) { std::vector<cv::Point>& contour_blue = contours_blue[i]; if (contour_blue.size()>200) { // 检查轮廓是否为空 contours_blue_output.push_back(contours_blue[i]); } else { ROS_INFO("No blue contours found."); } } /********************************黄色********************/ for (size_t i = 0; i < contours_yellow.size(); i++) { std::vector<cv::Point>& contour_yellow = contours_yellow[i]; if (contour_yellow.size()>200) { // 检查轮廓是否为空 contours_yellow_output.push_back(contours_yellow[i]); } else { ROS_INFO("No yellow contours found."); } } /********************************紫色********************/ // 存储每个轮廓的面积及其索引 std::vector<std::pair<double, size_t>> area_index_pairs; for (size_t i = 0; i < contours_purple.size(); ++i) { double area = cv::contourArea(contours_purple[i]); area_index_pairs.emplace_back(area, i); } // 按面积从大到小排序 std::sort(area_index_pairs.begin(), area_index_pairs.end(), [](const std::pair<double, size_t>& a, const std::pair<double, size_t>& b) { return a.first > b.first; }); // 处理面积最大的5个轮廓 size_t count = std::min<size_t>(5, area_index_pairs.size()); if (count == 0) { ROS_INFO("No contours found."); } for (size_t i = 0; i < count; ++i) { size_t index = area_index_pairs[i].second; contours_purple_output.push_back(contours_purple[index]); } //传递颜色灰度图像 Camera_TO_Robot_Process_YP(contours_purple_output,0,3); Camera_TO_Robot_Process_RO(contours_orange_output,0,3); Camera_TO_Robot_Process_RO(contours_red_output,0,3); Camera_TO_Robot_Process_YP(contours_yellow_output,0,4); Camera_TO_Robot_Process_brown(contours_brown_output,0,2); Camera_TO_Robot_Process_YP(contours_purple_output,3,4); Camera_TO_Robot_Process_GB(contours_blue_output,0,4); Camera_TO_Robot_Process_RO(contours_orange_output,3,4); Camera_TO_Robot_Process_GB(contours_green_output,0,4); Camera_TO_Robot_Process_YP(contours_yellow_output,4,5); Camera_TO_Robot_Process_RO(contours_red_output,3,5); Camera_TO_Robot_Process_brown(contours_brown_output,2,4); Camera_TO_Robot_Process_RO(contours_orange_output,4,5); Camera_TO_Robot_Process_GB(contours_blue_output,4,5); Camera_TO_Robot_Process_YP(contours_purple_output,4,5); Camera_TO_Robot_Process_GB(contours_green_output,4,5); // imshow("imgOriginal", imgOriginal); std::cout << "success!" << std::endl; ros::shutdown(); } //红色和橙色 void Camera_TO_Robot_Process_RO(const std::vector<std::vector<cv::Point>>& contours, int start_number, int end_number) { std::cout << "Red or Orange" << std::endl; cv::Point2f center; for (start_number; start_number < end_number; start_number++) { const std::vector<cv::Point>& contour = contours[start_number]; if (contour.size()>300) // 检查轮廓是否为空 { // 获取最小外接圆 // float radius; // cv::minEnclosingCircle(contours[i], center, radius); // 获取最小外接矩形 cv::RotatedRect minRect = cv::minAreaRect(contours[start_number]); center = minRect.center; if(center.y<60) { center.y=60; } if(center.x<82) { center.x=82; } if(center.y>=60&¢er.x>=82) { cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x, center.y,1); //cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x*1.2-91.0, center.y*1.275-74.5,1); std::cout << pixelPointMat << std::endl; // pixelPointMat = (cv::Mat_<double>(3, 1) << 640, 360, 1); cameraPointMat = objectHeight * K.inv() * pixelPointMat; // std::cout << "相机坐标系下的三维坐标:" << std::endl; // std::cout << cameraPointMat << std::endl; obj_camera_frame1.setX(cameraPointMat.at<double>(0,0)); obj_camera_frame1.setY(cameraPointMat.at<double>(1,0)); obj_camera_frame1.setZ(cameraPointMat.at<double>(2,0)); obj_robot_frame = camera_to_robot_ * obj_camera_frame1; // ros::shutdown(); //std::cout << "11111" << std::endl; /**************** 获取矩形的角度*******************/ double angle = minRect.angle; cv::Size2f size = minRect.size; double width = size.width; double height = size.height; //放平角度 if (width < height) { angle += 90; } // 输出角度 // std::cout << "Contour #" << start_number << " angle: " << angle << std::endl; /**************** 获取矩形的角度*******************/ Grasping(obj_robot_frame.getX(),obj_robot_frame.getY(),obj_robot_frame.getZ(),angle); } } else if(contour.size()>0&&contour.size()<100) { std::cout << "没有红橙像素坐标:" << std::endl; } } } //棕色 void Camera_TO_Robot_Process_brown(const std::vector<std::vector<cv::Point>>& contours, int start_number, int end_number) { std::cout << "Brown start" << std::endl; cv::Point2f center; for (start_number; start_number < end_number; start_number++) { const std::vector<cv::Point>& contour = contours[start_number]; if (contour.size()>300) // 检查轮廓是否为空 { // 获取最小外接圆 float radius; cv::minEnclosingCircle(contours[start_number], center, radius); /**************** 获取矩形的角度*******************/ // 获取最小外接矩形 cv::RotatedRect minRect = cv::minAreaRect(contours[start_number]); double angle2 = minRect.angle; cv::Size2f size = minRect.size; double width = size.width; double height = size.height; /**************** 获取矩形的角度*******************/ double epsilon = 0.1 * cv::arcLength(contours[start_number], true); std::cout << "1111" << std::endl; std::vector<int> lenth(8); std::vector<cv::Point2f> approx; cv::Point2f pt; cv::Point2f pt1; cv::Point2f pt0; cv::approxPolyDP(contours[start_number], approx, epsilon, true); pt0 = approx[0]; if (approx.size() == 3) { for (size_t j = 0; j < approx.size(); j++) { pt= approx[j]; pt1= approx[j+1]; lenth[j]=(pt.x-pt1.x)*(pt.x-pt1.x)+(pt.y-pt1.y)*(pt.y-pt1.y); if(j==2) { lenth[j]=(pt.x-pt0.x)*(pt.x-pt0.x)+(pt.y-pt0.y)*(pt.y-pt0.y); } } if ( lenth[0]>lenth[1]&&lenth[0]>lenth[2]) { if(width > height){ switch (start_number) { case 0: angle2 = angle2; break; case 1: angle2 -= 90; break; case 2: angle2 = angle2; break; case 3: angle2 -= 90; break; } } else if(width < height){ switch (start_number) { case 0: angle2 -= 90; break; case 1: angle2 += 180; break; case 2: angle2 -= 90; break; case 3: angle2 += 180; break; } } } else if ( lenth[2]>lenth[1]&&lenth[2]>lenth[0]) { if(width > height){ switch (start_number) { case 0: angle2 += 180; break; case 1: angle2 += 90; break; case 2: angle2 += 180; break; case 3: angle2 += 90; break; } } else if(width < height){ switch (start_number) { case 0: angle2 += 90; break; case 1: angle2 = angle2; break; case 2: angle2 += 90; break; case 3: angle2 = angle2; break; } } } } // center = minRect.center; if(center.y<60) { center.y=60; } if(center.x<82) { center.x=82; } if(center.y>=60&¢er.x>=82) { //cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x*1.2-91.5, center.y*1.275-74.5,1); //cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x*1.2-92, center.y*1.285-76.5,1); cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x, center.y,1); std::cout << pixelPointMat << std::endl; // pixelPointMat = (cv::Mat_<double>(3, 1) << 640, 360, 1); cameraPointMat = objectHeight * K.inv() * pixelPointMat; // std::cout << "相机坐标系下的三维坐标:" << std::endl; // std::cout << cameraPointMat << std::endl; obj_camera_frame1.setX(cameraPointMat.at<double>(0,0)); obj_camera_frame1.setY(cameraPointMat.at<double>(1,0)); obj_camera_frame1.setZ(cameraPointMat.at<double>(2,0)); obj_robot_frame = camera_to_robot_ * obj_camera_frame1; if(angle2>176) angle2=176; if(angle2<-176) angle2=-176; std::cout << " angle2 :" << angle2 << std::endl; Grasping(obj_robot_frame.getX(),obj_robot_frame.getY(),obj_robot_frame.getZ(),angle2); } } else if(contour.size()>0&&contour.size()<100) { std::cout << "没有棕色像素坐标:" << std::endl; }} } //紫色和黄色 void Camera_TO_Robot_Process_YP(const std::vector<std::vector<cv::Point>>& contours, int start_number, int end_number) { std::cout << "Yellow or Purple start" << std::endl; double angle2=0; for (start_number; start_number < end_number; start_number++) { const std::vector<cv::Point>& contour = contours[start_number]; if (contour.size()>300) // 检查轮廓是否为空 { /**************** 获取矩形的角度*******************/ cv::RotatedRect minRect = cv::minAreaRect(contours[start_number]); angle2 = minRect.angle; cv::Size2f size = minRect.size; double width = size.width; double height = size.height; /**************** 获取矩形的角度*******************/ cv::Point2f center; cv::Point2f center2; double epsilon = 0.04 * cv::arcLength(contours[start_number], true); // 多边形逼近 std::vector<int> lenth(6); std::vector<cv::Point2f> approx; cv::Point2f pt; cv::Point2f pt1; cv::Point2f pt0; cv::approxPolyDP(contours[start_number], approx, epsilon, true); // std::cout <<" lenth[i] "<< approx.size() << std::endl; pt0 = approx[0]; if (approx.size() == 6) { for (size_t i = 0; i < approx.size(); i++) { pt= approx[i]; pt1= approx[i+1]; lenth[i]=(pt.x-pt1.x)*(pt.x-pt1.x)+(pt.y-pt1.y)*(pt.y-pt1.y); if(i==5) lenth[i]=(pt.x-pt0.x)*(pt.x-pt0.x)+(pt.y-pt0.y)*(pt.y-pt0.y); } /********************************purple***************************************/ if ( lenth[5]>lenth[1]&&lenth[5]>lenth[0]&&lenth[5]>lenth[2]&&lenth[5]>lenth[3]&&lenth[5]>lenth[4]) { // center2 = (approx[1]+approx[2])/2; // center = (approx[5]+center2)/2; center = (approx[5]+approx[2])/2; if(width > height){ switch (start_number) { case 0: angle2 -= 90; break; case 1: angle2 += 90; break; case 2: angle2 -= 90; break; case 3: angle2 += 90; break; case 4: angle2 = angle2; break; }} else if(width < height){ switch (start_number) { case 0: angle2 += 180; break; case 1: angle2 = angle2; break; case 2: angle2 += 180; break; case 3: angle2 = angle2; break; case 4: angle2 -= 90; break; }} std::cout << "555555" << std::endl; } /********************************purple***************************************/ else if ( lenth[1]>lenth[2]&&lenth[1]>lenth[0]&&lenth[1]>lenth[5]&&lenth[1]>lenth[3]&&lenth[1]>lenth[4]) { //center2 = (approx[3]+approx[4])/2; //center = (approx[1]+center2)/2; center = (approx[1]+approx[4])/2; if(width > height){ if(approx[1].y<approx[0].y&&approx[1].y<approx[2].y&&approx[1].y<approx[3].y&&approx[1].y<approx[4].y&&approx[1].y<approx[5].y){ switch (start_number) { case 0: angle2 += 90; break; case 1: angle2 -= 90; break; case 2: angle2 += 90; break; case 3: angle2 -= 90; break; case 4: angle2 += 180; break; }} else{ switch (start_number) { case 0: angle2 -= 90; break; case 1: angle2 += 90; break; case 2: angle2 -= 90; break; case 3: angle2 += 90; break; case 4: angle2 = angle2; break; } } } else if(width < height) { switch (start_number) { case 0: angle2 = angle2; break; case 1: angle2 += 180; break; case 2: angle2 = angle2; break; case 3: angle2 += 180; break; case 4: angle2 += 90; break; }} std::cout << "11111111" << std::endl; } /********************************purple***************************************/ /********************************yellow***************************************/ else if ( lenth[0]>lenth[1]&&lenth[0]>lenth[2]&&lenth[0]>lenth[5]&&lenth[0]>lenth[3]&&lenth[0]>lenth[4]) { //center2 = (approx[4]+approx[5])/2; //center = (center2+approx[1])/2; center = (approx[4]+approx[1])/2; if(width < height){ switch (start_number) { case 0: angle2 += 180; break; case 1: angle2 = angle2; break; case 2: angle2 += 180; break; case 3: angle2 = angle2; break; case 4: angle2 += 90; break; } } else{ switch (start_number) { case 0: angle2 -= 90; break; case 1: angle2 += 90; break; case 2: angle2 -= 90; break; case 3: angle2 += 90; break; case 4: angle2 += 180; break; } } std::cout << "000000" << std::endl; } /********************************yellow***************************************/ else if ( lenth[4]>lenth[1]&&lenth[4]>lenth[0]&&lenth[4]>lenth[5]&&lenth[4]>lenth[3]&&lenth[4]>lenth[2])/////yellow { //center2 = (approx[2]+approx[3])/2; // center = (center2+approx[5])/2; center = (approx[2]+approx[5])/2; if(width < height){ if(approx[5].y<approx[0].y&&approx[5].y<approx[1].y&&approx[5].y<approx[2].y&&approx[5].y<approx[3].y&&approx[5].y<approx[4].y){ switch (start_number) { case 0: angle2 = angle2; break; case 1: angle2 += 180; break; case 2: angle2 = angle2; break; case 3: angle2 += 180; break; case 4: angle2 -= 90; break; } } else { switch (start_number) { case 0: angle2 += 180; break; case 1: angle2 = angle2; break; case 2: angle2 += 180; break; case 3: angle2 = angle2; break; case 4: angle2 += 90; break; } } } else if(width > height){ switch (start_number) { case 0: angle2 += 90; break; case 1: angle2 -= 90; break; case 2: angle2 += 90; break; case 3: angle2 -= 90; break; case 4: angle2 = angle2; break; } } std::cout << "444444" << std::endl; } /********************************yellow***************************************/ } if(center.y<60) { center.y=60; } if(center.x<82) { center.x=82; } if(center.y>=60&¢er.x>=82) { //cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x*1.2-92, center.y*1.285-76.5,1); cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x, center.y,1); // std::cout << pixelPointMat << std::endl; // pixelPointMat = (cv::Mat_<double>(3, 1) << 640, 360, 1); cameraPointMat = objectHeight * K.inv() * pixelPointMat; // std::cout << "相机坐标系下的三维坐标:" << std::endl; // std::cout << cameraPointMat << std::endl; obj_camera_frame1.setX(cameraPointMat.at<double>(0,0)); obj_camera_frame1.setY(cameraPointMat.at<double>(1,0)); obj_camera_frame1.setZ(cameraPointMat.at<double>(2,0)); obj_robot_frame = camera_to_robot_ * obj_camera_frame1; std::cout<< " X :" << obj_robot_frame.getX() << std::endl; std::cout<< " Y :" << obj_robot_frame.getY() << std::endl; std::cout<< " Z :" << obj_robot_frame.getZ() << std::endl; if(angle2>176) angle2=176; if(angle2<-176) angle2=-176; std::cout << " angle2 :" << angle2 << std::endl; Grasping(obj_robot_frame.getX(),obj_robot_frame.getY(),obj_robot_frame.getZ(),angle2); } } else if(contour.size()>0&&contour.size()<280) { std::cout << "没有黄紫像素坐标:" << std::endl; }} } //绿色和蓝色 void Camera_TO_Robot_Process_GB(const std::vector<std::vector<cv::Point>>& contours, int start_number, int end_number) { std::cout << "green or blue" << std::endl; // 输出提示信息 cv::Point2f center; for(start_number; start_number < end_number; start_number++) { const std::vector<cv::Point>& contour = contours[start_number]; if (contour.size()>300) { // 检查轮廓是否为空 // 获取最小外接矩形 cv::RotatedRect minRect = cv::minAreaRect(contours[start_number]); center = minRect.center; double angleInRadians = minRect.angle * M_PI / 180.0; if(center.y<60) { center.y=60; } if(center.x<82) { center.x=82; } if(center.y>=60&¢er.x>=82) { cv::Mat pixelPointMat = (cv::Mat_<double>(3, 1) << center.x, center.y,1); std::cout << pixelPointMat << std::endl; cameraPointMat = objectHeight * K.inv() * pixelPointMat; //平面下的坐标转为相机三维坐标 //相机坐标转为基座标 obj_camera_frame1.setX(cameraPointMat.at<double>(0, 0)); obj_camera_frame1.setY(cameraPointMat.at<double>(1, 0)); obj_camera_frame1.setZ(cameraPointMat.at<double>(2, 0)); obj_robot_frame= camera_to_robot_ * obj_camera_frame1; std::cout << "坐标为: " << obj_robot_frame << std::endl; /**************** 获取矩形的角度*******************/ double angle = minRect.angle; cv::Size2f size = minRect.size; double width = size.width; double height = size.height; //放平角度 if (width > height) { angle += 90; } Grasping(obj_robot_frame.getX(),obj_robot_frame.getY(),obj_robot_frame.getZ(),angle); } } else if(contour.size()>0&&contour.size()<100) { std::cout << "没有蓝绿像素坐标:" << std::endl; } } } }; /**********调用服务运行机械臂*********************/ int move_lineb_test(xarm_msgs::Move srv, ros::ServiceClient client, float x_mm0, float y_mm0, float z_mm0, double roll0, double pitch0, double yaw0, float x_mm1, float y_mm1, float z_mm1, double roll1, double pitch1, double yaw1, float x_mm2, float y_mm2, float z_mm2, double roll2, double pitch2, double yaw2, float x_mm3, float y_mm3, float z_mm3, double roll3, double pitch3, double yaw3, float x_mm4, float y_mm4, float z_mm4, double roll4, double pitch4, double yaw4) { // 设置机械臂的运动速度 srv.request.mvvelo = 160; // 设置机械臂的运动加速度 srv.request.mvacc = 1000; // 设置机械臂的运动时间 srv.request.mvtime = 0; // 设置机械臂运动路径的圆角半径 srv.request.mvradii = 20; ROS_INFO("ZUOBIAOR: %f, %f,%f", x_mm1, y_mm1, z_mm1); std::vector<float> pose[5] = { {x_mm0, y_mm0, z_mm0, static_cast<float>(roll0), static_cast<float>(pitch0), static_cast<float>(yaw0)}, {x_mm1, y_mm1, z_mm1, static_cast<float>(roll1), static_cast<float>(pitch1), static_cast<float>(yaw1)}, {x_mm2, y_mm2, z_mm2, static_cast<float>(roll2), static_cast<float>(pitch2), static_cast<float>(yaw2)}, {x_mm3, y_mm3, z_mm3, static_cast<float>(roll3), static_cast<float>(pitch3), static_cast<float>(yaw3)}, {x_mm4, y_mm4, z_mm4, static_cast<float>(roll4), static_cast<float>(pitch4), static_cast<float>(yaw4)} }; for(int i = 0; i < 5; i++) { srv.request.pose = pose[i]; if(client.call(srv)) { ROS_INFO("%s\n", srv.response.message.c_str()); std::cout << "success111" << std::endl; } else { ROS_ERROR("Failed to call service move_lineb"); } } return 0; } bool is_at_pose(const geometry_msgs::Pose& current_pose, const geometry_msgs::Pose& target_pose, double tolerance = 0.005) { return std::abs(current_pose.position.x - target_pose.position.x) < tolerance && std::abs(current_pose.position.y - target_pose.position.y) < tolerance && std::abs(current_pose.position.z - target_pose.position.z) < tolerance; } //阻塞服务,检测是否到达目标位置 void control_suction_during_move(float x_mm4, float y_mm4, float z_mm4) { // 定义目标位 moveit::planning_interface::MoveGroupInterface arm("xarm7"); ros::AsyncSpinner spinner(1); spinner.start(); geometry_msgs::Pose target_pose4; target_pose4.position.x = x_mm4 / 1000.0; target_pose4.position.y = y_mm4 / 1000.0; target_pose4.position.z = (z_mm4-76.7398-13.9+8.5) / 1000.0; bool suction_off_triggered = false; // 循环检查当前位姿 ros::Rate rate(10); // 10 Hz 检查频率 while (ros::ok()) { geometry_msgs::Pose current_pose = arm.getCurrentPose().pose; // ROS_INFO("ZUOBIAO_SHISHI: %f, %f, %f", current_pose.position.x, current_pose.position.y, current_pose.position.z); // 检查是否到达关闭吸盘的位置 if (!suction_off_triggered && is_at_pose(current_pose, target_pose4)) { ROS_INFO("Reached suction off position, trying to turn off suction."); sleep(0.8); writeSpeed(0); writeSpeed(0); writeSpeed(0); sleep(0.5); ROS_INFO("Suction off commands sent."); suction_off_triggered = true; } // 如果两个条件都满足,退出循环 if (suction_off_triggered) { break; } rate.sleep(); } } int main(int argc, char** argv) { // 初始化ROS节点 ros::init(argc, argv, "xarm_api"); ros::NodeHandle nh; XArmAPItest ic; nh.setParam("/xarm/wait_for_finish", true); ros::Publisher sleep_pub_ = nh.advertise<std_msgs::Float32>("/xarm/sleep_sec", 1); ros::ServiceClient motion_ctrl_client_ = nh.serviceClient<xarm_msgs::SetAxis>("/xarm/motion_ctrl"); ros::ServiceClient set_mode_client_ = nh.serviceClient<xarm_msgs::SetInt16>("/xarm/set_mode"); ros::ServiceClient set_state_client_ = nh.serviceClient<xarm_msgs::SetInt16>("/xarm/set_state"); ros::ServiceClient move_lineb_client_ = nh.serviceClient<xarm_msgs::Move>("/xarm/move_lineb"); xarm_msgs::SetAxis set_axis_srv_; xarm_msgs::SetInt16 set_int16_srv_; xarm_msgs::Move move_srv_; float x_mm0, y_mm0, z_mm0; double roll0, pitch0, yaw0; float x_mm1, y_mm1, z_mm1; double roll1, pitch1, yaw1; float x_mm2, y_mm2, z_mm2; double roll2, pitch2, yaw2; float x_mm3, y_mm3, z_mm3; double roll3, pitch3, yaw3; float x_mm4, y_mm4, z_mm4; double roll4, pitch4, yaw4; set_axis_srv_.request.id = 8; set_axis_srv_.request.data = 1; if(motion_ctrl_client_.call(set_axis_srv_)) { ROS_INFO("%s\n", set_axis_srv_.response.message.c_str()); } else { ROS_ERROR("Failed to call service motion_ctrl"); return 1; } set_int16_srv_.request.data = 0; if(set_mode_client_.call(set_int16_srv_)) { ROS_INFO("%s\n", set_int16_srv_.response.message.c_str()); } else { ROS_ERROR("Failed to call service set_mode"); return 1; } set_int16_srv_.request.data = 0; if(set_state_client_.call(set_int16_srv_)) { ROS_INFO("%s\n", set_int16_srv_.response.message.c_str()); } else { ROS_ERROR("Failed to call service set_state"); return 1; } nh.setParam("/xarm/wait_for_finish", false); std_msgs::Float32 sleep_msg; sleep_msg.data = 1.0; sleep_pub_.publish(sleep_msg); if(move_lineb_test(move_srv_, move_lineb_client_, x_mm0, y_mm0, z_mm0, roll0, pitch0, yaw0, x_mm1, y_mm1, z_mm1, roll1, pitch1, yaw1, x_mm2, y_mm2, z_mm2, roll2, pitch2, yaw2, x_mm3, y_mm3, z_mm3, roll3, pitch3, yaw3, x_mm4, y_mm4, z_mm4, roll4, pitch4, yaw4) == 1) return 1; // 调用 control_suction_during_move 函数 control_suction_during_move(x_mm4, y_mm4, z_mm4); sleep(0.8); nh.setParam("/xarm/wait_for_finish", true); while(ros::ok()) { ros::spinOnce(); } return 0; }解释一下

最新推荐

recommend-type

Python根据欧拉角求旋转矩阵的实例

在本实例中,我们将探讨如何使用Python的numpy和scipy库来根据欧拉角计算旋转矩阵。 首先,让我们理解旋转矩阵的基本概念。旋转矩阵是一个正交矩阵,其逆矩阵等于其转置,用于描述三维空间中的刚体旋转。对于单一轴...
recommend-type

根据旋转矩阵求旋转欧拉角

欧拉角的求解通常涉及将旋转矩阵分解为一系列基本旋转(如绕X轴、Y轴、Z轴的旋转)的乘积。 1. **旋转矩阵与欧拉角的关联** - 每个旋转矩阵可以由三个基本旋转矩阵(Rx、Ry、Rz)的乘积表示,其中Rx、Ry、Rz分别...
recommend-type

机器人旋转矩阵与欧拉角转换公式

在机器人技术中,旋转矩阵和欧拉角是两个重要的概念,它们被用来描述和转换机器人的关节角度与在笛卡尔空间中的位置。本篇将详细阐述这两种表示方式以及它们之间的转换。 首先,让我们理解欧拉角。欧拉角是一种描述...
recommend-type

02.《大数据》配套之二:-数据采集与预处理PPT.ppt

02.《大数据》配套之二:-数据采集与预处理PPT.ppt
recommend-type

19年国赛服务器答案深度解析:网络搭建与应用

网络搭建与应用是一门涉及计算机网络规划、配置、管理和维护的技术学科。在19年的国家竞赛中,参与者需要展示他们对网络架构、网络设备、协议、安全等方面的知识,以及他们在真实世界问题解决中的实际应用能力。在网络搭建与应用19国赛服务器答案中,涉及的知识点可能包括但不限于以下几个方面: 1. 网络基础知识 - 了解网络的基本概念,包括网络的定义、分类(如LAN、WAN等)、网络的功能和网络协议栈(如TCP/IP模型)。 - 理解网络设备的功能和作用,例如交换机、路由器、防火墙等。 - 掌握网络通信的基本原理,包括数据链路层、网络层、传输层和应用层的协议和功能。 2. 网络设计与规划 - 学习如何根据不同的需求设计网络拓扑结构,例如星形、环形、总线型等。 - 掌握IP地址规划和子网划分的方法,如CIDR、VLSM等技术。 - 了解如何进行网络流量分析和带宽规划,以确保网络性能和稳定性。 3. 网络设备配置与管理 - 掌握交换机和路由器的配置命令,例如VLAN划分、路由协议配置、端口安全等。 - 理解网络设备的管理和维护策略,包括日志管理、性能监控和故障诊断。 4. 网络安全 - 学习网络安全的基本原则,包括数据加密、访问控制、入侵检测系统(IDS)和入侵防御系统(IPS)。 - 掌握常见的网络攻击手段及其防御措施,例如DDoS攻击、ARP欺骗、病毒和恶意软件的防御。 5. 服务器搭建与应用 - 了解不同类型的服务器和它们的应用场景,如Web服务器、数据库服务器、邮件服务器等。 - 学习服务器的安装、配置和管理方法,包括操作系统的安装、服务软件的部署、用户管理等。 6. 实践操作 - 通过搭建真实或虚拟的网络环境来实践理论知识,包括使用网络模拟软件(如GNS3、Packet Tracer等)进行网络设备配置和故障排除。 - 学习如何准备和参加网络相关的竞赛,包括时间管理和应对突发问题的策略。 在给定的压缩包子文件的文件名称列表中,“19年国赛服务器的答案”表明该文件包含具体的竞赛解答步骤和方法。文件可能涉及的是如何根据具体的网络搭建与应用的题目,一步一步地提供解题策略、配置命令和执行步骤等。具体内容可能包括: - 对竞赛题目需求的分析和理解。 - 对应的网络设计解决方案和实现步骤。 - 关键的配置命令和参数设置。 - 对于各种网络功能和安全性的测试方法。 - 可能遇到的问题及其解决方案。 综上所述,对于网络搭建与应用19国赛服务器答案的深入学习和掌握,能够帮助专业人士和学生扩展网络知识,提高解决复杂网络问题的能力,并为将来的IT行业工作奠定扎实的基础。通过针对竞赛题目的实际操作演练,还能增强个人的实践技能和创新思维能力。
recommend-type

【VS2010模块化秘籍】:提升项目管理效率的10个技巧

# 1. VS2010模块化编程概述 在现代软件开发中,模块化编程已经成为提高代码质量和促进团队协作的关键技术之一。本章将介绍在Visual Studio 2010(VS2010)环境中如何理解和实施模块化编程。 ## 1.1 什么是模块化编程? 模块化编程是一种组织程序结构的方法,将程序分解为独立且可管理的模块,每个模块实现一个特定的功能。在V
recommend-type

数据分析师发展前景

<think>嗯,用户现在想了解数据分析师的职业发展和未来前景。根据之前的对话,用户是土木本科想转行,之前我建议过数据分析作为可能的方向之一,现在他可能想更深入了解这个领域的潜力。 首先,我需要参考之前提供的引用内容。引用1提到了数据分析师的职业路径,从专员到专家,还有技能提升的重要性。引用2和3强调了行业需求增长和技能的必要性,引用4则讨论了成为行业专家的长期发展优势。这些都需要整合到回答中。 用户的问题集中在职业前景和趋势,所以我要覆盖市场需求、职业阶段、技能要求、行业趋势和转行建议。考虑到用户是转行者,需要突出土木背景如何与数据分析结合,比如提到的BIM、GIS或者工程数据分析,这样
recommend-type

Elasticsearch及IK分词器安装包资源汇总

标题中提到的知识点包括Elasticsearch安装包和IK分词器,这是进行搜索引擎搭建和数据文本分析的重要组件。Elasticsearch是一个基于Lucene构建的开源搜索引擎,具有水平可伸缩性、高可用性和易用性的特点。它提供了全文搜索功能,同时支持结构化搜索和分析,常被用于大数据分析场景中。 描述中涉及的版本信息表明了所附的安装包和分词器支持不同版本的Elasticsearch。Elasticsearch版本6.x和7.x分别对应了两个主要的版本线,而IK分词器是专门为Elasticsearch设计的中文分词插件。 IK分词器是一款支持中文分词的扩展插件,可以根据中文语境进行智能分词,包括正向匹配、正向最大匹配和逆向最大匹配等算法,对中文文本进行处理。分词器的版本通常会与Elasticsearch的版本相匹配,以保证兼容性和最佳性能。 提到的logstash是与Elasticsearch配合使用的数据处理管道工具,负责收集、处理和转发数据。logstash可以作为事件的中介来处理各种来源的数据,然后将其发送到Elasticsearch进行存储。本压缩包中的logstash-6.4.3.tar.gz对应的版本表明了它的兼容性,适用于Elasticsearch 6.x版本。 压缩包文件名称列表中的文件包含了不同软件的多个版本。其中,“elasticsearch-head-master.zip”是一个可以对Elasticsearch进行可视化管理的Chrome插件,它提供了包括集群管理、索引管理、数据操作和查询在内的功能。 另外,“mysql-connector-java-5.1.41.jar”是一个MySQL数据库的Java驱动程序,用于连接Java应用程序和MySQL数据库,但这似乎与Elasticsearch及IK分词器直接关联不大,可能是一个辅助组件,用于在某些集成场景下将数据从MySQL迁移到Elasticsearch。 从标签内容来看,Elasticsearch被归类于源码软件、大数据和搜索引擎类别。它是一个重要的大数据处理组件,特别是在全文搜索和文本分析领域。在大数据背景下,Elasticsearch凭借其卓越的搜索和分析能力,已经成为企业构建和维护搜索引擎的首选技术之一。 总结来说,本次提供的压缩包包含了多个关键组件,它们共同支持构建一个功能强大的搜索引擎和数据分析平台。Elasticsearch自身及其配套的IK分词器、logstash和可视化插件elasticsearch-head,均对大数据和搜索领域有着重要意义。尽管这些工具具有复杂性,但它们的组合使用使得数据的索引、搜索、可视化和分析变得简单、快速和强大。
recommend-type

从零开始:Axure插件开发入门指南,构建自定义Chrome工具

# 摘要 随着原型设计工具Axure RP的广泛应用,定制化插件开发变得日益重要。本文旨在为开发者提供一个完整的Axure插件开发指南,从基础概念到环境搭建,再到核心编程和界面定制,最终实现交互逻辑与发布维护。通过详细解析插件的API、JavaScript编程、数据管理、界面设计及发布流程,本文帮助开发者深入理解并掌握Axure插件开发的关键技术,确保开发过程的高效性和插件的稳定运行。 # 关键字 Axur
recommend-type

代码错误,修改代码

<think>好的,用户说代码有错误,需要修改。首先我得仔细看看之前的代码哪里有问题。题目是关于彩灯的操作和查询,每个彩灯有一个周期k_i,每次操作区间加1,查询时判断当前按动次数是否为k_i的倍数。 首先,用户提供的代码使用了树状数组(Fenwick Tree)来维护差分数组,实现区间加和单点查询。但可能存在一些问题。比如,树状数组的差分处理是否正确? 在区间更新时,原代码是add(l, 1)和add(r+1, -1),这应该是正确的差分方法。当查询单点x时,sum(x)得到的是从1到x的累计值,也就是该点的实际操作次数。这部分逻辑看起来没问题。 但可能的问题在于,当k_i的值很大时,