请把下列神经网络改得更深一点,需要有20层网络,目的是图像内容识别,原代码如下: def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(32) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(64) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1) self.bn3 = nn.BatchNorm2d(128) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(128 * 4 * 4, 128) self.fc2 = nn.Linear(128, 10) self.dropout = nn.Dropout(0.5) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) x = self.pool(x) x = self.conv2(x) x = self.bn2(x) x = F.relu(x) x = self.pool(x) x = self.conv3(x) x = self.bn3(x) x = F.relu(x) x = self.pool(x) x = x.view(x.size(0), -1) x = self.fc1(x) x = F.relu(x) #x = self.dropout(x) x = self.fc2(x) return x
时间: 2023-12-02 18:04:14 浏览: 173
好的,我可以帮您将神经网络改得更深一点,具体的实现方法是在现有的网络中增加更多的卷积层和全连接层。
以下是一个示例代码(仅供参考):
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.bn3 = nn.BatchNorm2d(128)
# 增加的卷积层
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.bn4 = nn.BatchNorm2d(256)
self.conv5 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.bn5 = nn.BatchNorm2d(512)
self.conv6 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=1)
self.bn6 = nn.BatchNorm2d(1024)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(1024 * 2 * 2, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 10)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = F.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = self.bn2(x)
x = F.relu(x)
x = self.pool(x)
x = self.conv3(x)
x = self.bn3(x)
x = F.relu(x)
x = self.pool(x)
# 增加的卷积层
x = self.conv4(x)
x = self.bn4(x)
x = F.relu(x)
x = self.pool(x)
x = self.conv5(x)
x = self.bn5(x)
x = F.relu(x)
x = self.pool(x)
x = self.conv6(x)
x = self.bn6(x)
x = F.relu(x)
x = self.pool(x)
x = x.view(x.size(0), -1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout(x)
x = self.fc2(x)
x = F.relu(x)
x = self.dropout(x)
x = self.fc3(x)
return x
```
在上面的代码中,我们首先定义了一个 `Net` 类,然后在原有的网络结构中增加了三个卷积层和两个全连接层,从而将网络深度增加到了20层。需要注意的是,这只是一种示例方法,具体的实现方式可能因为网络结构和数据集的不同而有所差异。
阅读全文
相关推荐

















