写出子像素卷积应用于EDSR算法的代码朋友torch
时间: 2025-01-29 17:17:44 浏览: 32
好的,我来为您介绍子像素卷积在EDSR算法中的应用,并提供使用PyTorch实现的代码示例。
EDSR(Enhanced Deep Super-Resolution)是一种先进的图像超分辨率算法,而子像素卷积是其关键组成部分之一。子像素卷积用于将低分辨率特征图放大到高分辨率图像。
以下是使用PyTorch实现EDSR中子像素卷积的代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class SubPixelConv(nn.Module):
def __init__(self, in_channels, out_channels, upscale_factor):
super(SubPixelConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels * (upscale_factor ** 2), kernel_size=3, padding=1)
self.pixel_shuffle = nn.PixelShuffle(upscale_factor)
def forward(self, x):
x = self.conv(x)
x = self.pixel_shuffle(x)
return x
class EDSR(nn.Module):
def __init__(self, num_layers=32, num_features=256, upscale_factor=4):
super(EDSR, self).__init__()
self.initial_conv = nn.Conv2d(3, num_features, kernel_size=3, padding=1)
self.res_blocks = nn.Sequential(*[ResidualBlock(num_features) for _ in range(num_layers)])
self.subpixel_conv = SubPixelConv(num_features, num_features, upscale_factor)
self.final_conv = nn.Conv2d(num_features, 3, kernel_size=3, padding=1)
def forward(self, x):
x = self.initial_conv(x)
residual = x
x = self.res_blocks(x)
x += residual
x = self.subpixel_conv(x)
x = self.final_conv(x)
return x
class ResidualBlock(nn.Module):
def __init__(self, num_features):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(num_features, num_features, kernel_size=3, padding=1)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(num_features, num_features, kernel_size=3, padding=1)
def forward(self, x):
residual = x
x = self.relu(self.conv1(x))
x = self.conv2(x)
x += residual
return x
# 使用示例
model = EDSR(num_layers=32, num_features=256, upscale_factor=4)
input_tensor = torch.randn(1, 3, 32, 32) # 输入低分辨率图像
output_tensor = model(input_tensor) # 输出高分辨率图像
print(output_tensor.shape) # torch.Size([1, 3, 128, 128])
```
这段代码实现了一个基本的EDSR模型,其中包含了子像素卷积层。子像素卷积层使用PixelShuffle操作来实现图像的放大。
主要特点:
1. 使用nn.PixelShuffle实现子像素卷积,简化了上采样过程。
2. EDSR模型包含多个残差块,用于提取图像特征。
3. 可以通过调整num_layers和num_features参数来控制模型的复杂度。
4. 该实现支持任意上采样因子(upscale_factor)。
阅读全文
相关推荐





