def step_ReduceLROnPlateau(self, metrics, epoch=None): if epoch is None: epoch = self.last_epoch + 1 self.last_epoch = epoch if epoch != 0 else 1 # ReduceLROnPlateau is called at the end of epoch, whereas others are called at beginning if self.last_epoch <= self.total_epoch: warmup_lr = [base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.) for base_lr in self.base_lrs] for param_group, lr in zip(self.optimizer.param_groups, warmup_lr): param_group['lr'] = lr else: if epoch is None: self.after_scheduler.step(metrics, None) else: self.after_scheduler.step(metrics, epoch - self.total_epoch)

时间: 2024-02-14 07:06:04 浏览: 172
这段代码看起来像是一个学习率调度器的实现,其中包含了一个 ReduceLROnPlateau 的函数。可以看出,这个函数的作用是在训练过程中动态地调整学习率,以提高模型的性能和稳定性。具体来说,这个函数会根据当前的 epoch 和总的训练 epoch 数量计算出一个 warmup_lr,然后将这个学习率设置为 optimizer 中各个参数组的学习率。当 epoch 大于总的训练 epoch 数量时,这个函数会调用一个 after_scheduler.step() 函数来进一步调整学习率。
相关问题

def step(self, epoch=None, metrics=None): if type(self.after_scheduler) != ReduceLROnPlateau: if self.finished and self.after_scheduler: if epoch is None: self.after_scheduler.step(None) else: self.after_scheduler.step(epoch - self.total_epoch) else: return super(GradualWarmupScheduler, self).step(epoch) else: self.step_ReduceLROnPlateau(metrics, epoch)

这段代码是 GradualWarmupScheduler 的 step 函数的实现,其中包含了一个判断语句。首先,它会检查 after_scheduler 是否为 ReduceLROnPlateau 类型。如果不是,它会根据当前的训练 epoch 和总的训练 epoch 数量来判断是否需要调用 after_scheduler.step() 函数来进一步调整学习率。如果已经训练完成,它也会调用 after_scheduler.step() 函数来进行学习率的调整。否则,它会调用 super() 函数来调用父类的 step 函数来进行学习率的调整。如果 after_scheduler 是 ReduceLROnPlateau 类型,那么它会调用 step_ReduceLROnPlateau 函数来进行学习率的调整。

class SaveCheckpointsCallback: def __init__(self, save_dir, save_step=5000, save_best_only=True): """ Save checkpoints each save_epoch epoch. We save checkpoint by epoch in this implementation. Usually, training scripts with pytorch evaluating model and save checkpoint by step. Args: save_dir (str): dir to save checkpoint save_epoch (int, optional): the frequency to save checkpoint. Defaults to 1. save_best_only (bool, optional): If True, only save the best model or save each model at every epoch. """ self.save_dir = save_dir self.save_step = save_step self.save_best_only = save_best_only self.best_metrics = -1 # mkdir if not os.path.exists(self.save_dir): os.mkdir(self.save_dir) def __call__(self, step, state_dict, metric=None): if step % self.save_step > 0: return if self.save_best_only: assert metric is not None if metric >= self.best_metrics: # save checkpoints torch.save(state_dict, os.path.join(self.save_dir, "best.ckpt")) # update best metrics self.best_metrics = metric else: torch.save(state_dict, os.path.join(self.save_dir, f"{step}.ckpt")) 这段代码解释一下

<think>嗯,我现在要解释用户提供的这个SaveCheckpointsCallback类的代码。首先,我得仔细阅读代码,理解每个部分的作用。让我先看一下类的结构。 类初始化方法__init__,接收save_dir、save_step和save_best_only三个参数。save_dir是保存检查点的目录,save_step默认5000,可能是指每隔多少步保存一次。save_best_only如果为True,只保存最好的模型。初始化里还创建了目录,如果不存在的话。 然后是__call__方法,当类实例被调用时会执行。它接收step、state_dict和metric参数。首先检查step是否是save_step的倍数,如果不是就返回。如果是,接着根据save_best_only的值决定是否保存最佳模型。如果save_best_only为True,需要metric不为空,并且只有当当前metric优于之前的最佳时,才保存模型,并更新best_metrics。否则,直接按步骤保存模型。 我需要确认各个参数的作用和逻辑是否正确。比如,save_step可能是指每隔多少训练步骤保存一次,而save_best_only决定是否只保留最佳模型。当save_best_only启用时,必须传入metric来比较,否则会出错。这里用了assert来确保metric存在,这点需要注意。 另外,初始化的参数注释里提到save_epoch,但代码中的参数是save_step,可能存在注释错误。用户提供的代码中,__init__的参数是save_step,但注释里写的是save_epoch,这可能是个笔误,需要指出。 还有,保存的文件名,当保存最佳模型时是"best.ckpt",否则是步骤数命名。检查点的保存路径是否正确,使用os.path.join组合目录和文件名。这部分应该没问题。 在逻辑上,当save_best_only为True时,每次调用__call__,如果当前metric更好,就会覆盖之前的best.ckpt。而如果save_best_only为False,则每个save_step步骤保存一个文件,名称包含步骤数。这样用户可以根据需要选择保存策略。 另外,初始的best_metrics设为-1,可能假设metric是准确率之类的指标,越大越好。但如果metric是损失,越小越好的话,这个逻辑就不对了。所以需要说明用户应根据metric类型调整比较条件,比如可能需要将初始值设为无穷大,并比较是否更小。 还有,代码中的step参数是否指的是训练步骤,而保存是按步骤间隔,但注释里提到“by epoch”,可能存在矛盾。可能代码原本设计是按epoch保存,但参数命名是save_step,导致混淆。需要指出这个不一致的地方,建议用户确认参数的正确使用。 总结下来,这个回调类的作用是根据设定的步长间隔保存模型检查点,可选择只保留表现最好的模型。需要解释各个参数的作用、保存条件以及可能存在的问题,如注释与参数名不符,metric比较的方向等。</think>以下是对`SaveCheckpointsCallback`类的分步解释: --- ### 一、类的作用 这是一个**模型检查点保存回调类**,核心功能是**按指定训练步长间隔保存模型**,支持两种模式: 1. **仅保存最佳模型**(需提供评估指标) 2. **定期保存所有检查点** --- ### 二、初始化方法 `__init__` ```python def __init__(self, save_dir, save_step=5000, save_best_only=True): ``` #### 参数解析: 1. `save_dir` (str) **检查点保存路径**,例如:`./checkpoints/` 2. `save_step` (int, 默认5000) **保存频率**:每训练`save_step`步保存一次 (注:代码注释中误写为`save_epoch`,实际按步长而非周期保存) 3. `save_best_only` (bool, 默认True) **保存模式**: - `True`:仅当模型指标优于历史最佳时保存 - `False`:定期无条件保存所有检查点 #### 初始化流程: - 创建保存目录(若不存在):`os.mkdir` - 初始化最佳指标记录:`self.best_metrics = -1` (假设指标越大越好,例如准确率) --- ### 三、核心逻辑 `__call__` ```python def __call__(self, step, state_dict, metric=None): ``` #### 参数说明: 1. `step` (int) 当前训练步数,用于判断是否达到保存间隔 2. `state_dict` 模型状态字典(通常通过`model.state_dict()`获取) 3. `metric` (可选) 模型评估指标(如验证集准确率),仅在`save_best_only=True`时必需 --- ### 四、执行逻辑分步解析 #### 1. 检查保存条件 ```python if step % self.save_step > 0: return ``` - **数学表达式**:当且仅当 $step \mod save\_step = 0$ 时触发保存 #### 2. 最佳模型保存模式 ```python if self.save_best_only: assert metric is not None # 必须提供评估指标 if metric >= self.best_metrics: # 保存模型并更新最佳指标 torch.save(state_dict, os.path.join(self.save_dir, "best.ckpt")) self.best_metrics = metric ``` - **判断逻辑**:若当前指标 $\geq$ 历史最佳(假设指标越大越好) - **保存路径**:`save_dir/best.ckpt`(覆盖旧文件) #### 3. 常规保存模式 ```python else: torch.save(state_dict, os.path.join(self.save_dir, f"{step}.ckpt")) ``` - **文件名格式**:`save_dir/步数.ckpt`(例如 `5000.ckpt`) --- ### 五、使用示例 ```python # 初始化回调 saver = SaveCheckpointsCallback(save_dir="checkpoints", save_step=1000) # 在训练循环中调用 for step in range(total_steps): # ... 训练代码 ... if step % eval_interval == 0: val_accuracy = evaluate_model() saver(step, model.state_dict(), val_accuracy) ``` --- ### 六、注意事项 1. **指标方向性** 当前代码假设指标越大越好(如准确率)。若使用损失函数(越小越好),需修改比较条件为 `metric <= self.best_metrics` 2. **首次保存条件** 初始值 `best_metrics = -1` 可能不适用于负值指标(需根据实际情况调整) 3. **多文件冲突** 非最佳模式下,不同步长的检查点会生成独立文件,需注意磁盘空间管理 --- ### 七、扩展建议 - 添加**保留最近N个检查点**的功能 - 支持**指标名称自定义**(如准确率、F1分数等) - 增加**分布式训练**兼容性处理
阅读全文

相关推荐

'''Next, define the trainer and the parameters used for training.''' class Trainer: def __init__(self,model,train_loader,val_loader=None,loss_function=l2loss,device=torch.device('cpu'), optimizer='Adam_amsgrad',lr=5e-4,weight_decay=0): self.opt_type=optimizer self.device=device self.model=model self.train_data=train_loader self.val_data=val_loader self.device=device self.opts={'AdamW':torch.optim.AdamW(self.model.parameters(),lr=lr,amsgrad=False,weight_decay=weight_decay), 'AdamW_amsgrad':torch.optim.AdamW(self.model.parameters(),lr=lr,amsgrad=True,weight_decay=weight_decay), 'Adam':torch.optim.Adam(self.model.parameters(),lr=lr,amsgrad=False,weight_decay=weight_decay), 'Adam_amsgrad':torch.optim.Adam(self.model.parameters(),lr=lr,amsgrad=True,weight_decay=weight_decay), 'Adadelta':torch.optim.Adadelta(self.model.parameters(),lr=lr,weight_decay=weight_decay), 'RMSprop':torch.optim.RMSprop(self.model.parameters(),lr=lr,weight_decay=weight_decay), 'SGD':torch.optim.SGD(self.model.parameters(),lr=lr,weight_decay=weight_decay) } self.optimizer=self.opts[self.opt_type] self.loss_function=loss_function self.step=-1 def train(self,num_train,targ,stop_loss=1e-8, val_per_train=50, print_per_epoch=10): self.model.train() len_train=len(self.train_data) for i in range(num_train): val_datas=iter(self.val_data) for j,batch in enumerate(self.train_data): self.step=self.step+1 torch.cuda.empty_cache() self.optimizer.zero_grad() out = self.model(pos=batch.pos.to(self.device), z=batch.z.to(self.device), batch=batch.batch.to(self.device)) target = batch[targ].to(self.device) 这个是源代码的一部分,请帮我修改完整后发给我

请作为资深开发工程师,解释我给出的代码。请逐行分析我的代码并给出你对这段代码的理解。 我给出的代码是: import os import sys import unittest from sklearn.metrics import roc_auc_score from pyod.models.auto_encoder import AutoEncoder from pyod.utils.data import generate_data class TestAutoEncoder(unittest.TestCase): def assertHasAttr(self, obj, intended_attr): self.assertTrue(hasattr(obj, intended_attr)) def assertInRange(self, data, lower, upper): self.assertGreaterEqual(data.min(), lower) self.assertLessEqual(data.max(), upper) def setUp(self): self.n_train = 6000 self.n_test = 1000 self.n_features = 300 self.contamination = 0.1 self.roc_floor = 0.8 self.X_train, self.X_test, self.y_train, self.y_test = generate_data( n_train=self.n_train, n_test=self.n_test, n_features=self.n_features, contamination=self.contamination, random_state=42) self.clf = AutoEncoder(epoch_num=5, contamination=self.contamination) self.clf.fit(self.X_train) def test_parameters(self): self.assertHasAttr(self.clf, ‘decision_scores_’) self.assertIsNotNone(self.clf.decision_scores_) self.assertHasAttr(self.clf, ‘labels_’) self.assertIsNotNone(self.clf.labels_) self.assertHasAttr(self.clf, ‘threshold_’) self.assertIsNotNone(self.clf.threshold_) self.assertHasAttr(self.clf, ‘_mu’) self.assertIsNotNone(self.clf._mu) self.assertHasAttr(self.clf, ‘_sigma’) self.assertIsNotNone(self.clf.sigma) self.assertHasAttr(self.clf, ‘model’) self.assertIsNotNone(self.clf.model) def test_train_scores(self): self.assertEqual(len(self.clf.decision_scores), self.X_train.shape[0] def test_prediction_scores(self): pred_scores = self.clf.decision_function(self.X_test) self.assertEqual(pred_scores.shape[0], self.X_test.shape[0]) self.assertGreaterEqual(roc_auc_score(self.y_test, pred_scores), self.roc_floor) def test_prediction_labels(self): pred_labels = self.clf.predict(self.X_test) self.assertEqual(pred_labels.shape, self.y_test.shape) if name == ‘main’: unittest.main()

import torch import torch.nn as nn import torch.optim as optim import numpy as np import pandas as pd from sklearn.metrics import f1_score, roc_auc_score, recall_score, precision_score import os # 定义全局设备对象[5,7](@ref) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"当前使用设备:{device}") # 定义全连接神经网络模型(GPU适配版) class FullyConnectedNN(nn.Module): def __init__(self): super(FullyConnectedNN, self).__init__() self.fc1 = nn.Linear(11, 32) self.relu1 = nn.ReLU() self.dropout1 = nn.Dropout(0.5) self.fc2 = nn.Linear(32, 16) self.relu2 = nn.ReLU() self.dropout2 = nn.Dropout(0.5) self.fc3 = nn.Linear(16, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.fc1(x) x = self.relu1(x) x = self.dropout1(x) x = self.fc2(x) x = self.relu2(x) x = self.dropout2(x) x = self.fc3(x) x = self.sigmoid(x) return x # 从CSV文件中加载数据(GPU优化版) def load_data(file_path): data = pd.read_csv(file_path) X = torch.tensor(data.iloc[:, :11].values, dtype=torch.float32).to(device) y = torch.tensor(data.iloc[:, 11].values, dtype=torch.float32).view(-1, 1).to(device) return X, y # 训练模型(GPU加速版) def train_model(model, train_X, train_y, criterion, optimizer, num_epochs, batch_size=256): model.train() num_samples = len(train_X) # 数据预取优化[8](@ref) dataset = torch.utils.data.TensorDataset(train_X, train_y) dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=False) for epoch in range(num_epochs): running_loss = 0.0 for inputs, labels in dataloader: optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item()

检查一下:import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset from sklearn.metrics import roc_auc_score # 定义神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(10, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) x = nn.functional.relu(x) x = self.fc3(x) x = self.sigmoid(x) return x # 加载数据集 data = torch.load('data.pt') x_train, y_train, x_test, y_test = data train_dataset = TensorDataset(x_train, y_train) train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) test_dataset = TensorDataset(x_test, y_test) test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False) # 定义损失函数和优化器 criterion = nn.BCELoss() optimizer = optim.Adam(net.parameters(), lr=0.01) # 训练模型 net = Net() for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() # 在测试集上计算AUC y_pred = [] y_true = [] with torch.no_grad(): for data in test_loader: inputs, labels = data outputs = net(inputs) y_pred += outputs.tolist() y_true += labels.tolist() auc = roc_auc_score(y_true, y_pred) print('Epoch %d, loss: %.3f, test AUC: %.3f' % (epoch + 1, running_loss / len(train_loader), auc))

评估这个代码的正确性def prepare_data(self): dataset = TensorDataset( torch.stack(self.states), torch.tensor(self.actions), torch.tensor(self.probs, dtype=torch.float32), torch.tensor(self.rewards, dtype=torch.float32), torch.tensor(self.dones, dtype=torch.float32), torch.tensor(self.values, dtype=torch.float32) ) return DataLoader(dataset, batch_size=32, shuffle=True) def compute_advantages(self, rewards, values, dones): """改进的GAE计算,带移动平均标准化""" T = len(rewards) advantages = torch.zeros_like(rewards) last_gae = 0 non_terminals = 1.0 - dones # 计算GAE for t in reversed(range(T)): next_value = values[t+1] if t < T-1 else 0.0 next_non_terminal = non_terminals[t+1] if t < T-1 else 0.0 delta = rewards[t] + self.gamma * next_value * next_non_terminal - values[t] last_gae = delta + self.gamma * self.lambda_ * next_non_terminal * last_gae advantages[t] = last_gae # 移动平均标准化 alpha = 0.99 batch_mean = advantages.mean().item() batch_std = advantages.std().item() self.global_return_mean = alpha * self.global_return_mean + (1-alpha)*batch_mean self.global_return_std = alpha * self.global_return_std + (1-alpha)*batch_std advantages = (advantages - self.global_return_mean) / (self.global_return_std + 1e-8) returns = advantages + values returns = torch.clamp(returns, -3.0, 3.0) # 放宽裁剪范围 return returns, advantages def learn(self, n_epochs=10): dataloader = self.prepare_data() for _ in range(n_epochs): for batch in dataloader: states, actions, old_probs, rewards, dones, values = batch """ # 没有GPU这一步先注释 states, actions, old_probs, rewards, dones, values = \ states.to(self.device), actions.to(self.device), old_probs.to(self.device), rewards.to(self.device), dones.to(self.device), values.to(self.device) """ # 计算GAE with torch.no_grad(): returns, advantages = self.compute_advantages(rewards, values, dones) policy, new_values = self.actor_critic(states) # 损失计算 dist = Categorical(policy) new_log_probs = dist.log_prob(actions) prob_ratio = (new_log_probs - old_probs.detach()).exp() weighted_probs = advantages * prob_ratio clipped_probs = torch.clamp(prob_ratio, 1-self.policy_clip, 1+self.policy_clip) actor_loss = -torch.min(weighted_probs, clipped_probs * advantages).mean() critic_loss = 0.5 * (new_values.squeeze() - returns).pow(2).mean() entropy = dist.entropy().mean() entropy_coef = max(0.01, 0.05 * (1 - self.global_step / 1e5)) loss = actor_loss + 0.5 * critic_loss - entropy_coef * entropy self.optimizer.zero_grad() loss.backward() # 梯度裁剪 torch.nn.utils.clip_grad_norm_(self.actor_critic.parameters(), max_norm=1.0, norm_type=2.0) # 参数更新 self.optimizer.step() self.scheduler.step() # 记录指标 self.writer.add_scalar('Loss/Actor', actor_loss.item(), self.global_step) self.writer.add_scalar('Loss/Critic', critic_loss.item(), self.global_step) self.writer.add_scalar('Metrics/Entropy', entropy.item(), self.global_step) #self.writer.add_scalar('Grad/Total', total_grad, self.global_step) self.global_step += 1 self.reset_memory()

import tensorflow as tf from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPool2D, Dropoutfrom tensorflow.keras import Model​# 在GPU上运算时,因为cuDNN库本身也有自己的随机数生成器,所以即使tf设置了seed,也不会每次得到相同的结果tf.random.set_seed(100)​mnist = tf.keras.datasets.mnist(X_train, y_train), (X_test, y_test) = mnist.load_data()X_train, X_test = X_train/255.0, X_test/255.0​# 将特征数据集从(N,32,32)转变成(N,32,32,1),因为Conv2D需要(NHWC)四阶张量结构X_train = X_train[..., tf.newaxis]    X_test = X_test[..., tf.newaxis]​batch_size = 64# 手动生成mini_batch数据集train_ds = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(10000).batch(batch_size)test_ds = tf.data.Dataset.from_tensor_slices((X_test, y_test)).batch(batch_size)​class Deep_CNN_Model(Model):    def __init__(self):        super(Deep_CNN_Model, self).__init__()        self.conv1 = Conv2D(32, 5, activation='relu')        self.pool1 = MaxPool2D()        self.conv2 = Conv2D(64, 5, activation='relu')        self.pool2 = MaxPool2D()        self.flatten = Flatten()        self.d1 = Dense(128, activation='relu')        self.dropout = Dropout(0.2)        self.d2 = Dense(10, activation='softmax')        def call(self, X):    # 无需在此处增加training参数状态。只需要在调用Model.call时,传递training参数即可        X = self.conv1(X)        X = self.pool1(X)        X = self.conv2(X)        X = self.pool2(X)        X = self.flatten(X)        X = self.d1(X)        X = self.dropout(X)   # 无需在此处设置training状态。只需要在调用Model.call时,传递training参数即可        return self.d2(X)​model = Deep_CNN_Model()loss_object = tf.keras.losses.SparseCategoricalCrossentropy()optimizer = tf.keras.optimizers.Adam()​train_loss = tf.keras.metrics.Mean(name='train_loss')train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')test_loss = tf.keras.metrics.Mean(name='test_loss')test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')​# TODO:定义单批次的训练和预测操作@tf.functiondef train_step(images, labels):       ......    @tf.functiondef test_step(images, labels):       ......    # TODO:执行完整的训练过程EPOCHS = 10for epoch in range(EPOCHS)补全代码

import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt import torch.nn.functional as F from sklearn.metrics import accuracy_score train_dataset = torchvision.datasets.MNIST( root=r'./datasets', train=True, download=False, transform=transforms.ToTensor() ) test_dataset=torchvision.datasets.MNIST( root=r'./datasets', train=True, download=False, transform=transforms.ToTensor() ) train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=256, shuffle=False) class CNN(nn.Module): def init__(self): model = CNN() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) epochs = 20 train_losses = [] test_losses = [] accuracies = [] for epoch in range(epochs): model.train() epoch_loss = 0 for X_batch, y_batch in train_loader: optimizer.zero_grad() outputs = model(X_batch) loss = criterion(outputs, y_batch) loss.backward() optimizer.step() epoch_loss += loss.item() * len(y_batch) avg_loss = epoch_loss / len(train_dataset) train_losses.append(avg_loss) model.eval() test_loss = 0 y_true, y_pred = [], [] with torch.no_grad(): for X_batch, y_batch in test_loader: outputs = model(X_batch) loss = criterion(outputs, y_batch) test_loss += loss.item() * len(y_batch) preds = torch.argmax(outputs, dim=1) y_pred.extend(preds.cpu().numpy()) y_true.extend(y_batch.cpu().numpy()) avg_test_loss = test_loss / len(test_dataset) acc = accuracy_score(y_true, y_pred) test_losses.append(avg_test_loss) accuracies.append(acc) print(f"Epoch [{epoch+1}/{epochs}] => " f"Train Loss: {avg_loss:.4f}, "

这个代码报错 File "D:\pycharm project\jiyi\5133.py", line 31, in chinese_seg ltp = LTP() File "D:\python 3.10.10\lib\site-packages\ltp\interface.py", line 117, in LTP raise FileNotFoundError(f"{CONFIG_NAME} not found in {model_id}") FileNotFoundError: config.json not found in LTP/small # -*- coding: utf-8 -*- import numpy as np import torch from ltp import LTP from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from torch.utils.data import Dataset, DataLoader # ==================== # 1. 数据预处理 # ==================== # 假设数据已加载为dataframe格式 import pandas as pd import pandas as pd data = pd.read_csv("D:\pycharm project\jiyi\douban2.csv",encoding='iso-8859-1') # 包含text和label两列 # 分词函数(只能用LTP) def chinese_seg(text, tool="ltp"): if tool == "ltp": ltp = LTP() seg, _ = ltp.seg([text]) return ' '.join(seg[0]) # 全量数据分词处理 data['seg_text'] = data['text'].apply(lambda x: chinese_seg(x, tool="ltp")) # ==================== # 2. TF-IDF向量化 # ==================== vectorizer = TfidfVectorizer(max_features=3000) # 控制特征维度[^3] tfidf_matrix = vectorizer.fit_transform(data['seg_text']) # 转换为PyTorch张量 X = torch.from_numpy(tfidf_matrix.toarray()).float() y = torch.from_numpy(data['label'].values).long() # 划分训练集/测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # ==================== # 3. 构建数据集管道 # ==================== class CommentDataset(Dataset): def __init__(self, features, labels): self.features = features self.labels = labels def __len__(self): return len(self.labels) def __getitem__(self, idx): # RNN需要序列输入,将特征向量reshape为(seq_len, input_size) return self.features[idx].view(1, -1), self.labels[idx] # seq_len=1 train_loader = DataLoader(CommentDataset(X_train, y_train), batch_size=32, shuffle=True) test_loader = DataLoader(CommentDataset(X_test, y_test), batch_size=32) # ==================== # 4. 定义RNN模型 # ==================== class RNNClassifier(torch.nn.Module): def __init__(self, input_size, hidden_size, num_classes): super().__init__() self.rnn = torch.nn.RNN(input_size, hidden_size, batch_first=True) self.fc = torch.nn.Linear(hidden_size, num_classes) def forward(self, x): # x形状: (batch_size, seq_len=1, input_size) out, _ = self.rnn(x) # 输出形状: (batch_size, seq_len, hidden_size) return self.fc(out[:, -1, :]) # 初始化模型 model = RNNClassifier( input_size=3000, # 对应TF-IDF特征维度 hidden_size=128, # 根据引用[2]建议设置 num_classes=2 ) # ==================== # 5. 训练与评估 # ==================== device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练循环 for epoch in range(10): model.train() for inputs, labels in train_loader: inputs, labels = inputs.to(device), labels.to(device) outputs = model(inputs) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() # 评估函数(含准确率和F1值[^4]) from sklearn.metrics import accuracy_score, f1_score def evaluate(model, loader): model.eval() all_preds, all_labels = [], [] with torch.no_grad(): for inputs, labels in loader: inputs = inputs.to(device) outputs = model(inputs) preds = torch.argmax(outputs, dim=1).cpu().numpy() all_preds.extend(preds) all_labels.extend(labels.numpy()) return { "accuracy": accuracy_score(all_labels, all_preds), "f1": f1_score(all_labels, all_preds, average='macro') } print("测试集性能:", evaluate(model, test_loader))

修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)

import tensorflow as tf from keras import datasets, layers, models import matplotlib.pyplot as plt # 导入mnist数据,依次分别为训练集图片、训练集标签、测试集图片、测试集标签 (train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data() # 将像素的值标准化至0到1的区间内。(对于灰度图片来说,每个像素最大值是255,每个像素最小值是0,也就是直接除以255就可以完成归一化。) train_images, test_images = train_images / 255.0, test_images / 255.0 # 查看数据维数信息 print(train_images.shape,test_images.shape,train_labels.shape,test_labels.shape) #调整数据到我们需要的格式 train_images = train_images.reshape((60000, 28, 28, 1)) test_images = test_images.reshape((10000, 28, 28, 1)) print(train_images.shape,test_images.shape,train_labels.shape,test_labels.shape) train_images = train_images.astype("float32") / 255.0 def image_to_patches(images, patch_size=4): batch_size = tf.shape(images)[0] patches = tf.image.extract_patches( images=images[:, :, :, tf.newaxis], sizes=[1, patch_size, patch_size, 1], strides=[1, patch_size, patch_size, 1], rates=[1, 1, 1, 1], padding="VALID" ) return tf.reshape(patches, [batch_size, -1, patch_size*patch_size*1]) class TransformerBlock(tf.keras.layers.Layer): def __init__(self, embed_dim, num_heads): super().__init__() self.att = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim) self.ffn = tf.keras.Sequential([ tf.keras.layers.Dense(embed_dim*4, activation="relu"), tf.keras.layers.Dense(embed_dim) ]) self.layernorm1 = tf.keras.layers.LayerNormalization() self.layernorm2 = tf.keras.layers.LayerNormalization() def call(self, inputs): attn_output = self.att(inputs, inputs) out1 = self.layernorm1(inputs + attn_output) ffn_output = self.ffn(out1) return self.layernorm2(out1 + ffn_output) class PositionEmbedding(tf.keras.layers.Layer): def __init__(self, max_len, embed_dim): super().__init__() self.pos_emb = tf.keras.layers.Embedding(input_dim=max_len, output_dim=embed_dim) def call(self, x): positions = tf.range(start=0, limit=tf.shape(x)[1], delta=1) return x + self.pos_emb(positions) # 添加get_config方法 def get_config(self): config = super().get_config() # 获取父类配置 config.update({ "max_len": self.max_len, "embed_dim": self.embed_dim }) return config def build_transformer_model(): inputs = tf.keras.Input(shape=(49, 16)) # 4x4 patches x = tf.keras.layers.Dense(64)(inputs) # 嵌入维度64 # 添加位置编码 x = PositionEmbedding(max_len=49, embed_dim=64)(x) # 堆叠Transformer模块 x = TransformerBlock(embed_dim=64, num_heads=4)(x) x = TransformerBlock(embed_dim=64, num_heads=4)(x) # 分类头 x = tf.keras.layers.GlobalAveragePooling1D()(x) outputs = tf.keras.layers.Dense(10, activation="softmax")(x) return tf.keras.Model(inputs=inputs, outputs=outputs) model = build_transformer_model() model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) # 数据预处理 train_images_pt = image_to_patches(train_images[..., tf.newaxis]) test_images_pt = image_to_patches(test_images[..., tf.newaxis]) history = model.fit( train_images_pt, train_labels, validation_data=(test_images_pt, test_labels), epochs=10, batch_size=128 )Traceback (most recent call last): File "d:/source/test3/predict.py", line 75, in <module> model = tf.keras.models.load_model('transform_model.keras', File "C:\ProgramData\anaconda3\envs\LSTM-TESFLOW\lib\site-packages\keras\utils\traceback_utils.py", line 67, in error_handler raise e.with_traceback(filtered_tb) from None File "C:\ProgramData\anaconda3\envs\LSTM-TESFLOW\lib\site-packages\keras\engine\base_layer.py", line 783, in from_config return cls(**config) TypeError: __init__() got an unexpected keyword argument 'name'

import torch from torch.utils.data import Dataset, DataLoader from transformers import BartForConditionalGeneration, BartTokenizer, AdamW from tqdm import tqdm import os print(os.getcwd()) # 自定义数据集类 class SummaryDataset(Dataset): def __init__(self, texts, summaries, tokenizer, max_length=1024): self.texts = texts self.summaries = summaries self.tokenizer = tokenizer self.max_length = max_length def __len__(self): return len(self.texts) def __getitem__(self, idx): text = self.texts[idx] summary = self.summaries[idx] # 对文本和摘要进行编码 inputs = self.tokenizer( text, max_length=self.max_length, truncation=True, padding="max_length", return_tensors="pt" ) labels = self.tokenizer( summary, max_length=self.max_length, truncation=True, padding="max_length", return_tensors="pt" ) # 返回输入和标签 return { "input_ids": inputs["input_ids"].squeeze(), "attention_mask": inputs["attention_mask"].squeeze(), "labels": labels["input_ids"].squeeze(), } # 数据加载函数 def load_data(): # 示例数据(替换为你的数据集) texts = [ "人工智能(AI)是计算机科学的一个分支,旨在创建能够执行通常需要人类智能的任务的系统。", "近年来,人工智能技术取得了显著进展,尤其是在深度学习和神经网络领域。", ] summaries = [ "人工智能是计算机科学的一个分支,旨在创建能够执行需要人类智能的任务的系统。", "AI 技术近年来取得了显著进展,尤其是在深度学习和神经网络领域。", ] return texts, summaries # 训练函数 def train(model, dataloader, optimizer, device, epochs=3): model.train() for epoch in range(epochs): epoch_loss = 0 for batch in tqdm(dataloader, desc=f"Epoch {epoch + 1}/{epochs}"): # 将数据移动到设备 input_ids = batch["input_ids"].to(device) attention_mask = batch["attention_mask"].to(device) labels = batch["labels"].to(device) # 前向传播 outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) loss = outputs.loss

最新推荐

recommend-type

本科毕业设计论文--操作系统课程设计报告进程调度算法模拟(1).doc

本科毕业设计论文--操作系统课程设计报告进程调度算法模拟(1).doc
recommend-type

单片机实验开发板程序编写指南

单片机实验程序的知识点可以从单片机的概念、开发板的作用、实验的目的以及具体程序编写与调试方面进行详细阐述。 首先,单片机(Single-Chip Microcomputer),又称微控制器,是将中央处理单元(CPU)、随机存取存储器(RAM)、只读存储器(ROM)、输入输出接口等主要计算机功能部件集成在一片芯片上的微小型计算机。它具备独立处理特定任务的能力,广泛应用于嵌入式系统中。单片机由于其成本低廉、体积小、功耗低、控制简单等特点,被广泛应用于家用电器、办公自动化、汽车电子、工业控制等众多领域。 接着,开发板(Development Board)是为了方便开发者使用单片机而设计的一种实验平台,通常集成了单片机、电源管理模块、外围接口电路、调试接口、编程接口等。开发板的主要作用是提供一个简洁的硬件环境,让开发者可以更容易地进行实验、测试和程序开发。在使用开发板进行单片机实验时,可以通过编程器将用户编写的程序烧录到单片机中,然后进行实际操作和测试。 实验的目的通常是为了验证某些特定的功能或者算法。在实验中,开发者可以使用单片机开发板来实现对输入信号的检测、处理和输出控制。例如,可以编写程序使单片机控制LED灯的亮灭,或者读取按键输入并根据按键的不同进行不同的控制。实验程序可以是一个简单的循环处理,也可以是复杂的算法实现,如数据通信、中断处理、定时器使用等。 在编写单片机实验程序时,首先需要了解所使用的单片机的指令集和硬件资源。以常用的8051单片机为例,需要熟悉其寄存器配置、特殊功能寄存器(SFR)的使用以及I/O口操作等。编写程序时,通常会使用C语言或者汇编语言。C语言因其可读性好、编写效率高而更受欢迎。开发者可以使用Keil uVision、IAR Embedded Workbench等集成开发环境(IDE)来编写、编译和调试代码。 在程序调试阶段,可以通过开发板上的调试接口,如JTAG、ISP等,将编译好的程序下载到单片机中。调试过程通常包括设置断点、单步执行、查看寄存器和内存内容等操作。通过调试可以发现并修正程序中的逻辑错误或硬件交互问题。 另外,为了保证程序的可靠性和稳定性,实验程序设计时还应考虑异常处理、资源管理以及功耗优化等因素。编写高效的单片机程序不仅仅是让程序按预期运行,还要考虑到程序运行的效率、资源消耗以及对异常情况的应对。 总之,基于开发板的单片机实验程序开发涉及到硬件理解、软件编程、程序调试等多个环节。开发者需要将理论知识与实际操作相结合,通过不断的学习和实践,掌握单片机编程和应用开发的关键技能。这不仅需要对单片机的基础知识有深入的了解,还需要对开发板的功能和特性有充分的认识,从而能够设计出高效、稳定和实用的单片机应用系统。
recommend-type

【性能测试基准】:为RK3588选择合适的NVMe性能测试工具指南

# 1. NVMe性能测试基础 ## 1.1 NVMe协议简介 NVMe,全称为Non-Volatile Memory Express,是专为固态驱动器设计的逻辑设备接口规范。与传统的SATA接口相比,NVMe通过使用PCI Express(PCIe)总线,大大提高了存储设备的数据吞吐量和IOPS(每秒输入输出操作次数),特别适合于高速的固态存储设备。
recommend-type

ubuntu 检查下载源

<think>我们正在讨论Ubuntu系统中检查和配置下载源(软件源)的方法。用户的需求很明确:如何检查当前配置的下载源,以及如何修改它们。根据引用[1]和[2]中的信息,我们知道在Ubuntu中,软件源配置存储在`/etc/apt/sources.list`文件中以及`/etc/apt/sources.list.d/`目录下的额外文件中。修改源通常包括备份当前配置、编辑源列表文件、更新软件包列表等步骤。步骤分解:1.检查当前下载源:可以通过查看`sources.list`文件和`sources.list.d/`目录中的文件内容来实现。2.修改下载源:包括备份、编辑源列表(替换为新的镜像源地址
recommend-type

办公软件:下载使用指南与资源包

标题中提到的“offices办公软件”,指的是Office套件,这是一系列办公应用程序的集合,通常包括文字处理软件(如Microsoft Word)、电子表格软件(如Microsoft Excel)、演示文稿制作软件(如Microsoft PowerPoint),以及邮件管理软件等。该软件包旨在帮助用户提高工作效率,完成文档撰写、数据分析、演示制作等多种办公任务。 描述部分非常简单,提到“一个很好公办软件你一定很爱他快来下载吧加强团结”,表达了对软件的高度评价和期待用户下载使用,以促进工作中的团结协作。不过,这段描述中可能存在错别字或排版问题,正确的表达可能是“一款非常好的办公软件,你一定很爱它,快来下载吧,加强团结”。 标签部分为“dddd”,这显然不是一个有效的描述或分类标签,它可能是由于输入错误或者故意设置的占位符。 压缩包子文件的文件名称列表中包含了以下文件: - keygen.exe:这是一个序列号生成器的可执行文件,通常用于生成软件的注册码或激活码,使得用户能够在不支付授权费用的情况下使用某些付费软件。然而,这通常是违反软件许可协议的行为,也可能涉及到法律风险。 - 说明_Readme.html:这是一个HTML格式的说明文件,通常会包含该软件的安装指南、使用方法、版本信息、已知问题、版权声明和致谢等内容。阅读这个文件可以帮助用户正确安装和使用软件。 - OfficeSuite 4_50.sis:这是一个适用于Symbian操作系统的安装包文件,SIS是Symbian Install File的缩写。从文件名可以看出,这是一个名为“OfficeSuite”的软件的第50个版本,版本号为4.0。Symbian曾是智能手机操作系统之一,通常用于诺基亚等品牌的设备上,但随着智能手机市场的变化,现在已很少见,市场上主流的智能手机操作系统已转向Android和iOS。 - resource:这个名称很模糊,没有文件扩展名,因此无法确定具体是什么类型的资源。它可能是一个包含字体、图像或其他资源文件的文件夹,这些资源文件用于支持Office套件在不同设备或操作系统上的运行。 在使用这些文件时,特别是涉及到keygen.exe这类软件时,用户应谨慎行事。应避免使用未经授权的软件,不仅因为其可能违反法律,还可能对计算机系统造成安全风险。在下载和安装任何软件时,应确保来源的可靠性,并从官方渠道获取正版授权。此外,对于已经过时或不再受支持的软件,比如针对Symbian系统的OfficeSuite,用户可能需要寻找其他替代方案来满足当前的办公需求。
recommend-type

【固态硬盘寿命延长】:RK3588平台NVMe维护技巧大公开

# 1. 固态硬盘寿命延长的基础知识 ## 1.1 固态硬盘的基本概念 固态硬盘(SSD)是现代计算设备中不可或缺的存储设备之一。与传统的机械硬盘(HDD)相比,SSD拥有更快的读写速度、更小的体积和更低的功耗。但是,SSD也有其生命周期限制,主要受限于NAND闪存的写入次数。 ## 1.2 SSD的写入次数和寿命 每块SSD中的NAND闪存单元都有有限的写入次数。这意味着,随着时间的推移,SSD的
recommend-type

DSNPx是什么

<think>我们正在处理一个关于保险精算领域的问题,具体是定期寿险净保费计算。用户询问的是"DSNPx"的定义或含义,特别是在计算机领域的含义。根据提供的代码和上下文,我们可以分析如下:1.在代码中,变量名`NPxM`和`NPxF`分别代表男性(M)和女性(F)的净保费(NetPremium)。而前缀"DS"可能是"定期寿险"(DingQiShouXian)的缩写,因为函数名为`DingQi`,代表定期寿险。2.因此,`DSNPxM`和`DSNPxF`分别表示定期寿险(DS)的净保费(NP)对于男性(x年龄,M)和女性(x年龄,F)。3.在精算学中,净保费是指不考虑费用和利润的纯风险保费,根
recommend-type

MW6208E量产工具固件升级包介绍

标题中“MW6208E_8208.rar”表示一个压缩文件的名称,其中“rar”是一种文件压缩格式。标题表明,压缩包内含的文件是关于MW6208E和8208的量产工具。描述中提到“量产固件”,说明这是一个与固件相关的工作工具。 “量产工具”指的是用于批量生产和复制固件的软件程序,通常用于移动设备、存储设备或半导体芯片的批量生产过程中。固件(Firmware)是嵌入硬件设备中的一种软件形式,它为硬件设备提供基础操作与控制的代码。在量产阶段,固件是必须被植入设备中以确保设备能正常工作的关键组成部分。 MW6208E可能是某个产品型号或器件的型号标识,而8208可能表示该量产工具与其硬件的兼容型号或版本。量产工具通常提供给制造商或维修专业人士使用,使得他们能够快速、高效地将固件程序烧录到多个设备中。 文件名称列表中的“MW6208E_8200量产工具_1.0.5.0_20081201”说明了具体的文件内容和版本信息。具体地,文件名中包含以下知识点: 1. 文件名称中的“量产工具”代表了该软件的用途,即它是一个用于大规模复制固件到特定型号设备上的工具。 2. 版本号“1.0.5.0”标识了软件的当前版本。版本号通常由四个部分组成:主版本号、次版本号、修订号和编译号,这些数字提供了软件更新迭代的信息,便于用户和开发者追踪软件的更新历史和维护状态。 3. “20081201”很可能是该工具发布的日期,表明这是2008年12月1日发布的版本。了解发布日期对于选择合适版本的工具至关重要,因为不同日期的版本可能针对不同的硬件或固件版本进行了优化。 在IT行业中,固件量产工具的使用需要一定的专业知识,包括对目标硬件的了解、固件的管理以及软件工具的操作。在进行量产操作时,还需注意数据备份、设备兼容性、固件版本控制、升级过程中的稳定性与安全性等因素。 综上所述,提供的文件信息描述了一个特定于MW6208E和8208型号的固件量产工具。该工具是用于设备生产过程中批量烧录固件的重要软件资源,具有版本标识和发布日期,能够帮助专业人士快速有效地进行固件更新或初始化生产过程。对于从事该领域工作的技术人员或生产制造商而言,了解和掌握量产工具的使用是必要的技能之一。
recommend-type

【故障恢复策略】:RK3588与NVMe固态硬盘的容灾方案指南

# 1. RK3588处理器与NVMe固态硬盘的概述 ## 1.1 RK3588处理器简介 RK3588是Rockchip推出的一款高端处理器,具备强大的性能和多样的功能,集成了八核CPU和六核GPU,以及专用的AI处理单元,主要用于高端移动设备、边缘计算和
recommend-type

<dependency> <groupId>com.google.code.ksoap2</groupId> <artifactId>ksoap2-j2se-core</artifactId> <version>3.6.2</version> </dependency> <repositories> <repository> <id>central</id> <name>Maven Central</name> <url>https://repo.maven.apache.org/maven2</url> </repository> <repository> <id>aliyun</id> <name>Aliyun Maven</name> <url>https://maven.aliyun.com/repository/public</url> </repository> </repositories> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>3.11.0</version> <!-- 添加版本号 --> <!-- 原有配置保持不变 --> </plugin> 把上面的代码整合进下面的代码中 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>jdwlw</groupId> <artifactId>jdwlw</artifactId> <version>0.0.1-SNAPSHOT</version> <packaging>war</packaging> <name>maven Maven Webapp</name> <url>http://maven.apache.org</url> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> </properties> <dependencies> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>3.8.1</version> <scope>test</scope> </dependency> <!-- <dependency> <groupId>javax.servlet</groupId> <artifactId>javax.servlet-api</artifactId> <version>3.1.0</version> </dependency> --> <dependency> <groupId>javax.servlet</groupId> <artifactId>servlet-api</artifactId> <version>2.5</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-webmvc</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-context</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-core</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-beans</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-aop</artifactId> <version>4.1.6.RELEASE</version> </dependency> <!-- https://mvnrepository.com/artifact/org.ksoap2/ksoap2 --> <dependency> <groupId>org.ksoap2</groupId> <artifactId>ksoap2</artifactId> <version>2.1.2</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-jdbc</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-web</artifactId> <version>4.1.6.RELEASE</version> </dependency> <!-- <dependency> <groupId>org.springframework</groupId> <artifactId>spring-orm</artifactId> <version>4.1.6.RELEASE</version> </dependency> --> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-orm</artifactId> <version>3.2.13.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-context-support</artifactId> <version>3.2.2.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-webmvc-portlet</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-expression</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-aspects</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-websocket</artifactId> <version>4.1.6.RELEASE</version> </dependency> <dependency> <groupId>quartz</groupId> <artifactId>quartz</artifactId> <version>1.5.2</version> </dependency> <dependency> <groupId>org.apache.ibatis</groupId> <artifactId>ibatis-sqlmap</artifactId> <version>2.3.4.726</version> </dependency> <!-- <dependency>--> <!-- <groupId>com.ibatis</groupId>--> <!-- <artifactId>ibatis2-sqlmap</artifactId>--> <!-- <version>2.1.7.597</version>--> <!-- </dependency>--> <dependency> <groupId>log4j</groupId> <artifactId>log4j</artifactId> <version>1.2.17</version> </dependency> <dependency> <groupId>commons-io</groupId> <artifactId>commons-io</artifactId> <version>2.4</version> </dependency> <dependency> <groupId>commons-logging</groupId> <artifactId>commons-logging</artifactId> <version>1.2</version> </dependency> <dependency> <groupId>commons-lang</groupId> <artifactId>commons-lang</artifactId> <version>2.6</version> </dependency> <dependency> <groupId>commons-dbcp</groupId> <artifactId>commons-dbcp</artifactId> <version>1.4</version> </dependency> <dependency> <groupId>commons-pool</groupId> <artifactId>commons-pool</artifactId> <version>1.6</version> </dependency> <dependency> <groupId>commons-fileupload</groupId> <artifactId>commons-fileupload</artifactId> <version>1.3.1</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>5.1.35</version> </dependency> <dependency> <groupId>com.belerweb</groupId> <artifactId>pinyin4j</artifactId> <version>2.5.0</version> </dependency> <dependency> <groupId>jstl</groupId> <artifactId>jstl</artifactId> <version>1.2</version> </dependency> <dependency> <groupId>com.google.code.gson</groupId> <artifactId>gson</artifactId> <version>2.5</version> </dependency> <dependency> <groupId>org.apache.httpcomponents</groupId> <artifactId>httpclient</artifactId> <version>4.4.1</version> </dependency> <dependency> <groupId>javax.mail</groupId> <artifactId>mail</artifactId> <version>1.5.0-b01</version> </dependency> <!-- 激光消息推送Starts --> <dependency> <groupId>cn.jpush.api</groupId> <artifactId>jpush-client</artifactId> <version>3.1.3</version> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-api</artifactId> <version>1.7.5</version> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> <version>1.7.5</version> </dependency> <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>17.0</version> </dependency> <dependency> <groupId>com.squareup.okhttp</groupId> <artifactId>mockwebserver</artifactId> <version>1.5.4</version> <scope>test</scope> </dependency> <!-- 激光消息推送END --> <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi</artifactId> <version>3.11</version> </dependency> <dependency> <groupId>net.sf.ehcache</groupId> <artifactId>ehcache</artifactId> <version>2.10.0</version> </dependency> <dependency> <groupId>javax.servlet.jsp</groupId> <artifactId>jsp-api</artifactId> <version>2.2</version> </dependency> <dependency> <groupId>com.lowagie</groupId> <artifactId>itext</artifactId> <version>2.1.7</version> </dependency> <!-- https://mvnrepository.com/artifact/commons-net/commons-net --> <dependency> <groupId>commons-net</groupId> <artifactId>commons-net</artifactId> <version>3.3</version> </dependency> <!-- https://mvnrepository.com/artifact/com.mchange/c3p0 --> <dependency> <groupId>com.mchange</groupId> <artifactId>c3p0</artifactId> <version>0.9.5.2</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.ws.commons.axiom/axiom-api --> <dependency> <groupId>org.apache.ws.commons.axiom</groupId> <artifactId>axiom-api</artifactId> <version>1.2.13</version> </dependency> <!-- https://mvnrepository.com/artifact/dom4j/dom4j --> <dependency> <groupId>dom4j</groupId> <artifactId>dom4j</artifactId> <version>1.6.1</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.axis/axis --> <dependency> <groupId>org.apache.axis</groupId> <artifactId>axis</artifactId> <version>1.4</version> </dependency> <!-- https://mvnrepository.com/artifact/javax.xml.rpc/javax.xml.rpc-api --> <dependency> <groupId>javax.xml.rpc</groupId> <artifactId>javax.xml.rpc-api</artifactId> <version>1.1.1</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.axis2/axis2 --> <dependency> <groupId>org.apache.axis2</groupId> <artifactId>axis2</artifactId> <version>1.7.6</version> <type>pom</type> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.axis2/axis2-adb --> <dependency> <groupId>org.apache.axis2</groupId> <artifactId>axis2-adb</artifactId> <version>1.7.6</version> </dependency> <!-- https://mvnrepository.com/artifact/soap/soap --> <dependency> <groupId>soap</groupId> <artifactId>soap</artifactId> <version>2.3</version> </dependency> <!-- https://mvnrepository.com/artifact/commons-httpclient/commons-httpclient --> <dependency> <groupId>commons-httpclient</groupId> <artifactId>commons-httpclient</artifactId> <version>3.1</version> </dependency> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-databind</artifactId> <version>2.9.10.4</version> </dependency> <dependency> <groupId>org.eclipse.paho</groupId> <artifactId>org.eclipse.paho.client.mqttv3</artifactId> <version>1.2.0</version> </dependency> <dependency> <groupId>cn.hutool</groupId> <artifactId>hutool-all</artifactId> <version>5.7.2</version> </dependency> </dependencies> <build> <finalName>jdwlw</finalName> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>1.8</source> <target>1.8</target> <encoding>utf-8</encoding> <compilerArguments> <extdirs>${project.basedir}/src/main/webapp/WEB-INF/lib</extdirs> </compilerArguments> </configuration> </plugin> </plugins> <resources> <resource> <directory>src/main/resources</directory> <includes> <include>**/*.properties</include> <include>**/*.xml</include> </includes> <filtering>false</filtering> </resource> <resource> <directory>src/main/java</directory> <includes> <include>**/*.properties</include> <include>**/*.xml</include> </includes> <filtering>false</filtering> </resource> </resources> </build> </project>

<think>我们需要整合三个部分:1.将ksoap2依赖从`org.ksoap2:ksoap2:2.1.2`替换为`com.google.code.ksoap2:ksoap2-j2se-core:3.6.2`2.添加仓库配置(repositories)3.为maven-compiler-plugin添加版本号注意:原POM中已经有一个repositories配置,但为了清晰,我们将使用提供的两个仓库(central和aliyun)替换原有的repositories配置。步骤:1.在<properties>下面添加<repositories>节点,包含central和aliyun两个仓库。2.