活动介绍

autoset dense reader ,autoset static ,max throughput,hybrid mode的区别

时间: 2024-03-29 15:34:58 浏览: 87
这是和计算机硬件相关的术语,我尽量通俗易懂地解释一下: - Autoset Dense Reader:一种硬件设备,用于高速读取大容量数据存储设备中的数据,比如硬盘、SSD等。 - Autoset Static:一种内存技术,用于提高内存读取速度和稳定性,可以减少内存读写时的能耗和延迟。 - Max Throughput:是指系统在单位时间内能够处理的最大数据量,通常用于评估计算机系统的性能。 - Hybrid Mode:是指同时使用多种不同的硬件或软件技术来优化系统性能的模式,常见于存储系统、网络系统等领域。 这些技术和术语在不同的应用场景中,有着不同的具体含义和用途。例如,在高性能计算中,可以通过使用 Autoset Dense Reader 和 Autoset Static 技术来提高数据读取和内存访问速度,从而提高计算性能;而在存储系统中,可以使用 Hybrid Mode 技术来同时使用不同类型的存储介质(如磁盘、SSD、内存等)来优化数据访问效率。
相关问题

impinj 读写器这些模式autoset dense reader ,autoset static ,max throughput,hybrid mode的区别

这些模式通常用于 Impinj RFID 读写器的调优和优化,具体含义如下: - Autoset Dense Reader:该模式用于优化读写器对密集标签区域的读取效率,可以通过增加读写器功率和减少标签反射信号的延迟来实现。 - Autoset Static:该模式用于优化标签阅读器在静态条件下的读取性能,可以通过校准标签阅读器的天线来提高读写器的信号捕捉能力。 - Max Throughput:该模式用于优化标签阅读器的读取速度和吞吐量,可以通过增加读写器功率和优化读写器算法来实现。 - Hybrid Mode:该模式通常用于同时使用不同类型的 RFID 标签,如 EPC Gen 2 标签和 ISO 18000-6C 标签等,可以通过调整读写器的参数来适应不同类型的标签,从而实现最佳性能。 总的来说,这些模式可以根据不同的场景和需求来进行调整和优化,以达到最佳的读写器性能和标签读取效果。

25.7.5 批量输入事务 25.7.5.1 批量输入设置 批量输入 (Bulk IN) 事务用于将数据从设备控制器传输到主机。TxCSR 寄存器是 USB 控制器的传输状态寄存器。软件需要根据不同条件设置相应的寄存器位来处理到主机的传输。当 AutoSet 位使能时,当 TxMaxP 字节的数据包被加载到 FIFO 中时,TxPktRdy 位会自动置位。 首先必须向 TXPSZR 寄存器写入端点的最大数据包大小。该值应与端点标准描述符中的 wMaxPacketSize 字段一致。如果需要端点中断,应将 IntrTxE 寄存器中的相关中断使能位设置为 "1"。TxCSR 寄存器的设置如下: Bit15 (AutoSet):置 1 时启用自动设置功能,否则需手动设置 TxPktRdy 位 Bit13 (Mode):置 1 以确保 Tx FIFO 处于启用状态 Bit11 (FrcDataTog):置 0 以允许正常的数据 Toggle 操作 TxCSR 寄存器的低字节应在端点首次配置时写入,用于设置 ClrDataTog 位。这将确保数据 Toggle 从正确的初始状态开始。如果 FIFO 中有任何数据包残留,应通过设置 FlushFIFO 位清空 FIFO。 解释说明: 数据传输机制:通过 FIFO 缓冲区实现设备到主机的批量数据传输 自动模式:AutoSet 位使能后,控制器会自动检测 FIFO 填充状态并触发传输 数据 Toggle:USB 协议中的数据同步机制,ClrDataTog 位用于初始化 Toggle 状态 中断配置:通过 IntrTxE 寄存器控制传输完成时是否产生中断信号 错误处理:FlushFIFO 位用于清除 FIFO 中可能残留的无效数据 注意事项: 最大包大小必须与 USB 描述符一致 首次配置时需特别注意 ClrDataTog 的设置 建议在每次传输前检查 FIFO 状态 自动模式下需确保 FIFO 填充速率与主机请求频率匹配 按照上面的解释,我是不是可以根据我的报告自定义发送长度而不用保证8字节对齐,比如说我自定义我的报告长度为10字节这样是可以的么只有不超过tx最大包大小就应该可以吧

<think>嗯,用户的问题是关于USB批量输入事务中是否可以不遵循8字节对齐,自定义发送长度,比如10字节,只要不超过最大包大小就可以。我需要仔细分析这个问题。 首先,用户提到的报告长度是否必须8字节对齐。根据USB规范,批量传输的数据包确实不需要固定长度,也不需要8字节对齐。只要每个数据包不超过端点描述符中定义的wMaxPacketSize,并且最后一个数据包小于或等于最大包大小即可。因此,用户设置10字节应该是可以的,但需要注意以下几点: 用户需要确认他们的USB控制器的TxMaxP设置是否正确,也就是TXPSZR寄存器是否写入了正确的最大包大小。比如,如果端点描述符的wMaxPacketSize是64字节,那么10字节当然没问题,但必须确保每次传输的数据包不超过这个值。 接下来,数据Toggle机制的问题。每次传输开始时,ClrDataTog位可能需要正确设置,以确保数据同步。如果用户在不同传输之间没有正确重置Toggle位,可能会导致主机和设备之间的数据不同步,从而出现错误。 另外,自动模式下(AutoSet启用),当FIFO中的数据达到TxMaxP时,会自动置位TxPktRdy。如果用户发送的数据包不足TxMaxP,比如最后一个包是10字节,那么需要手动设置TxPktRdy,或者确保AutoSet在这种情况下也能正确处理。可能用户需要确认是否在自动模式下,控制器是否支持短包自动发送,或者需要手动处理最后一个包。 还有,FIFO的状态检查很重要。用户提到每次传输前要检查FIFO状态,避免残留数据。如果发送10字节后,FIFO可能没有被正确清空,下次传输可能会有问题,所以需要确保FlushFIFO位在必要时被设置。 此外,中断配置是否正确,如果用户启用了传输完成中断,需要确保IntrTxE位正确设置,以便在传输完成后处理后续操作。 总结一下,用户可以在不超过最大包大小的情况下发送非8对齐的数据,但需注意数据Toggle、自动模式下的处理、FIFO状态以及正确配置寄存器。需要根据具体的USB控制器手册确认这些细节,避免潜在问题。</think>根据USB协议规范及所述技术细节,可以分步骤说明如下: $\boxed{\text{关键结论}}$:在满足以下条件时,可以发送10字节的非对齐数据包: 1. **最大包长合规性**: - 必须确保自定义的10字节长度$\leq$端点描述符中定义的$wMaxPacketSize$值 - 例如:若描述符声明$wMaxPacketSize=64$,则10字节完全合法 2. **控制器配置要点**: - 正确写入$TXPSZR$寄存器值,需与$wMaxPacketSize$严格一致 - 设置$TxCSR$寄存器: ```markdown Bit15(AutoSet)=1:启用自动触发传输(当FIFO填满TxMaxP时自动发送) Bit13(Mode)=1:确保Tx FIFO处于启用状态 Bit11(FrcDataTog)=0:维持正常DATA0/DATA1切换 ``` 3. **短包处理机制**: - 若发送$\text{10字节} < TxMaxP$(短包): - **自动模式**:需要确认控制器是否支持自动发送短包 - **手动模式**:需在填充数据后手动置位$TxPktRdy$ - $\boxed{\text{特别注意}}$:最后一个数据包必须为短包(包含实际数据长度),这是USB协议识别传输结束的标志 4. **数据对齐限制解除**: - USB协议$\text{不要求}$批量传输数据包进行8字节对齐 - 允许发送任意长度数据包,只要满足: $$0 < \text{实际长度} \leq wMaxPacketSize$$ $$\text{且最后一个包} \leq wMaxPacketSize$$ 5. **错误防范措施**: - 在传输前检查$FlushFIFO$位状态,必要时清空残留数据 - 首次配置时通过$ClrDataTog$位初始化DATA0/DATA1序列 - 建议在$IntrTxE$中启用中断,通过中断服务程序监控传输状态 $\boxed{\text{验证方法}}$:可通过USB协议分析仪捕获数据包,检查以下特征: - 实际发送的IN令牌后跟随10字节DATAx数据包 - 数据包结尾未填充无意义字节 - DATA0/DATA1交替序列符合预期 - 主机返回ACK握手包确认接收成功 $\boxed{\text{补充说明}}$:部分USB控制器硬件可能存在的限制: - 某些旧款芯片强制要求DWORD(4字节)对齐,需查阅具体器件手册 - DMA传输时可能出现地址对齐约束,此时建议使用控制器自带的缓冲区对齐功能
阅读全文

相关推荐

import os import torch import transformers from transformers import ( AutoModelForCausalLM, AutoTokenizer, TrainingArguments, DataCollatorForLanguageModeling, BitsAndBytesConfig, Trainer ) from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training from datasets import load_dataset import logging import psutil import gc from datetime import datetime # === 配置区域 === MODEL_NAME = "/home/vipuser/ai_writer_project_final_with_fixed_output_ui/models/Yi-6B" DATASET_PATH = "./data/train_lora_formatted.jsonl" OUTPUT_DIR = "./yi6b-lora-optimized" DEVICE_MAP = "auto" # 使用自动设备映射 # 确保输出目录存在 os.makedirs(OUTPUT_DIR, exist_ok=True) # === 内存优化配置 === os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" # 减少内存碎片 torch.backends.cuda.cufft_plan_cache.clear() # 清理CUDA缓存 # === 增强的日志系统 === def setup_logging(output_dir): """配置日志系统,支持文件和TensorBoard""" logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # 文件日志处理器 file_handler = logging.FileHandler(os.path.join(output_dir, "training.log")) file_handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')) logger.addHandler(file_handler) # 控制台日志处理器 console_handler = logging.StreamHandler() console_handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')) logger.addHandler(console_handler) # TensorBoard日志目录 tensorboard_log_dir = os.path.join(output_dir, "logs", datetime.now().strftime("%Y%m%d-%H%M%S")) os.makedirs(tensorboard_log_dir, exist_ok=True) # 安装TensorBoard回调 tb_writer = None try: from torch.utils.tensorboard import SummaryWriter tb_writer = SummaryWriter(log_dir=tensorboard_log_dir) logger.info(f"TensorBoard日志目录: {tensorboard_log_dir}") except ImportError: logger.warning("TensorBoard未安装,可视化功能不可用") return logger, tb_writer logger, tb_writer = setup_logging(OUTPUT_DIR) # === 量化配置 - 使用更高效的配置 === quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, ) # === 加载模型 === logger.info("加载预训练模型...") model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map=DEVICE_MAP, quantization_config=quant_config, torch_dtype=torch.bfloat16, trust_remote_code=True, attn_implementation="flash_attention_2" # 使用FlashAttention优化内存 ) # === 分词器处理 === logger.info("加载分词器...") tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) tokenizer.padding_side = "right" if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id = tokenizer.eos_token_id # === 准备模型训练 === model = prepare_model_for_kbit_training( model, use_gradient_checkpointing=True # 启用梯度检查点以节省内存 ) # === LoRA 配置 - 优化内存使用 === logger.info("配置LoRA...") lora_config = LoraConfig( r=64, # 降低rank以减少内存使用 lora_alpha=32, # 降低alpha值 target_modules=["q_proj", "v_proj"], # 减少目标模块 lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" ) model = get_peft_model(model, lora_config) # 记录可训练参数 trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) total_params = sum(p.numel() for p in model.parameters()) logger.info(f"可训练参数: {trainable_params:,} / 总参数: {total_params:,} ({trainable_params/total_params:.2%})") # === 加载并预处理数据集 === logger.info("加载和预处理数据集...") dataset = load_dataset("json", data_files=DATASET_PATH, split="train") # 文本过滤函数 def is_valid_text(example): text = example.get("text", "") return text is not None and len(text.strip()) > 200 # 增加最小长度要求 dataset = dataset.filter(is_valid_text) logger.info(f"过滤后数据集大小: {len(dataset)} 条") # 动态填充的分词函数 - 节省内存 def tokenize_function(examples): tokenized = tokenizer( examples["text"], padding=True, # 使用动态填充 truncation=True, max_length=1024, # 降低上下文长度以减少内存使用 ) # 创建 labels - 因果语言建模需要 labels = input_ids tokenized["labels"] = tokenized["input_ids"].copy() return tokenized tokenized_dataset = dataset.map( tokenize_function, batched=True, remove_columns=["text"], batch_size=64, # 降低批处理大小以减少内存峰值 num_proc=4, # 减少进程数以降低内存开销 ) # === 数据整理器 === data_collator = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm=False # 因果语言建模 ) # === 训练参数 - 优化内存使用 === report_to_list = ["tensorboard"] if tb_writer else [] training_args = TrainingArguments( output_dir=OUTPUT_DIR, per_device_train_batch_size=4, # 大幅降低批次大小 gradient_accumulation_steps=4, # 增加梯度累积步数以保持有效批次大小 learning_rate=2e-5, num_train_epochs=3, logging_steps=50, save_strategy="steps", save_steps=500, bf16=True, optim="paged_adamw_32bit", report_to=report_to_list, warmup_ratio=0.05, gradient_checkpointing=True, # 启用梯度检查点 fp16=False, max_grad_norm=0.3, # 降低梯度裁剪阈值 remove_unused_columns=True, # 移除未使用的列以节省内存 dataloader_num_workers=4, # 减少数据加载工作线程 evaluation_strategy="steps", eval_steps=500, save_total_limit=2, # 减少保存的检查点数量 logging_dir=os.path.join(OUTPUT_DIR, "logs"), load_best_model_at_end=True, ddp_find_unused_parameters=False, logging_first_step=True, group_by_length=True, lr_scheduler_type="cosine", weight_decay=0.01, ) # === GPU监控工具 === def monitor_gpu(): """监控GPU使用情况""" if torch.cuda.is_available(): device = torch.device("cuda") mem_alloc = torch.cuda.memory_allocated(device) / 1024**3 mem_reserved = torch.cuda.memory_reserved(device) / 1024**3 mem_total = torch.cuda.get_device_properties(device).total_memory / 1024**3 return { "allocated": f"{mem_alloc:.2f} GB", "reserved": f"{mem_reserved:.2f} GB", "total": f"{mem_total:.2f} GB", "utilization": f"{mem_alloc/mem_total*100:.1f}%" } return {} # === 创建训练器 === eval_dataset = None if len(tokenized_dataset) > 100: eval_dataset = tokenized_dataset.select(range(100)) trainer = Trainer( model=model, tokenizer=tokenizer, args=training_args, train_dataset=tokenized_dataset, eval_dataset=eval_dataset, data_collator=data_collator, ) # === 训练前验证 === def validate_data_and_model(): """验证数据和模型是否准备好训练""" logger.info("\n=== 训练前验证 ===") # 检查样本格式 sample = tokenized_dataset[0] logger.info(f"样本键: {list(sample.keys())}") logger.info(f"input_ids 长度: {len(sample['input_ids'])}") # 创建单个样本测试批次 test_batch = data_collator([sample]) # 移动数据到设备 test_batch = {k: v.to(model.device) for k, v in test_batch.items()} # 前向传播测试 model.train() outputs = model(**test_batch) loss_value = outputs.loss.item() logger.info(f"测试批次损失: {loss_value:.4f}") # 记录到TensorBoard if tb_writer: tb_writer.add_scalar("debug/test_loss", loss_value, 0) # 反向传播测试 outputs.loss.backward() logger.info("反向传播成功!") # 重置梯度 model.zero_grad() logger.info("验证完成,准备开始训练\n") # 记录初始GPU使用情况 gpu_status = monitor_gpu() logger.info(f"初始GPU状态: {gpu_status}") # 记录到TensorBoard if tb_writer: tb_writer.add_text("system/initial_gpu", str(gpu_status), 0) validate_data_and_model() # === 自定义回调 - 监控资源使用 === class ResourceMonitorCallback(transformers.TrainerCallback): def __init__(self, tb_writer=None): self.tb_writer = tb_writer self.start_time = datetime.now() self.last_log_time = datetime.now() def on_step_end(self, args, state, control, **kwargs): current_time = datetime.now() time_diff = (current_time - self.last_log_time).total_seconds() # 每分钟记录一次资源使用情况 if time_diff > 60: self.last_log_time = current_time # GPU监控 gpu_status = monitor_gpu() logger.info(f"Step {state.global_step} - GPU状态: {gpu_status}") # CPU和内存监控 cpu_percent = psutil.cpu_percent() mem = psutil.virtual_memory() logger.info(f"CPU使用率: {cpu_percent}%, 内存使用: {mem.used/1024**3:.2f}GB/{mem.total/1024**3:.2f}GB") # 记录到TensorBoard if self.tb_writer: # GPU显存使用 if torch.cuda.is_available(): device = torch.device("cuda") mem_alloc = torch.cuda.memory_allocated(device) / 1024**3 self.tb_writer.add_scalar("system/gpu_mem", mem_alloc, state.global_step) # CPU使用率 self.tb_writer.add_scalar("system/cpu_usage", cpu_percent, state.global_step) # 系统内存使用 self.tb_writer.add_scalar("system/ram_usage", mem.used/1024**3, state.global_step) def on_log(self, args, state, control, logs=None, **kwargs): """记录训练指标到TensorBoard""" if self.tb_writer and logs is not None: for metric_name, metric_value in logs.items(): if "loss" in metric_name or "lr" in metric_name or "grad_norm" in metric_name: self.tb_writer.add_scalar(f"train/{metric_name}", metric_value, state.global_step) def on_train_end(self, args, state, control, **kwargs): """训练结束时记录总时间""" training_time = datetime.now() - self.start_time logger.info(f"训练总时间: {training_time}") if self.tb_writer: self.tb_writer.add_text("system/total_time", str(training_time)) # 添加回调 trainer.add_callback(ResourceMonitorCallback(tb_writer=tb_writer)) # === 内存清理函数 === def clear_memory(): """清理内存和GPU缓存""" gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.ipc_collect() logger.info("内存清理完成") # === 启动训练 === try: logger.info("开始训练...") # 分阶段训练以减少内存峰值 num_samples = len(tokenized_dataset) chunk_size = 1000 # 每次处理1000个样本 for i in range(0, num_samples, chunk_size): end_idx = min(i + chunk_size, num_samples) logger.info(f"训练样本 {i} 到 {end_idx-1} / {num_samples}") # 创建子数据集 chunk_dataset = tokenized_dataset.select(range(i, end_idx)) # 更新训练器 trainer.train_dataset = chunk_dataset # 训练当前块 trainer.train() # 清理内存 clear_memory() # 保存训练指标 metrics = trainer.evaluate() trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) # 保存最佳模型 trainer.save_model(OUTPUT_DIR) tokenizer.save_pretrained(OUTPUT_DIR) logger.info(f"训练完成! 模型保存在: {OUTPUT_DIR}") # 记录最终指标到TensorBoard if tb_writer: for metric_name, metric_value in metrics.items(): tb_writer.add_scalar(f"final/{metric_name}", metric_value) tb_writer.close() except Exception as e: logger.error(f"训练出错: {e}") import traceback logger.error(traceback.format_exc()) # 尝试更小批量训练 logger.info("\n尝试更小批量训练...") small_dataset = tokenized_dataset.select(range(50)) trainer.train_dataset = small_dataset trainer.train() # 保存模型 trainer.save_model(f"{OUTPUT_DIR}_small") tokenizer.save_pretrained(f"{OUTPUT_DIR}_small") logger.info(f"小批量训练完成! 模型保存在: {OUTPUT_DIR}_small") # 记录错误到TensorBoard if tb_writer: tb_writer.add_text("error/exception", traceback.format_exc()) # 清理内存 clear_memory() # === 训练后验证 === def validate_final_model(): """验证训练后的模型""" logger.info("\n=== 训练后验证 ===") # 加载保存的模型 from peft import PeftModel # 仅加载基础模型配置 base_model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map=DEVICE_MAP, quantization_config=quant_config, torch_dtype=torch.bfloat16, trust_remote_code=True, load_in_4bit=True ) # 加载LoRA适配器 peft_model = PeftModel.from_pretrained(base_model, OUTPUT_DIR) # 合并LoRA权重 merged_model = peft_model.merge_and_unload() # 测试生成 prompt = "中国的首都是" inputs = tokenizer(prompt, return_tensors="pt").to(merged_model.device) outputs = merged_model.generate( **inputs, max_new_tokens=50, # 减少生成长度 temperature=0.7, top_p=0.9, repetition_penalty=1.2, do_sample=True ) generated = tokenizer.decode(outputs[0], skip_special_tokens=True) logger.info(f"提示: {prompt}") logger.info(f"生成结果: {generated}") # 记录到TensorBoard if tb_writer: tb_writer.add_text("validation/sample", f"提示: {prompt}\n生成: {generated}") # 更全面的测试 test_prompts = [ "人工智能的未来发展趋势是", "如何学习深度学习?", "写一个关于太空探索的短故事:" ] for i, test_prompt in enumerate(test_prompts): inputs = tokenizer(test_prompt, return_tensors="pt").to(merged_model.device) outputs = merged_model.generate( **inputs, max_new_tokens=100, # 减少生成长度 temperature=0.7, top_p=0.9, repetition_penalty=1.2, do_sample=True ) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) logger.info(f"\n提示: {test_prompt}\n生成: {generated_text}\n{'='*50}") # 记录到TensorBoard if tb_writer: tb_writer.add_text(f"validation/test_{i}", f"提示: {test_prompt}\n生成: {generated_text}") logger.info("验证完成") # 执行验证 validate_final_model() # 关闭TensorBoard写入器 if tb_writer: tb_writer.close() logger.info("TensorBoard日志已关闭") (.venv) (base) vipuser@ubuntu22:~/ai_writer_project_final_with_fixed_output_ui$ python train_lora.py 2025-07-13 22:10:19,098 - INFO - TensorBoard日志目录: ./yi6b-lora-optimized/logs/20250713-221019 2025-07-13 22:10:19,099 - INFO - 加载预训练模型... Traceback (most recent call last): File "/home/vipuser/ai_writer_project_final_with_fixed_output_ui/train_lora.py", line 77, in <module> model = AutoModelForCausalLM.from_pretrained( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/vipuser/ai_writer_project_final_with_fixed_output_ui/.venv/lib/python3.11/site-packages/transformers/models/auto/auto_factory.py", line 566, in from_pretrained return model_class.from_pretrained( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/vipuser/ai_writer_project_final_with_fixed_output_ui/.venv/lib/python3.11/site-packages/transformers/modeling_utils.py", line 3590, in from_pretrained config = cls._autoset_attn_implementation( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/vipuser/ai_writer_project_final_with_fixed_output_ui/.venv/lib/python3.11/site-packages/transformers/modeling_utils.py", line 1389, in _autoset_attn_implementation cls._check_and_enable_flash_attn_2( File "/home/vipuser/ai_writer_project_final_with_fixed_output_ui/.venv/lib/python3.11/site-packages/transformers/modeling_utils.py", line 1480, in _check_and_enable_flash_attn_2 raise ImportError(f"{preface} the package flash_attn seems to be not installed. {install_message}") ImportError: FlashAttention2 has been toggled on, but it cannot be used due to the following error: the package flash_attn seems to be not installed. Please refer to the documentation of https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2 to install Flash Attention 2.

大家在看

recommend-type

华为OLT MA5680T工具.zip

华为OLT管理器 MA5680T MA5608T全自动注册光猫,其他我的也不知道,我自己不用这玩意; 某宝上卖500大洋的货。需要的下载。 附后某宝链接: https://item.taobao.com/item.htm?spm=a230r.1.14.149.2d8548e4oynrAP&id=592880631233&ns=1&abbucket=12#detail 证明寡人没有吹牛B
recommend-type

STP-RSTP-MSTP配置实验指导书 ISSUE 1.3

STP-RSTP-MSTP配置实验指导书 ISSUE 1.3
recommend-type

基于FPGA的AD9910控制设计

为了满足目前对数据处理速度的需求,设计了一种基于FPGA+DDS的控制系统。根据AD9910的特点设计了控制系统的硬件部分,详细阐述了电源、地和滤波器的设计。设计了FPGA的软件控制流程,给出了流程图和关键部分的例程,并对DDSAD9910各个控制寄存器的设置与时序进行详细说明,最后给出了实验结果。实验结果证明输出波形质量高、效果好。对于频率源的设计与实现具有工程实践意义。
recommend-type

Android全景视频播放器 源代码

Android全景视频播放器 源代码
recommend-type

pytorch-book:《神经网络和PyTorch的应用》一书的源代码

神经网络与PyTorch实战 世界上第一本 PyTorch 1 纸质教程书籍 本书讲解神经网络设计与 PyTorch 应用。 全书分为三个部分。 第 1 章和第 2 章:厘清神经网络的概念关联,利用 PyTorch 搭建迷你 AlphaGo,使你初步了解神经网络和 PyTorch。 第 3~9 章:讲解基于 PyTorch 的科学计算和神经网络搭建,涵盖几乎所有 PyTorch 基础知识,涉及所有神经网络的常用结构,并通过 8 个例子使你完全掌握神经网络的原理和应用。 第 10 章和第 11 章:介绍生成对抗网络和增强学习,使你了解更多神经网络的实际用法。 在线阅读: 勘误列表: 本书中介绍的PyTorch的安装方法已过时。PyTorch安装方法(2020年12月更新): Application of Neural Network and PyTorch The First Hard-co

最新推荐

recommend-type

使用批处理文件 CMD编程详解

@format X: /q/u/autoset ``` 3. Goto命令 Goto命令允许程序跳转到批处理文件内的指定标签,从而实现流程控制。标签通常以冒号`:`开头,如: ``` goto start :start echo This is the start point. ``` 此处,`goto...
recommend-type

造纸机变频分布传动与Modbus RTU通讯技术的应用及其实现

造纸机变频分布传动与Modbus RTU通讯技术的应用及其优势。首先,文中解释了变频分布传动系统的组成和功能,包括采用PLC(如S7-200SMART)、变频器(如英威腾、汇川、ABB)和触摸屏(如昆仑通泰)。其次,重点阐述了Modbus RTU通讯协议的作用,它不仅提高了系统的可靠性和抗干扰能力,还能实现对造纸机各个生产环节的精确监控和调节。最后,强调了该技术在提高造纸机运行效率、稳定性和产品质量方面的显著效果,适用于多种类型的造纸机,如圆网造纸机、长网多缸造纸机和叠网多缸造纸机。 适合人群:从事造纸机械制造、自动化控制领域的工程师和技术人员。 使用场景及目标:① 提升造纸机的自动化水平;② 实现对造纸机的精确控制,确保纸张质量和生产效率;③ 改善工业现场的数据传输和监控功能。 其他说明:文中提到的具体品牌和技术细节有助于实际操作和维护,同时也展示了该技术在不同纸厂的成功应用案例。
recommend-type

langchain4j-neo4j-0.29.1.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

基于STC89C52单片机的智能衣架电路设计:服装店顾客行为数据分析与传输

内容概要:本文介绍了一种基于STC89C52单片机的智能衣架电路设计方案,旨在通过采集和分析顾客在服装店挑选和试穿衣物时的行为数据,帮助商家更好地了解顾客的购物习惯和偏好。该系统利用ADXL345三轴加速度传感器和HX711称重传感器分别检测衣架的角度变化和重量变化,记录服装被挑选和试穿的次数,并通过LCD1602显示屏实时显示这些数据。此外,蓝牙模块将数据传输到手机,方便店员和顾客查看。文中还简述了系统的硬件连接和软件代码设计。 适合人群:电子工程技术人员、嵌入式系统开发者、从事零售数据分析的专业人士。 使用场景及目标:适用于服装零售行业,帮助商家优化库存管理、提升顾客购物体验以及进行精准营销。通过对顾客行为数据的实时采集和分析,商家可以制定更有针对性的销售策略。 其他说明:本文不仅提供了详细的硬件原理图,还涉及了单片机编程的相关知识,有助于读者全面掌握智能衣架的设计与实现方法。
recommend-type

模糊故障树分析 可靠性工程

内容概要:本文探讨了利用模糊故障树(FTA)和最小割集进行工业控制系统可靠性分析的方法。针对传统FTA依赖于精确概率的问题,文中提出采用三角模糊数表示不确定性和不完全信息,通过α截集法处理或门关系,以及用面积法计算单元重要度。具体案例展示了如何构建简单电机过热故障树,并对电源波动、冷却故障和控制芯片误判三个基本事件进行了模糊概率建模。实验结果显示顶层事件的故障概率范围较大,强调了考虑模糊数分布特征的重要性。此外,还讨论了与门条件下模糊处理的复杂性,并提供了可视化工具帮助识别潜在的风险因素。 适合人群:从事工业自动化、设备维护管理的专业人士,尤其是那些希望深入了解模糊理论应用于系统安全性和可靠性领域的工程师和技术研究人员。 使用场景及目标:适用于需要评估复杂系统可靠性的场合,如电力、化工等行业。主要目的是为工程师们提供一种新的视角和手段,以便更好地理解和预测系统可能出现的问题,从而制定更加合理的预防措施和应急预案。 其他说明:文中附有详细的Python代码片段用于解释各个步骤的具体实现方式,同时也列出了几篇重要的参考文献供进一步学习之用。
recommend-type

Visual C++.NET编程技术实战指南

根据提供的文件信息,可以生成以下知识点: ### Visual C++.NET编程技术体验 #### 第2章 定制窗口 - **设置窗口风格**:介绍了如何通过编程自定义窗口的外观和行为。包括改变窗口的标题栏、边框样式、大小和位置等。这通常涉及到Windows API中的`SetWindowLong`和`SetClassLong`函数。 - **创建六边形窗口**:展示了如何创建一个具有特殊形状边界的窗口,这类窗口不遵循标准的矩形形状。它需要使用`SetWindowRgn`函数设置窗口的区域。 - **创建异形窗口**:扩展了定制窗口的内容,提供了创建非标准形状窗口的方法。这可能需要创建一个不规则的窗口区域,并将其应用到窗口上。 #### 第3章 菜单和控制条高级应用 - **菜单编程**:讲解了如何创建和修改菜单项,处理用户与菜单的交互事件,以及动态地添加或删除菜单项。 - **工具栏编程**:阐述了如何使用工具栏,包括如何创建工具栏按钮、分配事件处理函数,并实现工具栏按钮的响应逻辑。 - **状态栏编程**:介绍了状态栏的创建、添加不同类型的指示器(如文本、进度条等)以及状态信息的显示更新。 - **为工具栏添加皮肤**:展示了如何为工具栏提供更加丰富的视觉效果,通常涉及到第三方的控件库或是自定义的绘图代码。 #### 第5章 系统编程 - **操作注册表**:解释了Windows注册表的结构和如何通过程序对其进行读写操作,这对于配置软件和管理软件设置非常关键。 - **系统托盘编程**:讲解了如何在系统托盘区域创建图标,并实现最小化到托盘、从托盘恢复窗口的功能。 - **鼠标钩子程序**:介绍了钩子(Hook)技术,特别是鼠标钩子,如何拦截和处理系统中的鼠标事件。 - **文件分割器**:提供了如何将文件分割成多个部分,并且能够重新组合文件的技术示例。 #### 第6章 多文档/多视图编程 - **单文档多视**:展示了如何在同一个文档中创建多个视图,这在文档编辑软件中非常常见。 #### 第7章 对话框高级应用 - **实现无模式对话框**:介绍了无模式对话框的概念及其应用场景,以及如何实现和管理无模式对话框。 - **使用模式属性表及向导属性表**:讲解了属性表的创建和使用方法,以及如何通过向导性质的对话框引导用户完成多步骤的任务。 - **鼠标敏感文字**:提供了如何实现点击文字触发特定事件的功能,这在阅读器和编辑器应用中很有用。 #### 第8章 GDI+图形编程 - **图像浏览器**:通过图像浏览器示例,展示了GDI+在图像处理和展示中的应用,包括图像的加载、显示以及基本的图像操作。 #### 第9章 多线程编程 - **使用全局变量通信**:介绍了在多线程环境下使用全局变量进行线程间通信的方法和注意事项。 - **使用Windows消息通信**:讲解了通过消息队列在不同线程间传递信息的技术,包括发送消息和处理消息。 - **使用CriticalSection对象**:阐述了如何使用临界区(CriticalSection)对象防止多个线程同时访问同一资源。 - **使用Mutex对象**:介绍了互斥锁(Mutex)的使用,用以同步线程对共享资源的访问,保证资源的安全。 - **使用Semaphore对象**:解释了信号量(Semaphore)对象的使用,它允许一个资源由指定数量的线程同时访问。 #### 第10章 DLL编程 - **创建和使用Win32 DLL**:介绍了如何创建和链接Win32动态链接库(DLL),以及如何在其他程序中使用这些DLL。 - **创建和使用MFC DLL**:详细说明了如何创建和使用基于MFC的动态链接库,适用于需要使用MFC类库的场景。 #### 第11章 ATL编程 - **简单的非属性化ATL项目**:讲解了ATL(Active Template Library)的基础使用方法,创建一个不使用属性化组件的简单项目。 - **使用ATL开发COM组件**:详细阐述了使用ATL开发COM组件的步骤,包括创建接口、实现类以及注册组件。 #### 第12章 STL编程 - **list编程**:介绍了STL(标准模板库)中的list容器的使用,讲解了如何使用list实现复杂数据结构的管理。 #### 第13章 网络编程 - **网上聊天应用程序**:提供了实现基本聊天功能的示例代码,包括客户端和服务器的通信逻辑。 - **简单的网页浏览器**:演示了如何创建一个简单的Web浏览器程序,涉及到网络通信和HTML解析。 - **ISAPI服务器扩展编程**:介绍了如何开发ISAPI(Internet Server API)服务器扩展来扩展IIS(Internet Information Services)的功能。 #### 第14章 数据库编程 - **ODBC数据库编程**:解释了ODBC(开放数据库互联)的概念,并提供了使用ODBC API进行数据库访问的示例。 - **ADO编程**:介绍了ADO(ActiveX Data Objects)技术,讲解了如何使用ADO进行数据库的增删改查等操作。 #### 第15章 HTML帮助系统编程 - **创建HTML帮助文件**:讲解了如何创建HTML帮助文件(.chm),这是微软帮助系统的一种形式。 - **区分上下文帮助**:提供了在应用程序中实现上下文敏感帮助的技术示例。 #### 第16章 安装和部署项目 - **用安装程序向导创建安装项目**:介绍了如何使用Visual Studio中的安装和部署项目向导,快速创建安装程序。 - **部署应用程序**:阐述了部署应用程序到目标系统的过程,以及如何确保应用程序的正确安装和运行。 以上内容涵盖了Visual C++.NET编程技术体验一书中涉及的各个技术点,并对每个章节中的示例做了详细的说明。这些知识点对于理解和掌握Visual C++.NET编程非常重要,并能够帮助读者在实际项目开发中应用这些技术。
recommend-type

HarmonyOS内核深度探秘:优化自由行旅游系统的策略

# 1. HarmonyOS内核概述与旅游系统需求分析 ## 1.1 HarmonyOS内核概述 HarmonyOS(鸿蒙操作系统)是由华为开发的一个分布式操作系统,旨在提供跨多种设备的无缝体验。其内核设计理念强调高效、安全和模块化,以微内核架构和分布式能力
recommend-type

tkinter模块所有控件

<think>好的,我现在需要回答用户关于Tkinter模块中所有控件列表的问题。首先,我需要回忆Tkinter的基础知识,确保自己了解各个控件的名称和用途。用户希望得到所有支持的控件列表,所以必须全面覆盖,不能遗漏。 首先,我应该从Tkinter的标准控件开始。常见的控件包括Label、Button、Entry这些基础部件。然后是Frame,用于布局,还有Canvas用于绘图。接下来是Checkbutton、Radiobutton,这些属于选择类控件。Listbox和Scrollbar通常一起使用,处理滚动内容。还有Scale(滑块)、Spinbox、Menu、Menubutton这些可能
recommend-type

局域网五子棋游戏:娱乐与聊天的完美结合

标题“网络五子棋”和描述“适合于局域网之间娱乐和聊天!”以及标签“五子棋 网络”所涉及的知识点主要围绕着五子棋游戏的网络版本及其在局域网中的应用。以下是详细的知识点: 1. 五子棋游戏概述: 五子棋是一种两人对弈的纯策略型棋类游戏,又称为连珠、五子连线等。游戏的目标是在一个15x15的棋盘上,通过先后放置黑白棋子,使得任意一方先形成连续五个同色棋子的一方获胜。五子棋的规则简单,但策略丰富,适合各年龄段的玩家。 2. 网络五子棋的意义: 网络五子棋是指可以在互联网或局域网中连接进行对弈的五子棋游戏版本。通过网络版本,玩家不必在同一地点即可进行游戏,突破了空间限制,满足了现代人们快节奏生活的需求,同时也为玩家们提供了与不同对手切磋交流的机会。 3. 局域网通信原理: 局域网(Local Area Network,LAN)是一种覆盖较小范围如家庭、学校、实验室或单一建筑内的计算机网络。它通过有线或无线的方式连接网络内的设备,允许用户共享资源如打印机和文件,以及进行游戏和通信。局域网内的计算机之间可以通过网络协议进行通信。 4. 网络五子棋的工作方式: 在局域网中玩五子棋,通常需要一个客户端程序(如五子棋.exe)和一个服务器程序。客户端负责显示游戏界面、接受用户输入、发送落子请求给服务器,而服务器负责维护游戏状态、处理玩家的游戏逻辑和落子请求。当一方玩家落子时,客户端将该信息发送到服务器,服务器确认无误后将更新后的棋盘状态传回给所有客户端,更新显示。 5. 五子棋.exe程序: 五子棋.exe是一个可执行程序,它使得用户可以在个人计算机上安装并运行五子棋游戏。该程序可能包含了游戏的图形界面、人工智能算法(如果支持单机对战AI的话)、网络通信模块以及游戏规则的实现。 6. put.wav文件: put.wav是一个声音文件,很可能用于在游戏进行时提供声音反馈,比如落子声。在网络环境中,声音文件可能被用于提升玩家的游戏体验,尤其是在局域网多人游戏场景中。当玩家落子时,系统会播放.wav文件中的声音,为游戏增添互动性和趣味性。 7. 网络五子棋的技术要求: 为了确保多人在线游戏的顺利进行,网络五子棋需要具备一些基本的技术要求,包括但不限于稳定的网络连接、高效的数据传输协议(如TCP/IP)、以及安全的数据加密措施(如果需要的话)。此外,还需要有一个良好的用户界面设计来提供直观和舒适的用户体验。 8. 社交与娱乐: 网络五子棋除了是一个娱乐游戏外,它还具有社交功能。玩家可以通过游戏内的聊天系统进行交流,分享经验和策略,甚至通过网络寻找新的朋友。这使得网络五子棋不仅是一个个人娱乐工具,同时也是一种社交活动。 总结来说,网络五子棋结合了五子棋游戏的传统魅力和现代网络技术,使得不同地区的玩家能够在局域网内进行娱乐和聊天,既丰富了人们的娱乐生活,又加强了人际交流。而实现这一切的基础在于客户端程序的设计、服务器端的稳定运行、局域网的高效通信,以及音效文件增强的游戏体验。
recommend-type

自由行旅游新篇章:HarmonyOS技术融合与系统架构深度解析

# 1. HarmonyOS技术概述 ## 1.1 HarmonyOS的起源与发展 HarmonyOS(鸿蒙操作系统)由华为公司开发,旨在构建全场景分布式OS,以应对不同设备间的互联问题。自从2019年首次发布以来,HarmonyOS迅速成长,并迅速应用于智能手机、平板、智能穿戴、车载设备等多种平台。该系