这个高斯烟团模型怎么提高它的速度?Gy = 1 / (np.sqrt(2 * np.pi) * sigmay) * np.exp(-0.5 * (y / sigmay) ** 2) if inverse == 0: Gz = 1 / (np.sqrt(2 * np.pi) * sigmaz) * ( np.exp(-0.5 * ((z - hs) / sigmaz) ** 2) + np.exp(-0.5 * ((z + hs) / sigmaz) ** 2)) else: GZ = 0 for ii in range(1, 6): GZ = GZ + np.exp(-0.5 * ((z - 2 * ii * hi - hs) / sigmaz) ** 2) + np.exp( -0.5 * ((z + 2 * ii * hi - hs) / sigmaz) ** 2) + np.exp( -0.5 * ((z - 2 * ii * hi + hs) / sigmaz) ** 2) + np.exp(-0.5 * ((z + 2 * ii * hi + hs) / sigmaz) ** 2) Gz = GZ + 1 / (np.sqrt(2 * np.pi) * sigmaz) * ( np.exp(-0.5 * ((z - hs) / sigmaz) ** 2) + np.exp(-0.5 * ((z + hs) / sigmaz) ** 2)) dist = qt / Umean * Gy * Gz if t <= tr: c = dist / 2 * (erf(x / (sigmax * np.sqrt(2))) - erf((x - Umean * t) / (sigmax * np.sqrt(2)))) else: c = dist / 2 * (erf((x - Umean * (t - tr)) / (sigmax * np.sqrt(2))) - erf( (x - Umean * t) / (sigmax * np.sqrt(2))))
时间: 2023-10-22 20:03:30 浏览: 161
有几种可以提高高斯烟团模型速度的方法:
1. 优化代码:可以使用 numba 或 cython 等工具对代码进行编译优化,加快执行速度。
2. 减少循环次数:可以尝试减少循环次数,比如将循环中的 6 改为 3,或者减少循环内部的计算量。
3. 简化公式:可以尝试简化公式,比如将重复计算的部分提前计算或者使用数值近似方法。
4. 并行计算:可以使用多线程或多进程技术对代码进行并行计算,提高计算效率。
5. 采用适当的数学方法:可以使用 FFT 等数学方法对计算进行加速。
相关问题
def hbf_T(self): v1 = np.array([self.X1[0], self.X1[1]]) v2 = np.array([self.X1[2], self.X1[3]]) v3 = np.array([self.X1[4], self.X1[5]]) v4 = np.array([self.X1[6], self.X1[7]]) s1 = np.sum(v1 ** 2) s2 = np.sum(v2 ** 2) s3 = np.sum(v3 ** 2) s4 = np.sum(v4 ** 2) v1 = v1 / np.sqrt(s1) v2 = v2 / np.sqrt(s2) v3 = v3 / np.sqrt(s3) v4 = v4 / np.sqrt(s4) TT = np.vstack([v1, v2, v3, v4])在最后堆叠成TT时如何竖着堆叠
在代码中,np.vstack()函数是用来进行垂直方向的堆叠的,也就是将多个行向量进行堆叠成一个矩阵。如果要进行竖直方向的堆叠,也就是将多个列向量堆叠成一个矩阵,则需要使用np.hstack()函数。因此,如果要在这段代码中进行竖直方向的堆叠,则可以将np.vstack()替换成np.hstack()即可。
def hbf_T(self): v1 = np.array([self.X1[0], self.X1[1]]) v2 = np.array([self.X1[2], self.X1[3]]) v3 = np.array([self.X1[4], self.X1[5]]) v4 = np.array([self.X1[6], self.X1[7]]) s1 = np.sum(v1 ** 2) s2 = np.sum(v2 ** 2) s3 = np.sum(v3 ** 2) s4 = np.sum(v4 ** 2) v1 = v1 / np.sqrt(s1) v2 = v2 / np.sqrt(s2) v3 = v3 / np.sqrt(s3) v4 = v4 / np.sqrt(s4)TT_1= np.vstack([v1, v3]).T TT_2= np.vstack([v2, v4]).T TT=np.vstack(TT_1,TT_2) return TT
这是一个Python函数,它接收一个self参数以及其他未知的参数。函数的主要作用是将输入的数据进行处理,并返回一个输出值TT。
在函数中,首先将输入的数据进行分组,每组包含两个值,然后计算每个组的模长。接下来,将每个组中的值除以相应的模长,以归一化每个向量。最后,将两个归一化的向量按照水平方向连接成一个矩阵,并将其返回。
具体来说,这个函数实现了将输入的数据按照一定规则进行处理,以得到一个新的矩阵。该函数可能是某个大型程序的一部分,用于实现某个具体的功能。
阅读全文
相关推荐














