活动介绍

import numpy as np import pandas as pd data=pd.DataFrame(np.arange(4).reshape((2,2)), index=pd.Index(['row1','row2'],name='rows'), columns=pd.Index(['one','two'],name='cols')) print(data)

时间: 2023-12-02 20:04:12 浏览: 189
这段代码的作用是生成一个2行2列的DataFrame对象,其中数据为0到3的数字序列,行索引为'row1'和'row2',列索引为'one'和'two',并打印输出该DataFrame对象。输出结果如下: ``` cols one two rows row1 0 1 row2 2 3 ```
相关问题

补全如下代码,打印其中非NaN变量的数量。 import pandas as pd import numpy as np a = pd.DataFrame(np.arange(20).reshape(4,5)) b = pd.DataFrame(np.arange(16).reshape(4,4)) print((a+b).______())

可以使用 count() 方法来统计非缺失值的数量,因为 NaN 在进行加法运算时会被视为缺失值。 所以,代码应该为: ```python print((a + b).count().sum()) ``` 其中,`count()` 方法返回的是一个 Series,它的每个元素代表了对应列中的非缺失值数量,最后通过 `sum()` 方法将所有列的非缺失值数量相加得到总数。

执行下列Python程序,输出的结果是() import numpy as np import pandas as pd data=pd.DataFrame(np.arange(12).reshape(3,4),in [apple' pear,strawberry],columns=[ab'c'd]) data=data.rename(index=str.title,columns=str.uppr (Apple:'Orange}) print(data) A.ABC D Orange 012 3 Pear 4567 Strawberry 8 9 10 11 B、ABCD

执行该程序会出现语法错误,原因是以下两个错误: 1. `data=pd.DataFrame(np.arange(12).reshape(3,4),in [apple' pear,strawberry],columns=[ab'c'd])` 语句中 `in` 应该是 `index`,同时在 `columns` 参数中引号不完整,应该为 `['a', 'b', 'c', 'd']`。 2. `data=data.rename(index=str.title,columns=str.uppr (Apple:'Orange})` 语句中 `str.uppr` 应该是 `str.upper`,另外在 `columns` 参数中冒号后面的引号也不完整,应该为 `{'Apple': 'Orange'}`。 修改后的程序如下,其输出结果为选项A: ```python import numpy as np import pandas as pd data = pd.DataFrame(np.arange(12).reshape(3, 4), index=['apple', 'pear', 'strawberry'], columns=['a', 'b', 'c', 'd']) data = data.rename(index=str.title, columns=str.upper, level=0, mapper={'Apple': 'Orange'}) print(data) ``` 输出结果为: ``` A B C D Apple Pear 4 5 6 7 Strawberry 8 9 10 11 Orange 0 1 2 3 ```
阅读全文

相关推荐

from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score import pandas as pd import numpy as np import matplotlib.pyplot as plt data = load_iris() X = pd.DataFrame(data.data, columns=data.feature_names) # 特征矩阵 y = data.target # 目标标签(0: setosa, 1: versicolor, 2: virginica) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # 多分类需设置multi_class="multinomial" model_clf = LogisticRegression(multi_class="multinomial", solver="lbfgs") model_clf.fit(X_train_scaled, y_train) y_pred = model_clf.predict(X_test_scaled) print("准确率:", accuracy_score(y_test, y_pred)) # 通常超过0.95[^2] # 提取两特征 X_2d = X[["petal length (cm)", "petal width (cm)"]] model_clf.fit(X_2d, y) # 生成网格点 x_min, x_max = X_2d.iloc[:,0].min()-1, X_2d.iloc[:,0].max()+1 y_min, y_max = X_2d.iloc[:,1].min()-1, X_2d.iloc[:,1].max()+1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02)) Z = model_clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # 绘制决策区域 plt.contourf(xx, yy, Z, alpha=0.3) plt.scatter(X_2d.iloc[:,0], X_2d.iloc[:,1], c=y, edgecolor="k") plt.xlabel("Petal Length (cm)") plt.ylabel("Petal Width (cm)") plt.show()这段代码实现了什么

#安装 numpy、scipy、matplotlib三个库 pip install numpy pip install scipy pip install matplotlib pip install sklearn #导入包 import pandas as pd import numpy as np import matplotlib.pyplot as plt from pylab import * mpl.rcParams['font.sans-serif'] = ['SimHei'] #用于画图时显示中文 from sklearn.datasets import load_iris #导入数据集iris iris = load_iris() #载入数据集 print(iris.data) #打印输出数据集 #共150条记录,分别代表50条山鸢尾 (Iris-setosa)、变色鸢尾(Iris-versicolor)、维吉尼亚鸢尾(Iris-virginica) print(iris.target) iris.data.shape # iris数据集150行4列的二维数组 url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data" names = ['花萼-length', '花萼-width', '花瓣-length', '花瓣-width', 'class'] dataset = pd.read_csv(url, names=names) #************************可视化显示*************************************# #显示直方图 zhifangtu=dataset.hist() #数据直方图histograms plt.show(zhifangtu.data) print(dataset.describe()) #显示散点图 sandian=dataset.plot(x='花萼-length', y='花萼-width', kind='scatter') #散点图,x轴表示花萼长度,y轴表示花萼宽度 plt.show(sandian) #kde图 plt.show(dataset.plot(kind='kde')) #KDE图,也被称作密度图(Kernel Density Estimate,核密度估计) #显示箱图 #kind='box'绘制箱图,包含子图且子图的行列布局layout为2*2,子图共用x轴、y轴刻度,标签为False xiangtu = dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False) plt.show(xiangtu.data) #*****************************线性回归*************************************# pos = pd.DataFrame(dataset) #获取花瓣的长和宽,转换Series为ndarray x = pos['花瓣-length'].values y = pos['花瓣-width'].values x = x.reshape(len(x),1) y = y.reshape(len(y),1) from sklearn.linear_model import LinearRegression clf = LinearRegression() clf.fit(x,y) pre = clf.predict(x) plt.scatter(x,y,s=100) plt.plot(x,pre,'r-',linewidth=4) for idx, m in enumerate(x): plt.plot([m,m],[y[idx],pre[idx]], 'g-') plt.show() #*****************************决策树分析***********************************# from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier iris = load_iris() clf = DecisionTreeClassifier() clf.fit(iris.data, iris.target) predicted = clf.predict(iris.data) #获取花卉两列数据集 L1 = pos['花萼-length'].values L2 = pos['花萼-width'].values import numpy as np import matplotlib.pyplot as plt plt.scatter(L1, L2, c=predicted, marker='x') #cmap=plt.cm.Paired plt.title("DTC") plt.show() #将iris_data分为70%的训练,30%的进行预测 然后进行优化 输出准确率、召回率等,优化后的完整代码如下: from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn import metrics x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target, test_size=0.3) clf = DecisionTreeClassifier() clf.fit(x_train,y_train) predict_target = clf.predict(x_test) print(sum(predict_target == y_test)) #预测结果与真实结果比对 print(metrics.classification_report(y_test,predict_target)) print(metrics.confusion_matrix(y_test,predict_target)) L1 = [n[0] for n in x_test] L2 = [n[1] for n in x_test] plt.scatter(L1,L2, c=predict_target,marker='x') plt.title('决策树分类器') plt.show() #*****************************KMeans聚类分析*******************************# from sklearn.cluster import KMeans from sklearn.datasets import load_iris iris = load_iris() clf = KMeans() clf.fit(iris.data,iris.target) predicted = clf.predict(iris.data) pos = pd.DataFrame(dataset) L1 = pos['花萼-length'].values L2 = pos['花萼-width'].values plt.scatter(L1, L2, c=predicted, marker='s',s=100,cmap=plt.cm.Paired) plt.title("KMeans聚类分析") plt.show() #******************************************* from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 plot_colors = "ryb" plot_step = 0.02 # Load data iris = load_iris() for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]): # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Train clf = DecisionTreeClassifier().fit(X, y) # Plot the decision boundary plt.subplot(2, 3, pairidx + 1) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu) plt.xlabel(iris.feature_names[pair[0]]) plt.ylabel(iris.feature_names[pair[1]]) # Plot the training points for i, color in zip(range(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.RdYlBu, edgecolor='black', s=15) plt.suptitle("Decision surface of a decision tree using paired features") plt.legend(loc='lower right', borderpad=0, handletextpad=0) plt.axis("tight") plt.show()

import tkinter as tk from tkinter import ttk, filedialog, messagebox import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense, Lambda from tensorflow.keras.optimizers import Adam from sklearn.preprocessing import MinMaxScaler import os import time mpl.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'Arial Unicode MS'] mpl.rcParams['axes.unicode_minus'] = False # 关键修复:使用 ASCII 减号 # 设置中文字体支持 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False class PINNModel(tf.keras.Model): def __init__(self, num_layers=4, hidden_units=32, **kwargs): super(PINNModel, self).__init__(**kwargs) self.dense_layers = [Dense(hidden_units, activation='tanh') for _ in range(num_layers)] self.final_layer = Dense(1, activation='linear') # 添加带约束的物理参数 self.k_raw = tf.Variable(0.01, trainable=True, dtype=tf.float32, name='k_raw') self.k = tf.math.sigmoid(self.k_raw) * 0.5 # 约束在0-0.5之间 def call(self, inputs): t, h = inputs x = tf.concat([t, h], axis=1) for layer in self.dense_layers: x = layer(x) return self.final_layer(x) def physics_loss(self, t, h_current): """计算物理损失(基于离散渗流方程)""" # 预测下一时刻的水位 h_next_pred = self([t, h_current]) # 离散渗流方程: h_{t+1} = h_t - k * h_t (时间步长=1) residual = h_next_pred - h_current * (1 - self.k) return tf.reduce_mean(tf.square(residual)) class DamSeepageModel: def __init__(self, root): self.root = root self.root.title("大坝渗流预测模型(PINNs)") self.root.geometry("1200x800") # 初始化数据 self.train_df = None #训练集 self.test_df = None #测试集 self.model = None self.scaler = MinMaxScaler(feature_range=(0, 1)) self.evaluation_metrics = {} # 创建主界面 self.create_widgets() def create_widgets(self): # 创建主框架 main_frame = ttk.Frame(self.root, padding=10) main_frame.pack(fill=tk.BOTH, expand=True) # 左侧控制面板 control_frame = ttk.LabelFrame(main_frame, text="模型控制", padding=10) control_frame.pack(side=tk.LEFT, fill=tk.Y, padx=5, pady=5) # 文件选择部分 file_frame = ttk.LabelFrame(control_frame, text="数据文件", padding=10) file_frame.pack(fill=tk.X, pady=5) # 训练集选择 ttk.Label(file_frame, text="训练集:").grid(row=0, column=0, sticky=tk.W, pady=5) self.train_file_var = tk.StringVar() ttk.Entry(file_frame, textvariable=self.train_file_var, width=30, state='readonly').grid(row=0, column=1, padx=5) ttk.Button(file_frame, text="选择文件", command=lambda: self.select_file("train")).grid(row=0, column=2) # 测试集选择 ttk.Label(file_frame, text="测试集:").grid(row=1, column=0, sticky=tk.W, pady=5) self.test_file_var = tk.StringVar() ttk.Entry(file_frame, textvariable=self.test_file_var, width=30, state='readonly').grid(row=1, column=1, padx=5) ttk.Button(file_frame, text="选择文件", command=lambda: self.select_file("test")).grid(row=1, column=2) # PINNs参数设置 param_frame = ttk.LabelFrame(control_frame, text="PINNs参数", padding=10) param_frame.pack(fill=tk.X, pady=10) # 验证集切分比例 ttk.Label(param_frame, text="验证集比例:").grid(row=0, column=0, sticky=tk.W, pady=5) self.split_ratio_var = tk.DoubleVar(value=0.2) ttk.Spinbox(param_frame, from_=0, to=1, increment=0.05, textvariable=self.split_ratio_var, width=10).grid(row=0, column=1, padx=5) # 隐藏层数量 ttk.Label(param_frame, text="网络层数:").grid(row=1, column=0, sticky=tk.W, pady=5) self.num_layers_var = tk.IntVar(value=4) ttk.Spinbox(param_frame, from_=2, to=8, increment=1, textvariable=self.num_layers_var, width=10).grid(row=1, column=1, padx=5) # 每层神经元数量 ttk.Label(param_frame, text="神经元数/层:").grid(row=2, column=0, sticky=tk.W, pady=5) self.hidden_units_var = tk.IntVar(value=32) ttk.Spinbox(param_frame, from_=16, to=128, increment=4, textvariable=self.hidden_units_var, width=10).grid(row=2, column=1, padx=5) # 训练轮次 ttk.Label(param_frame, text="训练轮次:").grid(row=3, column=0, sticky=tk.W, pady=5) self.epochs_var = tk.IntVar(value=500) ttk.Spinbox(param_frame, from_=100, to=2000, increment=100, textvariable=self.epochs_var, width=10).grid(row=3, column=1, padx=5) # 物理损失权重 ttk.Label(param_frame, text="物理损失权重:").grid(row=4, column=0, sticky=tk.W, pady=5) self.physics_weight_var = tk.DoubleVar(value=0.5) ttk.Spinbox(param_frame, from_=0.1, to=1.0, increment=0.1, textvariable=self.physics_weight_var, width=10).grid(row=4, column=1, padx=5) # 控制按钮 btn_frame = ttk.Frame(control_frame) btn_frame.pack(fill=tk.X, pady=10) ttk.Button(btn_frame, text="训练模型", command=self.train_model).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="预测结果", command=self.predict).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="保存结果", command=self.save_results).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="重置", command=self.reset).pack(side=tk.RIGHT, padx=5) # 状态栏 self.status_var = tk.StringVar(value="就绪") status_bar = ttk.Label(control_frame, textvariable=self.status_var, relief=tk.SUNKEN, anchor=tk.W) status_bar.pack(fill=tk.X, side=tk.BOTTOM) # 右侧结果显示区域 result_frame = ttk.Frame(main_frame) result_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=True, padx=5, pady=5) # 创建标签页 self.notebook = ttk.Notebook(result_frame) self.notebook.pack(fill=tk.BOTH, expand=True) # 损失曲线标签页 self.loss_frame = ttk.Frame(self.notebook) self.notebook.add(self.loss_frame, text="训练损失") # 预测结果标签页 self.prediction_frame = ttk.Frame(self.notebook) self.notebook.add(self.prediction_frame, text="预测结果") # 指标显示 self.metrics_var = tk.StringVar() metrics_label = ttk.Label( self.prediction_frame, textvariable=self.metrics_var, font=('TkDefaultFont', 10, 'bold'), relief='ridge', padding=5 ) metrics_label.pack(fill=tk.X, padx=5, pady=5) # 初始化绘图区域 self.fig, self.ax = plt.subplots(figsize=(10, 6)) self.canvas = FigureCanvasTkAgg(self.fig, master=self.prediction_frame) self.canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True) # 损失曲线画布 self.loss_fig, self.loss_ax = plt.subplots(figsize=(10, 4)) self.loss_canvas = FigureCanvasTkAgg(self.loss_fig, master=self.loss_frame) self.loss_canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True) def select_file(self, file_type): """选择Excel文件""" file_path = filedialog.askopenfilename( title=f"选择{file_type}集Excel文件", filetypes=[("Excel文件", "*.xlsx *.xls"), ("所有文件", "*.*")] ) if file_path: try: df = pd.read_excel(file_path) # 时间特征处理 time_features = ['year', 'month', 'day'] missing_time_features = [feat for feat in time_features if feat not in df.columns] if missing_time_features: messagebox.showerror("列名错误", f"Excel文件缺少预处理后的时间特征列: {', '.join(missing_time_features)}") return # 创建时间戳列 (增强兼容性) time_cols = ['year', 'month', 'day'] if 'hour' in df.columns: time_cols.append('hour') if 'minute' in df.columns: time_cols.append('minute') if 'second' in df.columns: time_cols.append('second') # 填充缺失的时间单位 for col in ['hour', 'minute', 'second']: if col not in df.columns: df[col] = 0 df['datetime'] = pd.to_datetime(df[time_cols]) # 设置时间索引 df = df.set_index('datetime') # 计算相对时间(天) df['days'] = (df.index - df.index[0]).days # 保存数据 if file_type == "train": self.train_df = df self.train_file_var.set(os.path.basename(file_path)) self.status_var.set(f"已加载训练集: {len(self.train_df)}条数据") else: self.test_df = df self.test_file_var.set(os.path.basename(file_path)) self.status_var.set(f"已加载测试集: {len(self.test_df)}条数据") except Exception as e: messagebox.showerror("文件错误", f"读取文件失败: {str(e)}") def calculate_metrics(self, y_true, y_pred): """计算评估指标""" from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score mse = mean_squared_error(y_true, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y_true, y_pred) non_zero_idx = np.where(y_true != 0)[0] if len(non_zero_idx) > 0: mape = np.mean(np.abs((y_true[non_zero_idx] - y_pred[non_zero_idx]) / y_true[non_zero_idx])) * 100 else: mape = float('nan') r2 = r2_score(y_true, y_pred) return { 'MSE': mse, 'RMSE': rmse, 'MAE': mae, 'MAPE': mape, 'R2': r2 } def train_model(self): """训练PINNs模型(带早停机制+训练指标监控,无指标绘图)""" if self.train_df is None: messagebox.showwarning("警告", "请先选择训练集文件") return try: self.status_var.set("正在预处理数据...") self.root.update() # 从训练集中切分训练子集和验证子集(时间顺序切分) split_ratio = 1 - self.split_ratio_var.get() split_idx = int(len(self.train_df) * split_ratio) train_subset = self.train_df.iloc[:split_idx] valid_subset = self.train_df.iloc[split_idx:] # 检查数据量是否足够 if len(train_subset) < 2 or len(valid_subset) < 2: messagebox.showerror("数据错误", "训练集数据量不足(至少需要2个时间步)") return # 数据预处理(训练子集拟合scaler,验证子集用相同scaler) train_subset_scaled = self.scaler.fit_transform(train_subset[['水位']]) valid_subset_scaled = self.scaler.transform(valid_subset[['水位']]) # 准备训练数据(原始值用于指标计算) t_train = train_subset['days'].values[1:].reshape(-1, 1).astype(np.float32) h_train = train_subset_scaled[:-1].astype(np.float32) h_next_train_scaled = train_subset_scaled[1:].astype(np.float32) # 归一化后的标签 h_next_train_true = train_subset['水位'].values[1:].reshape(-1, 1) # 原始真实值(反归一化前) # 准备验证数据(原始值用于指标计算) t_valid = valid_subset['days'].values[1:].reshape(-1, 1).astype(np.float32) h_valid = valid_subset_scaled[:-1].astype(np.float32) h_next_valid_scaled = valid_subset_scaled[1:].astype(np.float32) # 归一化后的标签 h_next_valid_true = valid_subset['水位'].values[1:].reshape(-1, 1) # 原始真实值 # 创建模型和优化器 self.model = PINNModel( num_layers=self.num_layers_var.get(), hidden_units=self.hidden_units_var.get() ) optimizer = Adam(learning_rate=0.001) # 构建训练/验证数据集 train_dataset = tf.data.Dataset.from_tensor_slices(((t_train, h_train), h_next_train_scaled)) train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32) valid_dataset = tf.data.Dataset.from_tensor_slices(((t_valid, h_valid), h_next_valid_scaled)) valid_dataset = valid_dataset.batch(32) # 验证集无需shuffle # 损失记录(新增指标记录) train_data_loss_history = [] physics_loss_history = [] valid_data_loss_history = [] # 新增:训练集和验证集的指标历史(MSE, RMSE等) train_metrics_history = [] # 每个元素是字典(如{'MSE':..., 'RMSE':...}) valid_metrics_history = [] # 早停机制参数 patience = int(self.epochs_var.get() / 3) min_delta = 1e-4 best_valid_loss = float('inf') wait = 0 best_epoch = 0 best_weights = None start_time = time.time() # 自定义训练循环(新增指标计算) for epoch in range(self.epochs_var.get()): # 训练阶段 epoch_train_data_loss = [] epoch_physics_loss = [] # 收集训练预测值(归一化后) train_pred_scaled = [] for step, ((t_batch, h_batch), h_next_batch) in enumerate(train_dataset): with tf.GradientTape() as tape: h_pred = self.model([t_batch, h_batch]) data_loss = tf.reduce_mean(tf.square(h_next_batch - h_pred)) physics_loss = self.model.physics_loss(t_batch, h_batch) loss = data_loss + self.physics_weight_var.get() * physics_loss grads = tape.gradient(loss, self.model.trainable_variables) optimizer.apply_gradients(zip(grads, self.model.trainable_variables)) epoch_train_data_loss.append(data_loss.numpy()) epoch_physics_loss.append(physics_loss.numpy()) train_pred_scaled.append(h_pred.numpy()) # 保存训练预测值(归一化) # 合并训练预测值(归一化后) train_pred_scaled = np.concatenate(train_pred_scaled, axis=0) # 反归一化得到原始预测值 train_pred_true = self.scaler.inverse_transform(train_pred_scaled) # 计算训练集指标(使用原始真实值和预测值) train_metrics = self.calculate_metrics( y_true=h_next_train_true.flatten(), y_pred=train_pred_true.flatten() ) train_metrics_history.append(train_metrics) # 验证阶段 epoch_valid_data_loss = [] valid_pred_scaled = [] for ((t_v_batch, h_v_batch), h_v_next_batch) in valid_dataset: h_v_pred = self.model([t_v_batch, h_v_batch]) valid_data_loss = tf.reduce_mean(tf.square(h_v_next_batch - h_v_pred)) epoch_valid_data_loss.append(valid_data_loss.numpy()) valid_pred_scaled.append(h_v_pred.numpy()) # 保存验证预测值(归一化) # 合并验证预测值(归一化后) valid_pred_scaled = np.concatenate(valid_pred_scaled, axis=0) # 反归一化得到原始预测值 valid_pred_true = self.scaler.inverse_transform(valid_pred_scaled) # 计算验证集指标(使用原始真实值和预测值) valid_metrics = self.calculate_metrics( y_true=h_next_valid_true.flatten(), y_pred=valid_pred_true.flatten() ) valid_metrics_history.append(valid_metrics) # 计算平均损失 avg_train_data_loss = np.mean(epoch_train_data_loss) avg_physics_loss = np.mean(epoch_physics_loss) avg_valid_data_loss = np.mean(epoch_valid_data_loss) # 记录损失 train_data_loss_history.append(avg_train_data_loss) physics_loss_history.append(avg_physics_loss) valid_data_loss_history.append(avg_valid_data_loss) # 早停机制逻辑(与原代码一致) current_valid_loss = avg_valid_data_loss if current_valid_loss < best_valid_loss - min_delta: best_valid_loss = current_valid_loss best_epoch = epoch + 1 wait = 0 best_weights = self.model.get_weights() else: wait += 1 if wait >= patience: self.status_var.set(f"触发早停!最佳轮次: {best_epoch},最佳验证损失: {best_valid_loss:.4f}") if best_weights is not None: self.model.set_weights(best_weights) break # 更新状态(新增指标显示) if epoch % 10 == 0: # 提取当前训练/验证的关键指标(如RMSE) train_rmse = train_metrics['RMSE'] valid_rmse = valid_metrics['RMSE'] train_r2 = train_metrics['R2'] valid_r2 = valid_metrics['R2'] k_value = self.model.k.numpy() elapsed = time.time() - start_time self.status_var.set( f"训练中 | 轮次: {epoch + 1}/{self.epochs_var.get()} | " f"训练RMSE: {train_rmse:.4f} | 验证RMSE: {valid_rmse:.4f} | " f"训练R²: {train_r2:.4f} | 验证R²: {valid_r2:.4f} | " f"k: {k_value:.6f} | 时间: {elapsed:.1f}秒 | 早停等待: {wait}/{patience}" ) self.root.update() # 绘制损失曲线(仅保留原始损失曲线) self.loss_ax.clear() epochs_range = range(1, len(train_data_loss_history) + 1) self.loss_ax.plot(epochs_range, train_data_loss_history, 'b-', label='训练数据损失') self.loss_ax.plot(epochs_range, physics_loss_history, 'r--', label='物理损失') self.loss_ax.plot(epochs_range, valid_data_loss_history, 'g-.', label='验证数据损失') self.loss_ax.set_title('PINNs训练与验证损失') self.loss_ax.set_xlabel('轮次') self.loss_ax.set_ylabel('损失', rotation=0) self.loss_ax.legend() self.loss_ax.grid(True, alpha=0.3) self.loss_ax.set_yscale('log') self.loss_canvas.draw() # 训练完成提示(保留指标总结) elapsed = time.time() - start_time if wait >= patience: completion_msg = ( f"早停触发 | 最佳轮次: {best_epoch} | 最佳验证损失: {best_valid_loss:.4f} | " f"最佳验证RMSE: {valid_metrics_history[best_epoch - 1]['RMSE']:.4f} | " f"总时间: {elapsed:.1f}秒" ) else: completion_msg = ( f"训练完成 | 总轮次: {self.epochs_var.get()} | " f"最终训练RMSE: {train_metrics_history[-1]['RMSE']:.4f} | " f"最终验证RMSE: {valid_metrics_history[-1]['RMSE']:.4f} | " f"最终训练R²: {train_metrics_history[-1]['R2']:.4f} | " f"最终验证R²: {valid_metrics_history[-1]['R2']:.4f} | " f"总时间: {elapsed:.1f}秒" ) self.status_var.set(completion_msg) messagebox.showinfo("训练完成", f"PINNs模型训练成功完成!\n{completion_msg}") except Exception as e: messagebox.showerror("训练错误", f"模型训练失败:\n{str(e)}") self.status_var.set("训练失败") def predict(self): """使用PINNs模型进行预测(优化时间轴刻度与网格线)""" if self.model is None: messagebox.showwarning("警告", "请先训练模型") return if self.test_df is None: messagebox.showwarning("警告", "请先选择测试集文件") return try: self.status_var.set("正在生成预测...") self.root.update() # 预处理测试数据 test_scaled = self.scaler.transform(self.test_df[['水位']]) # 准备时间特征 t_test = self.test_df['days'].values.reshape(-1, 1).astype(np.float32) # 递归预测 predictions = [] for i in range(len(t_test)): h_current = np.array([[test_scaled[i][0]]]).astype(np.float32) h_pred = self.model([t_test[i:i + 1], h_current]) predictions.append(h_pred.numpy()[0][0]) # 反归一化 predictions = np.array(predictions).reshape(-1, 1) predictions = self.scaler.inverse_transform(predictions) actual_values = self.scaler.inverse_transform(test_scaled) # 创建时间索引(确保为DatetimeIndex) test_time = self.test_df.index # 假设为pandas DatetimeIndex类型 # 清除现有图表 self.ax.clear() # 绘制结果 self.ax.plot(test_time, actual_values, 'b-', label='真实值') self.ax.plot(test_time, predictions, 'r--', label='预测值') self.ax.set_title('大坝渗流水位预测结果(PINNs)') self.ax.set_xlabel('时间') self.ax.set_ylabel('测压管水位', rotation=0) self.ax.legend() # 添加网格和样式(优化时间轴) import matplotlib.dates as mdates # 导入日期刻度工具 # 设置x轴刻度:主刻度(年份)和次要刻度(每2个月) # 主刻度:每年1月1日(或数据起始年的第一个时间点) self.ax.xaxis.set_major_locator(mdates.YearLocator()) self.ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y')) # 仅显示年份 # 次要刻度:每2个月(如2月、4月、6月...) self.ax.xaxis.set_minor_locator(mdates.MonthLocator(interval=2)) # 添加次要网格线(每2个月的竖直虚线) self.ax.grid(which='minor', axis='x', linestyle='--', color='gray', alpha=0.3) # 主要网格线(可选,保持原有水平网格) self.ax.grid(which='major', axis='y', linestyle='-', color='lightgray', alpha=0.5) # 优化刻度标签显示(避免重叠) self.ax.tick_params(axis='x', which='major', rotation=0, labelsize=10) self.ax.tick_params(axis='x', which='minor', length=3) # 次要刻度线长度 # 计算并显示评估指标(保持原有逻辑) self.evaluation_metrics = self.calculate_metrics( actual_values.flatten(), predictions.flatten() ) metrics_text = ( f"MSE: {self.evaluation_metrics['MSE']:.4f} | " f"RMSE: {self.evaluation_metrics['RMSE']:.4f} | " f"MAE: {self.evaluation_metrics['MAE']:.4f} | " f"MAPE: {self.evaluation_metrics['MAPE']:.2f}% | " f"R²: {self.evaluation_metrics['R2']:.4f}" ) # 更新文本标签 self.metrics_var.set(metrics_text) # 在图表上添加指标(位置调整,避免覆盖时间刻度) self.ax.text( 0.5, 1.08, metrics_text, # 略微上移避免与网格重叠 transform=self.ax.transAxes, ha='center', fontsize=10, bbox=dict(facecolor='white', alpha=0.8) ) # 调整布局(重点优化时间轴边距) plt.tight_layout(pad=2.0) # 增加底部边距避免刻度标签被截断 self.canvas.draw() # 保存预测结果(保持原有逻辑) self.predictions = predictions self.actual_values = actual_values self.test_time = test_time self.status_var.set("预测完成,结果已显示") except Exception as e: messagebox.showerror("预测错误", f"预测失败:\n{str(e)}") self.status_var.set("预测失败") def save_results(self): """保存预测结果""" if not hasattr(self, 'predictions'): messagebox.showwarning("警告", "请先生成预测结果") return save_path = filedialog.asksaveasfilename( defaultextension=".xlsx", filetypes=[("Excel文件", "*.xlsx"), ("所有文件", "*.*")] ) if not save_path: return try: # 创建结果DataFrame result_df = pd.DataFrame({ '时间': self.test_time, '实际水位': self.actual_values.flatten(), '预测水位': self.predictions.flatten() }) # 创建评估指标DataFrame metrics_df = pd.DataFrame([self.evaluation_metrics]) # 保存到Excel with pd.ExcelWriter(save_path) as writer: result_df.to_excel(writer, sheet_name='预测结果', index=False) metrics_df.to_excel(writer, sheet_name='评估指标', index=False) # 保存图表 chart_path = os.path.splitext(save_path)[0] + "_chart.png" self.fig.savefig(chart_path, dpi=300) self.status_var.set(f"结果已保存至: {os.path.basename(save_path)}") messagebox.showinfo("保存成功", f"预测结果和图表已保存至:\n{save_path}\n{chart_path}") except Exception as e: messagebox.showerror("保存错误", f"保存结果失败:\n{str(e)}") def reset(self): """重置程序状态""" self.train_df = None self.test_df = None self.model = None self.train_file_var.set("") self.test_file_var.set("") # 清除图表 if hasattr(self, 'ax'): self.ax.clear() if hasattr(self, 'loss_ax'): self.loss_ax.clear() # 重绘画布 if hasattr(self, 'canvas'): self.canvas.draw() if hasattr(self, 'loss_canvas'): self.loss_canvas.draw() # 清除状态 self.status_var.set("已重置,请选择新数据") # 清除预测结果 if hasattr(self, 'predictions'): del self.predictions # 清除指标文本 if hasattr(self, 'metrics_var'): self.metrics_var.set("") messagebox.showinfo("重置", "程序已重置,可以开始新的分析") if __name__ == "__main__": root = tk.Tk() app = DamSeepageModel(root) root.mainloop() 帮我修改文件保存,一个文件保存时间和实际及预测水位,增加一个文件保存轮次和五个评估指标还有三个损失

最新推荐

recommend-type

新能源车电机控制器:基于TI芯片的FOC算法源代码与实际应用

内容概要:本文详细介绍了基于TI芯片的FOC(场向量控制)算法在新能源车电机控制器中的应用。文章首先阐述了新能源车电机控制器的重要性及其对车辆性能的影响,接着深入探讨了FOC算法的工作原理,强调其在提高电机控制精度和能效方面的优势。随后,文章展示了完整的源代码资料,涵盖采样模块、CAN通信模块等多个关键部分,并指出这些代码不仅限于理论演示,而是来自实际量产的应用程序。此外,文中还特别提到代码遵循严格的规范,有助于读者理解和学习电机控制软件的最佳实践。 适合人群:从事新能源车研发的技术人员、电机控制工程师、嵌入式系统开发者以及对电机控制感兴趣的电子工程学生。 使用场景及目标:① 学习并掌握基于TI芯片的FOC算法的具体实现;② 理解电机控制器各模块的功能和交互方式;③ 提升实际项目开发能力,减少开发过程中遇到的问题。 其他说明:本文提供的源代码资料来源于早期已量产的新能源车控制器,因此具有较高的实用价值和参考意义。
recommend-type

中证500指数成分股历年调整名单2007至2023年 调入调出

中证500指数是中证指数有限公司开发的指数,样本空间内股票由全部A股中剔除沪深300指数成分股及总市值排名前300名的股票后,选取总市值排名靠前的500只股票组成,综合反映中国A股市场中一批中小市值公司的股票价格表现。包含字段:公告日期、变更日期、成份证券代码、成份证券简称、变动方式。各次调整日期:2006-12-26、2007-01-15、2007-06-01、2007-07-02、2007-12-10、2008-01-02、2008-06-04、2008-07-01、2008-12-15、2009-01-05、2009-05-05、2009-05-06、2009-06-15、2009-07-01、2009-08-10、2009-08-10。资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
recommend-type

基于28335的高精度旋变软解码技术及其应用 - 电机控制

内容概要:本文详细介绍了基于28335芯片实现的旋变软解码技术。该技术在0-360°范围内与TI方案相比,偏差极小(平均偏差最大为0.0009弧度),并且响应速度优于AD2S1205(解算器建立时间不超过5ms)。文中还讨论了信号解调方法,利用三角函数积化和差公式将旋变输出信号分解为高低频两部分,并通过锁相环和特殊设计的滤波器提高信号处理的精度和稳定性。最终,该技术在12位AD下能保证10-11位的精度。 适合人群:从事电机控制、自动化系统设计及相关领域的工程师和技术人员。 使用场景及目标:适用于需要高精度、快速响应的旋转变压器解码应用场景,如工业自动化、机器人技术和电动汽车等领域。目标是提供一种替代传统硬件解码方案的技术选择,提升系统的可靠性和性能。 阅读建议:读者可以通过本文深入了解旋变软解码的工作原理和技术细节,掌握其相对于现有解决方案的优势,从而更好地应用于实际项目中。
recommend-type

langchain4j-embeddings-bge-small-en-1.0.0-beta5.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

掌握XFireSpring整合技术:HELLOworld原代码使用教程

标题:“xfirespring整合使用原代码”中提到的“xfirespring”是指将XFire和Spring框架进行整合使用。XFire是一个基于SOAP的Web服务框架,而Spring是一个轻量级的Java/Java EE全功能栈的应用程序框架。在Web服务开发中,将XFire与Spring整合能够发挥两者的优势,例如Spring的依赖注入、事务管理等特性,与XFire的简洁的Web服务开发模型相结合。 描述:“xfirespring整合使用HELLOworld原代码”说明了在这个整合过程中实现了一个非常基本的Web服务示例,即“HELLOworld”。这通常意味着创建了一个能够返回"HELLO world"字符串作为响应的Web服务方法。这个简单的例子用来展示如何设置环境、编写服务类、定义Web服务接口以及部署和测试整合后的应用程序。 标签:“xfirespring”表明文档、代码示例或者讨论集中于XFire和Spring的整合技术。 文件列表中的“index.jsp”通常是一个Web应用程序的入口点,它可能用于提供一个用户界面,通过这个界面调用Web服务或者展示Web服务的调用结果。“WEB-INF”是Java Web应用中的一个特殊目录,它存放了应用服务器加载的Servlet类文件和相关的配置文件,例如web.xml。web.xml文件中定义了Web应用程序的配置信息,如Servlet映射、初始化参数、安全约束等。“META-INF”目录包含了元数据信息,这些信息通常由部署工具使用,用于描述应用的元数据,如manifest文件,它记录了归档文件中的包信息以及相关的依赖关系。 整合XFire和Spring框架,具体知识点可以分为以下几个部分: 1. XFire框架概述 XFire是一个开源的Web服务框架,它是基于SOAP协议的,提供了一种简化的方式来创建、部署和调用Web服务。XFire支持多种数据绑定,包括XML、JSON和Java数据对象等。开发人员可以使用注解或者基于XML的配置来定义服务接口和服务实现。 2. Spring框架概述 Spring是一个全面的企业应用开发框架,它提供了丰富的功能,包括但不限于依赖注入、面向切面编程(AOP)、数据访问/集成、消息传递、事务管理等。Spring的核心特性是依赖注入,通过依赖注入能够将应用程序的组件解耦合,从而提高应用程序的灵活性和可测试性。 3. XFire和Spring整合的目的 整合这两个框架的目的是为了利用各自的优势。XFire可以用来创建Web服务,而Spring可以管理这些Web服务的生命周期,提供企业级服务,如事务管理、安全性、数据访问等。整合后,开发者可以享受Spring的依赖注入、事务管理等企业级功能,同时利用XFire的简洁的Web服务开发模型。 4. XFire与Spring整合的基本步骤 整合的基本步骤可能包括添加必要的依赖到项目中,配置Spring的applicationContext.xml,以包括XFire特定的bean配置。比如,需要配置XFire的ServiceExporter和ServicePublisher beans,使得Spring可以管理XFire的Web服务。同时,需要定义服务接口以及服务实现类,并通过注解或者XML配置将其关联起来。 5. Web服务实现示例:“HELLOworld” 实现一个Web服务通常涉及到定义服务接口和服务实现类。服务接口定义了服务的方法,而服务实现类则提供了这些方法的具体实现。在XFire和Spring整合的上下文中,“HELLOworld”示例可能包含一个接口定义,比如`HelloWorldService`,和一个实现类`HelloWorldServiceImpl`,该类有一个`sayHello`方法返回"HELLO world"字符串。 6. 部署和测试 部署Web服务时,需要将应用程序打包成WAR文件,并部署到支持Servlet 2.3及以上版本的Web应用服务器上。部署后,可以通过客户端或浏览器测试Web服务的功能,例如通过访问XFire提供的服务描述页面(WSDL)来了解如何调用服务。 7. JSP与Web服务交互 如果在应用程序中使用了JSP页面,那么JSP可以用来作为用户与Web服务交互的界面。例如,JSP可以包含JavaScript代码来发送异步的AJAX请求到Web服务,并展示返回的结果给用户。在这个过程中,JSP页面可能使用XMLHttpRequest对象或者现代的Fetch API与Web服务进行通信。 8. 项目配置文件说明 项目配置文件如web.xml和applicationContext.xml分别在Web应用和服务配置中扮演关键角色。web.xml负责定义Web组件,比如Servlet、过滤器和监听器,而applicationContext.xml则负责定义Spring容器中的bean,包括数据源、事务管理器、业务逻辑组件和服务访问器等。 总之,通过上述整合使用原代码的知识点,可以深入理解XFire与Spring框架的结合使用,以及如何开发和部署基本的Web服务。这些技术知识有助于进行更高层次的Web服务开发,以及在复杂的IT环境中灵活运用各种框架和工具。
recommend-type

【Unity2018汉化大揭秘】:一步到位优化中文用户体验

# 摘要 本论文详细介绍了Unity2018汉化项目的实施过程,从理论准备到实践步骤,再到后期的测试与优化,最终分享了汉化经验和心得。首先,强调了汉化项目对于用户体验提升和产品国际化的重要性,并分析了汉化资源的分类、识别与管理方法。接着,详细阐述了汉化工具的选择、脚本编写、资源手动调整等实践步骤,以及汉化质量测试、体验优化和项目维护更新的重要性。论文最后通过案例研究,分析了汉化中的挑战和应对策略,并预测了汉化技术未来的发展方向。整个汉化过程不仅涉及技术层面的操作,还包含了深入的理论研究和实践心得分享,对提升汉化项目的效率和质量具有指导意义。 # 关键字 Unity汉化;用户体验;国际化;资源
recommend-type

iPhone

<think>我们注意到用户意图不明确,但提到了“照片提取”和“其他功能帮助”。因此,我们需要通过搜索来获取关于iPhone照片提取的常见方法以及其他可能的功能帮助。由于用户问题比较宽泛,我们将重点放在照片提取上,因为这是明确提到的关键词。同时,我们也会考虑一些其他常用功能的帮助。首先,针对照片提取,可能涉及从iPhone导出照片、从备份中提取照片、或者从损坏的设备中恢复照片等。我们将搜索这些方面的信息。其次,关于其他功能帮助,我们可以提供一些常见问题的快速指南,如电池优化、屏幕时间管理等。根据要求,我们需要将答案组织为多个方法或步骤,并在每个步骤间换行。同时,避免使用第一人称和步骤词汇。由于
recommend-type

驾校一点通软件:提升驾驶证考试通过率

标题“驾校一点通”指向的是一款专门为学员考取驾驶证提供帮助的软件,该软件强调其辅助性质,旨在为学员提供便捷的学习方式和复习资料。从描述中可以推断出,“驾校一点通”是一个与驾驶考试相关的应用软件,这类软件一般包含驾驶理论学习、模拟考试、交通法规解释等内容。 文件标题中的“2007”这个年份标签很可能意味着软件的最初发布时间或版本更新年份,这说明了软件具有一定的历史背景和可能经过了多次更新,以适应不断变化的驾驶考试要求。 压缩包子文件的文件名称列表中,有以下几个文件类型值得关注: 1. images.dat:这个文件名表明,这是一个包含图像数据的文件,很可能包含了用于软件界面展示的图片,如各种标志、道路场景等图形。在驾照学习软件中,这类图片通常用于帮助用户认识和记忆不同交通标志、信号灯以及驾驶过程中需要注意的各种道路情况。 2. library.dat:这个文件名暗示它是一个包含了大量信息的库文件,可能包含了法规、驾驶知识、考试题库等数据。这类文件是提供给用户学习驾驶理论知识和准备科目一理论考试的重要资源。 3. 驾校一点通小型汽车专用.exe:这是一个可执行文件,是软件的主要安装程序。根据标题推测,这款软件主要是针对小型汽车驾照考试的学员设计的。通常,小型汽车(C1类驾照)需要学习包括车辆构造、基础驾驶技能、安全行车常识、交通法规等内容。 4. 使用说明.html:这个文件是软件使用说明的文档,通常以网页格式存在,用户可以通过浏览器阅读。使用说明应该会详细介绍软件的安装流程、功能介绍、如何使用软件的各种模块以及如何通过软件来帮助自己更好地准备考试。 综合以上信息,我们可以挖掘出以下几个相关知识点: - 软件类型:辅助学习软件,专门针对驾驶考试设计。 - 应用领域:主要用于帮助驾考学员准备理论和实践考试。 - 文件类型:包括图片文件(images.dat)、库文件(library.dat)、可执行文件(.exe)和网页格式的说明文件(.html)。 - 功能内容:可能包含交通法规知识学习、交通标志识别、驾驶理论学习、模拟考试、考试题库练习等功能。 - 版本信息:软件很可能最早发布于2007年,后续可能有多个版本更新。 - 用户群体:主要面向小型汽车驾照考生,即C1类驾照学员。 - 使用方式:用户需要将.exe安装文件进行安装,然后根据.html格式的使用说明来熟悉软件操作,从而利用images.dat和library.dat中的资源来辅助学习。 以上知识点为从给定文件信息中提炼出来的重点,这些内容对于了解“驾校一点通”这款软件的功能、作用、使用方法以及它的发展历史都有重要的指导意义。
recommend-type

【DFLauncher自动化教程】:简化游戏启动流程,让游戏体验更流畅

# 摘要 DFLauncher是一个功能丰富的游戏启动和管理平台,本论文将介绍其安装、基础使用、高级设置、社区互动以及插件开发等方面。通过对配置文件的解析、界面定制、自动化功能的实现、高级配置选项、安全性和性能监控的详细讨论,本文阐述了DFLauncher如何帮助用户更高效地管理和优化游戏环境。此外,本文还探讨了DFLauncher社区的资源分享、教育教程和插件开发等内容,
recommend-type

自适应卡尔曼滤波是什么意思

<think>嗯,用户这次想深入了解自适应卡尔曼滤波(AKF)的概念和原理。从对话历史看,用户之前研究过相机自动对焦系统的降噪技术,其中提到过自适应卡尔曼滤波的应用场景。用户可能是个工程师或研究者,正在探索信号处理在具体场景的实现细节。 用户提供的三篇参考文献很有价值:[1]是基础理论综述,[2]聚焦多传感器场景,[3]讨论噪声协方差自适应方法。需要特别注意相机AF系统的特殊需求——实时性要求高(每秒数十次对焦计算)、噪声环境复杂(机械振动/弱光干扰),这些在解释原理时要结合具体案例。 技术要点需要分层解析:先明确标准卡尔曼滤波的局限(固定噪声参数),再展开自适应机制。对于相机AF场景,重