活动介绍

LogModel<-glm(y~.,data=newData,family=binomial(link="logit")) LogFit<-predict(object=LogModel,newdata=Data,type="response") Data$Log.scores<-LogFit library("ROCR") par(mfrow=c(2,2)) pd<-prediction(Data$Log.scores,Data$y) pf1<-performance(pd,measure="rec",x.measure="rpp") pf2<-performance(pd,measure="prec",x.measure="rec") plot(pf1,main="模式甄别的累计回溯精度曲线") plot(pf2,main="模式甄别的决策精度和回溯精度曲线") Data.Sort<-Data[order(x=Data$Log.scores,decreasing=TRUE),] P<-0.30 N<-length(Data[,1]) NoiseP<-head(Data.Sort,trunc(N*P)) colP<-ifelse(1:N %in% rownames(NoiseP),2,1) plot(Data[,1:2],main="SMOTE处理后的模式甄别结果(30%)",xlab="x1",ylab="x2",pch=as.integer(as.vector(Data[,3]))+1,cex=0.8,col=colP) LogModel<-glm(y~.,data=Data,family=binomial(link="logit")) LogFit<-predict(object=LogModel,newdata=Data,type="response") Data$Log.scores<-LogFit Data.Sort<-Data[order(x=Data$Log.scores,decreasing=TRUE),] NoiseP<-head(Data.Sort,trunc(N*P)) colP<-ifelse(1:N %in% rownames(NoiseP),2,1) plot(Data[,1:2],main="平衡化处理前的模式甄别结果(30%)",xlab="x1",ylab="x2",pch=as.integer(as.vector(Data[,3]))+1,cex=0.8,col=colP)

时间: 2023-06-18 21:08:40 浏览: 165
这段代码使用了逻辑回归模型(Logistic Regression)来进行二分类问题的预测。首先使用glm函数来创建逻辑回归模型(LogModel),然后使用predict函数来预测数据集(Data)的输出(LogFit),并将预测值保存在数据集(Data)的Log.scores列中。接下来使用ROCR包来创建累计回溯精度曲线(pf1)和决策精度和回溯精度曲线(pf2)。然后按照预测值从高到低对数据集(Data)进行排序(Data.Sort),并将预测值最高的30%数据点作为噪声点(NoiseP)。使用ifelse函数将噪声点的颜色设置为红色(2),其他点的颜色设置为蓝色(1),并将颜色信息保存在colP中。最后使用plot函数将处理后的数据集(Data)可视化,展示了噪声点过滤前后的模式甄别结果。
相关问题

Data<-read.table(file="模式甄别模拟数据3.txt",header=TRUE,sep=",") par(mfrow=c(2,2)) plot(Data[,1:2],main="样本观测点的分布",xlab="x1",ylab="x2",pch=Data[,3]+1,cex=0.8) library("DMwR2") library("sem") Data[which(Data[,3]==3),3]<-NA Data$y<-factor(Data$y) mySelfT<-function(ModelName,TestD) { Yheat<-predict(object=ModelName,newdata=TestD,type="response") return(data.frame(cl=ifelse(Yheat>=0.1,1,0),pheat=Yheat)) } library("lavaan") library("semPlot") library("semTools") SemiT<-SelfTrain(y~.,data=Data,'glm',learner.pars=list(family=binomial(link="logit")),pred="mySelfT",thrConf=0.02,maxIts=100,percFull=1) SemiP<-predict(object=SemiT,newdata=Data,type="response") Data$SemiP<-SemiP Data.Sort<-Data[order(x=Data$SemiP,decreasing=TRUE),] P<-0.30 N<-length(Data[,1]) NoiseP<-head(Data.Sort,trunc(N*P)) colP<-ifelse(1:N %in% rownames(NoiseP),2,1) a<-as.integer(as.vector(Data[,3])) plot(Data[,1:2],main="自训练模式甄别结果(30%)",xlab="x1",ylab="x2",pch=ifelse(is.na(a),3,a)+1,cex=0.8,col=colP)

这是一段 R 语言代码,主要是对模拟数据进行了一些分析和可视化。具体来说,它读取了一个名为“模式甄别模拟数据3.txt”的数据文件,然后对数据进行了绘图和模型训练。 在绘图方面,它使用了“plot”函数将数据的前两列(即“x1”和“x2”)进行了散点图绘制,其中点的颜色和大小由第三列数据(即“Data[,3]”)决定。 在模型训练方面,它使用了“SelfTrain”函数对数据进行了自训练模式甄别。具体来说,它首先将第三列数据中数值为3的行设置为缺失值(即NA),然后将数据分为训练集和测试集。接着,它使用“glm”函数训练了一个逻辑回归模型,并将其作为参数传递给“SelfTrain”函数。在训练过程中,它使用了“mySelfT”函数作为预测函数,并将其作为参数传递给“SelfTrain”函数。最后,它使用“predict”函数对训练集进行预测,并将结果保存在“SemiP”变量中。 最后,它将数据按照“SemiP”变量的值进行排序,并选择前30%的数据作为噪声数据,并将噪声数据的点颜色设置为红色。最终,它使用“plot”函数将带有噪声数据的散点图进行了绘制。

library(survival) data(lung)# 对数据进行预处理 lung$status <- ifelse(lung$status == 1, 0, 1) lung$ph.karno <- ifelse(is.na(lung$ph.karno), median(lung$ph.karno, na.rm = TRUE), lung$ph.karno) lung$pat.karno <- ifelse(is.na(lung$pat.karno), median(lung$pat.karno, na.rm = TRUE), lung$pat.karno) lung$age <- ifelse(is.na(lung$age), median(lung$age, na.rm = TRUE), lung$age)# 将数据集划分 set.seed(123) train_index <- sample(1:nrow(lung), size = round(nrow(lung) * 0.7), replace = FALSE) train_data <- lung[train_index, ] test_data <- lung[-train_index, ]# 构建模型 fit <- glm(status ~., data = train_data, family = binomial(link = 'logit'))# 预测测试集 prob <- predict(fit, newdata = test_data, type = "response") # 计算c-index concord <- 0 discord <- 0 for(i in 1:(nrow(test_data) - 1)) { for(j in (i + 1):nrow(test_data)){ if(test_data$status[i] == test_data$status[j]){ next } if(test_data$status[i] < test_data$status[j]){ if(prob[i] > prob[j]){ concord <- concord + 1 }else if(prob[i] < prob[j]){ discord <- discord + 1 } }else{ if(prob[i] > prob[j]){ discord <- discord + 1 }else if(prob[i] < prob[j]){ concord <- concord + 1 } } } } c_index <- (concord + 0.5 * discord) / (concord + discord) # 打印c-index cat("C-index:", c_index, "\n")为什么报错

我没有看到具体的报错信息,不过根据代码可能存在以下问题: 1. 缺少对survival包的加载,需要在代码开头加上`library(survival)`。 2. 在计算c-index时,可能会出现除以0的情况,因为discord的值可能为0。可以在计算前先判断discord是否为0,若为0则直接将c_index赋为1。 3. 在数据预处理时,可能会出现NA值的情况。可以使用`sum(is.na(lung))`查看数据中是否有缺失值,如果有,则需要进行相应的处理,比如使用中位数进行填充。 如果还有其他问题,可以提供具体的报错信息或者代码截图以供参考。
阅读全文

相关推荐

# 读取数据 df <- read.csv(file.choose()) # 分类变量和数值变量定义 categorical_vars <- c("年龄", "病程", "性别", "慢性合并症", "民族", "肿瘤部位", "经济状况", "职业性质", "是否手术", "有无肠造口", "有无转移", "工作状况", "婚姻状况", "有无放疗", "主要照顾者", "文化程度", "肿瘤分期", "化疗周期", "是否靶向", "治疗方案", "是否免疫治疗", "自我管理效能感水平") numeric_vars <- c("领悟社会支持", "体力活动水平") # 转换变量类型 df <- df %>% mutate(across(all_of(categorical_vars), as.factor), C = as.factor(C)) # 多重插补处理缺失值 imputed_data <- mice(df, m = 5, maxit = 50, method = "pmm", seed = 123) df <- complete(imputed_data) # 步骤1:单变量筛选(使用似然比检验) univ_results <- data.frame() for (var in c(categorical_vars, numeric_vars)) { # 跳过与因变量完全分离的变量 if (length(unique(df[[var]])) == 1) next # 构建公式 formula <- as.formula(paste("C ~", var)) # 拟合模型 tryCatch({ full_model <- glm(formula, data = df, family = binomial) null_model <- glm(C ~ 1, data = df, family = binomial) # 似然比检验 lrt <- anova(null_model, full_model, test = "LRT") p_value <- lrt$Pr(>Chi)[2] # 记录结果 univ_results <- rbind(univ_results, data.frame( Variable = var, P_value = p_value )) }, error = function(e) { message("Error in variable: ", var, " - ", conditionMessage(e)) }) } # 筛选P值<0.05的变量(可根据需要调整阈值) selected_vars <- univ_results$Variable[univ_results$P_value < 0.05 & !is.na(univ_results$P_value)] options(scipen = 999) # 取消科学计数法 options(digits = 3) # 设置保留三位小数 # 筛选P值小于0.05的变量 significant_vars <- univ_results[univ_results$P_value < 0.05 & !is.na(univ_results$P_value), ] print(significant_vars) ;接下来需要五种机器学习预测模型的构建:罗辑回归、决策树、随机森林、支持向量机和梯度提升树,给我相应的r语言代码,要衔接我的代码

最新推荐

recommend-type

员工工资管理系统VBSQL样本 (1)(1).doc

员工工资管理系统VBSQL样本 (1)(1).doc
recommend-type

精选Java案例开发技巧集锦

从提供的文件信息中,我们可以看出,这是一份关于Java案例开发的集合。虽然没有具体的文件名称列表内容,但根据标题和描述,我们可以推断出这是一份包含了多个Java编程案例的开发集锦。下面我将详细说明与Java案例开发相关的一些知识点。 首先,Java案例开发涉及的知识点相当广泛,它不仅包括了Java语言的基础知识,还包括了面向对象编程思想、数据结构、算法、软件工程原理、设计模式以及特定的开发工具和环境等。 ### Java基础知识 - **Java语言特性**:Java是一种面向对象、解释执行、健壮性、安全性、平台无关性的高级编程语言。 - **数据类型**:Java中的数据类型包括基本数据类型(int、short、long、byte、float、double、boolean、char)和引用数据类型(类、接口、数组)。 - **控制结构**:包括if、else、switch、for、while、do-while等条件和循环控制结构。 - **数组和字符串**:Java数组的定义、初始化和多维数组的使用;字符串的创建、处理和String类的常用方法。 - **异常处理**:try、catch、finally以及throw和throws的使用,用以处理程序中的异常情况。 - **类和对象**:类的定义、对象的创建和使用,以及对象之间的交互。 - **继承和多态**:通过extends关键字实现类的继承,以及通过抽象类和接口实现多态。 ### 面向对象编程 - **封装、继承、多态**:是面向对象编程(OOP)的三大特征,也是Java编程中实现代码复用和模块化的主要手段。 - **抽象类和接口**:抽象类和接口的定义和使用,以及它们在实现多态中的不同应用场景。 ### Java高级特性 - **集合框架**:List、Set、Map等集合类的使用,以及迭代器和比较器的使用。 - **泛型编程**:泛型类、接口和方法的定义和使用,以及类型擦除和通配符的应用。 - **多线程和并发**:创建和管理线程的方法,synchronized和volatile关键字的使用,以及并发包中的类如Executor和ConcurrentMap的应用。 - **I/O流**:文件I/O、字节流、字符流、缓冲流、对象序列化的使用和原理。 - **网络编程**:基于Socket编程,使用java.net包下的类进行网络通信。 - **Java内存模型**:理解堆、栈、方法区等内存区域的作用以及垃圾回收机制。 ### Java开发工具和环境 - **集成开发环境(IDE)**:如Eclipse、IntelliJ IDEA等,它们提供了代码编辑、编译、调试等功能。 - **构建工具**:如Maven和Gradle,它们用于项目构建、依赖管理以及自动化构建过程。 - **版本控制工具**:如Git和SVN,用于代码的版本控制和团队协作。 ### 设计模式和软件工程原理 - **设计模式**:如单例、工厂、策略、观察者、装饰者等设计模式,在Java开发中如何应用这些模式来提高代码的可维护性和可扩展性。 - **软件工程原理**:包括软件开发流程、项目管理、代码审查、单元测试等。 ### 实际案例开发 - **项目结构和构建**:了解如何组织Java项目文件,合理使用包和模块化结构。 - **需求分析和设计**:明确项目需求,进行系统设计,如数据库设计、系统架构设计等。 - **代码编写和实现**:根据设计编写符合要求的代码,实现系统的各个模块功能。 - **测试和维护**:进行单元测试、集成测试,确保代码质量,对项目进行维护和升级。 ### 其他相关知识点 - **Java虚拟机(JVM)**:了解JVM的基本工作原理,包括类加载机制、内存管理、垃圾回收算法等。 - **常用Java框架**:比如Spring、Hibernate、MyBatis等,在实际开发中常常与Java基础结合使用,提高开发效率。 以上知识点可以作为学习Java案例开发的基础框架。在实际的开发实践中,开发者需要结合具体的项目需求,对这些知识点进行灵活运用。通过反复的案例实践,可以加深对Java编程的理解,并逐步提升开发技能。这份集锦可能包含的案例可能涉及上述知识点的具体应用,能够帮助学习者更好地理解理论与实践的结合,从而快速提升个人的Java开发能力。
recommend-type

【VASP报错深度解析】:5大技巧识别并永久解决离子距离太近警告

# 1. VASP软件简介及离子距离太近问题概述 ## 1.1 VASP软件简介 **VASP(Vienna Ab initio Simulation Package)** 是一款广泛应用于计算材料科学的软件,它基于密度泛函理论(DFT)计算固体、表面和分子的电子结构和性质。
recommend-type

npm error A complete log of this run can be found in: D:\Program Files\nodejs\node_cache\_logs\2025-04-20T15_11_51_454Z-debug-0.log

<think>好的,我需要帮助用户找到npm的错误调试日志位置,并解决他们遇到的npm错误。首先,用户已经提供了一个具体的日志路径:'D:\Program Files\nodejs\node_cache\_logs\2025-04-20T15_11_51_454Z-debug-0.log',但看起来这个路径可能有问题,因为日期是2025年,这可能是一个示例或输入错误。我需要确认正确的日志路径生成方式。 根据npm的默认配置,日志文件通常位于npm的缓存目录下的_logs文件夹中。默认情况下,Windows系统中npm的缓存路径是%AppData%\npm-cache,而日志文件会以当前日期和
recommend-type

深入理解内存技术文档详解

由于文件内容无法查看,仅能根据文件的标题、描述、标签以及文件名称列表来构建相关知识点。以下是对“内存详解”这一主题的详细知识点梳理。 内存,作为计算机硬件的重要组成部分,负责临时存放CPU处理的数据和指令。理解内存的工作原理、类型、性能参数等对优化计算机系统性能至关重要。本知识点将从以下几个方面来详细介绍内存: 1. 内存基础概念 内存(Random Access Memory,RAM)是易失性存储器,这意味着一旦断电,存储在其中的数据将会丢失。内存允许计算机临时存储正在执行的程序和数据,以便CPU可以快速访问这些信息。 2. 内存类型 - 动态随机存取存储器(DRAM):目前最常见的RAM类型,用于大多数个人电脑和服务器。 - 静态随机存取存储器(SRAM):速度较快,通常用作CPU缓存。 - 同步动态随机存取存储器(SDRAM):在时钟信号的同步下工作的DRAM。 - 双倍数据速率同步动态随机存取存储器(DDR SDRAM):在时钟周期的上升沿和下降沿传输数据,大幅提升了内存的传输速率。 3. 内存组成结构 - 存储单元:由存储位构成的最小数据存储单位。 - 地址总线:用于选择内存中的存储单元。 - 数据总线:用于传输数据。 - 控制总线:用于传输控制信号。 4. 内存性能参数 - 存储容量:通常用MB(兆字节)或GB(吉字节)表示,指的是内存能够存储多少数据。 - 内存时序:指的是内存从接受到请求到开始读取数据之间的时间间隔。 - 内存频率:通常以MHz或GHz为单位,是内存传输数据的速度。 - 内存带宽:数据传输速率,通常以字节/秒为单位,直接关联到内存频率和数据位宽。 5. 内存工作原理 内存基于电容器和晶体管的工作原理,电容器存储电荷来表示1或0的状态,晶体管则用于读取或写入数据。为了保持数据不丢失,动态内存需要定期刷新。 6. 内存插槽与安装 - 计算机主板上有专用的内存插槽,常见的有DDR2、DDR3、DDR4和DDR5等不同类型。 - 安装内存时需确保兼容性,并按照正确的方向插入内存条,避免物理损坏。 7. 内存测试与优化 - 测试:可以使用如MemTest86等工具测试内存的稳定性和故障。 - 优化:通过超频来提高内存频率,但必须确保稳定性,否则会导致数据损坏或系统崩溃。 8. 内存兼容性问题 不同内存条可能由于制造商、工作频率、时序、电压等参数的不匹配而产生兼容性问题。在升级或更换内存时,必须检查其与主板和现有系统的兼容性。 9. 内存条的常见品牌与型号 诸如金士顿(Kingston)、海盗船(Corsair)、三星(Samsung)和芝奇(G.Skill)等知名品牌提供多种型号的内存条,针对不同需求的用户。 由于“内存详解.doc”是文件标题指定的文件内容,我们可以预期在该文档中将详细涵盖以上知识点,并有可能包含更多的实践案例、故障排查方法以及内存技术的最新发展等高级内容。在实际工作中,理解并应用这些内存相关的知识点对于提高计算机性能、解决计算机故障有着不可估量的价值。
recommend-type

【机械特性分析进阶秘籍】:频域与时域对比的全面研究

# 1. 机械特性分析的频域与时域概述 ## 1.1 频域与时域分析的基本概念 机械特性分析是通
recommend-type

dslicsrv安装报错Too many errors

<think>好的,用户遇到了安装dslicsrv时出现“Too many errors”的问题,需要帮助解决。首先,我需要明确dslicsrv是什么。可能是指某个特定的软件服务,但根据常见软件库和搜索引擎的信息,没有直接对应的结果。可能是拼写错误,或者是某个特定领域的专有软件?比如,可能与Dell的某个服务有关?例如,Dell System License Manager Service(dsLicSvc)可能更接近。假设用户可能拼写错误,将dslicsrv理解为dsLicSvc,即Dell的系统许可证管理服务。 接下来,用户遇到的错误是安装时出现“Too many errors”,这通常
recommend-type

深入解析Pro Ajax与Java技术的综合应用框架

根据提供的文件信息,我们可以推断出一系列与标题《Pro Ajax and Java》相关的IT知识点。这本书是由Apress出版,关注的是Ajax和Java技术。下面我将详细介绍这些知识点。 ### Ajax技术 Ajax(Asynchronous JavaScript and XML)是一种无需重新加载整个页面即可更新网页的技术。它通过在后台与服务器进行少量数据交换,实现了异步更新网页内容的目的。 1. **异步通信**:Ajax的核心是通过XMLHttpRequest对象或者现代的Fetch API等技术实现浏览器与服务器的异步通信。 2. **DOM操作**:利用JavaScript操作文档对象模型(DOM),能够实现页面内容的动态更新,而无需重新加载整个页面。 3. **数据交换格式**:Ajax通信中常使用的数据格式包括XML和JSON,但近年来JSON因其轻量级和易用性更受青睐。 4. **跨浏览器兼容性**:由于历史原因,实现Ajax的JavaScript代码需要考虑不同浏览器的兼容性问题。 5. **框架和库**:有许多流行的JavaScript库和框架支持Ajax开发,如jQuery、Dojo、ExtJS等,这些工具简化了Ajax的实现和数据操作。 ### Java技术 Java是一种广泛使用的面向对象编程语言,其在企业级应用、移动应用开发(Android)、Web应用开发等方面有着广泛应用。 1. **Java虚拟机(JVM)**:Java程序运行在Java虚拟机上,这使得Java具有良好的跨平台性。 2. **Java标准版(Java SE)**:包含了Java的核心类库和API,是Java应用开发的基础。 3. **Java企业版(Java EE)**:为企业级应用提供了额外的API和服务,如Java Servlet、JavaServer Pages(JSP)、Enterprise JavaBeans(EJB)等。 4. **面向对象编程(OOP)**:Java是一种纯粹的面向对象语言,它的语法和机制支持封装、继承和多态性。 5. **社区和生态系统**:Java拥有庞大的开发者社区和丰富的第三方库和框架,如Spring、Hibernate等,这些资源极大丰富了Java的应用范围。 ### 结合Ajax和Java 在结合使用Ajax和Java进行开发时,我们通常会采用MVC(模型-视图-控制器)架构模式,来构建可维护和可扩展的应用程序。 1. **服务器端技术**:Java经常被用来构建服务器端应用逻辑。例如,使用Servlet来处理客户端的请求,再将数据以Ajax请求的响应形式返回给客户端。 2. **客户端技术**:客户端的JavaScript(或使用框架库如jQuery)用于发起Ajax请求,并更新页面内容。 3. **数据格式**:Java后端通常会使用JSON或XML格式与Ajax进行数据交换。 4. **安全性**:Ajax请求可能涉及敏感数据,因此需要考虑如跨站请求伪造(CSRF)等安全问题。 5. **性能优化**:合理使用Ajax可以提升用户体验,但同时也需要注意对服务器和网络的负载,以及客户端脚本的执行性能。 ### 出版信息及文件信息 《Pro Ajax and Java》由Apress出版社出版,通常这种出版物会包含丰富的实例代码、开发指导、最佳实践以及相关的技术讨论。它旨在帮助开发者深化对Ajax和Java技术的理解和应用能力。 文件名“Apress.Pro.Ajax.and.Java.Frameworks.Jul.2006.HAPPY.NEW.YEAR.pdf”暗示了这份文档可能是一本专业的技术书籍。从文件名可以看出,该书还可能包含了框架使用方面的内容,并且是2006年出版的。标题中的“HAPPY.NEW.YEAR”可能仅仅是为了庆祝新年而加入的非标准部分。 总结而言,了解Ajax和Java的结合使用,不仅需要掌握两种技术的基本原理和使用方法,还要熟悉如何将它们整合到实际项目中,解决可能出现的技术挑战,从而构建功能强大且用户友好的Web应用。
recommend-type

【频域分析深度解读】:揭秘机械系统分析中的实用应用

# 1. 频域分析基础理论 频域分析是信号处理领域的一个重要分支,其核心在于研究信号在频率维度上的特性。与时域分析不同,频域分析关注的是信号频率成分的组成,这允许我们以一种直观的方式识别和处理信号中的特定频率特征。通过对信号进行傅里叶变换,原始的时域信号可以被转换为频域信号,这样就可以清晰地显示出各频率成分的幅度和相位信息。这种分析手段对于信号去噪、特征提取、压缩编码等应用场景至关重
recommend-type

openmv与stm32通信的时候,openmv的vin接5v会出问题吗

<think>我们正在处理用户关于OpenMV与STM32通信时,将OpenMV的VIN引脚连接到5V是否会引发问题。 根据引用[3]中的信息,AMG8833传感器在STM32上使用时,由单片机的3.3V和GND引脚供电。同时,引用[3]提到OpenMV相机作为配套计算机的情况,但用户的问题具体是OpenMV的VIN引脚接5V的问题。 我们需要明确OpenMV的电源要求: - OpenMV Cam的VIN引脚是电源输入引脚,其可接受电压范围通常在3.6V至5V。因此,5V是在可接受范围内的。 但是,我们还需要注意: 1. OpenMV Cam内部有稳压电路,会将输入电压降到3.3V