活动介绍

select(*self.fill_empty_colums(new_df_cols, total))

时间: 2023-12-20 21:06:40 浏览: 78
`select(*self.fill_empty_colums(new_df_cols, total))` 是 PySpark 中的一个函数,它的作用是选取 DataFrame 中的一些列,这些列的列表由 `self.fill_empty_colums(new_df_cols, total)` 函数生成。该函数的具体实现可能在其他部分定义,但是它的作用是填充一个列名列表,使得列表中的元素数量等于 `total` 变量的值。如果 `new_df_cols` 列表中的元素数量少于 `total`,则会使用特定的值填充列表,以保证列表长度为 `total`。在 SQL 中,这个操作可以使用 `SELECT column1, column2, ..., columnN` 的形式来实现,其中 `column1, column2, ..., columnN` 是一个包含所有列名的列表,这个列表由 `self.fill_empty_colums(new_df_cols, total)` 函数生成。
相关问题

new_df = new_df.select(*self.fill_empty_colums(new_df_cols, total)).withColumn("row_priority",F.lit(0)) older_df = older_df.select(*self.fill_empty_colums(old_df_cols, total)).withColumn("row_priority",F.lit(1)) key_column = [F.col(column_name) for column_name in key_columns]

这段代码的SQL实现如下: ``` -- 对 new_df 进行处理 WITH new_df_filled AS ( SELECT *, CASE WHEN col1 IS NULL THEN 'default_value' ELSE col1 END AS col1_filled, CASE WHEN col2 IS NULL THEN 'default_value' ELSE col2 END AS col2_filled, ..., CASE WHEN coln IS NULL THEN 'default_value' ELSE coln END AS coln_filled FROM new_df ), new_df_processed AS ( SELECT col1_filled, col2_filled, ..., coln_filled, 0 AS row_priority FROM new_df_filled ), -- 对 older_df 进行处理 older_df_filled AS ( SELECT *, CASE WHEN col1 IS NULL THEN 'default_value' ELSE col1 END AS col1_filled, CASE WHEN col2 IS NULL THEN 'default_value' ELSE col2 END AS col2_filled, ..., CASE WHEN coln IS NULL THEN 'default_value' ELSE coln END AS coln_filled FROM older_df ), older_df_processed AS ( SELECT col1_filled, col2_filled, ..., coln_filled, 1 AS row_priority FROM older_df_filled ) -- 合并两个DataFrame SELECT col1_filled, col2_filled, ..., coln_filled, row_priority FROM ( SELECT * FROM new_df_processed UNION ALL SELECT * FROM older_df_processed ) AS merged_df WHERE (col1_filled, col2_filled, ..., coln_filled) IN ( SELECT col1_filled, col2_filled, ..., coln_filled FROM new_df_processed UNION SELECT col1_filled, col2_filled, ..., coln_filled FROM older_df_processed WHERE NOT (col1_filled, col2_filled, ..., coln_filled) IN ( SELECT col1_filled, col2_filled, ..., coln_filled FROM new_df_processed ) ) ``` 其中,`new_df`和`older_df`分别是原始的DataFrame,`new_df_cols`和`old_df_cols`是DataFrame中的列名列表,`total`是总列数,`key_columns`是用于合并两个DataFrame的关键列。首先,对`new_df`和`older_df`分别进行处理,填充空列并添加`row_priority`列。然后,将两个DataFrame合并,并使用`WHERE`子句过滤出唯一的行。最后,选择填充后的列和`row_priority`列。需要注意的是,这段代码中的`NOT IN`子句可能会对性能产生负面影响,可以考虑使用`LEFT JOIN`和`NULL`判断来代替。

new_df_cols = new_df.columns old_df_cols = older_df.columns total = set(new_df_cols + old_df_cols) new_df = new_df.select(*self.fill_empty_colums(new_df_cols, total)).withColumn("row_priority",F.lit(0)) older_df = older_df.select(*self.fill_empty_colums(old_df_cols, total)).withColumn("row_priority",F.lit(1)) key_column = [F.col(column_name) for column_name in key_columns] merge_spec = Window.partitionBy(key_column).orderBy("row_priority") ranked_df=new_df.unionByName(older_df).withColumn("rank", F.rank().over(merge_spec)) return self.update_audit_created_column(ranked_df,key_column).where(F.col("rank") == 1).drop("rank", "row_priority")

这段代码用 PySpark 实现了对两个 DataFrame 进行合并和去重的操作,并添加了一些元数据信息。下面是使用 SQL 实现的代码: ```sql -- 选取需要合并的列名 WITH new_cols AS ( SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = 'new_df' ), old_cols AS ( SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = 'older_df' ), cols AS ( SELECT DISTINCT COLUMN_NAME FROM ( SELECT COLUMN_NAME FROM new_cols UNION ALL SELECT COLUMN_NAME FROM old_cols ) ), -- 对 new_df 填充空缺的列,并添加 "row_priority" 列 new_df_filled AS ( SELECT COALESCE(col1, '') AS col1, COALESCE(col2, '') AS col2, ..., COALESCE(colN, '') AS colN, 0 AS row_priority FROM new_df ), new_df_selected AS ( SELECT *, ROW_NUMBER() OVER (PARTITION BY key_column ORDER BY row_priority) AS rank FROM ( -- 选取 new_df 中的列,包括填充空缺的列和 "row_priority" 列 SELECT col1, col2, ..., colN, row_priority FROM new_df_filled -- 生成 key_column 列,用于分组 CROSS JOIN (SELECT col1 AS key_column FROM new_df_filled) key_columns ) ), -- 对 older_df 填充空缺的列,并添加 "row_priority" 列 old_df_filled AS ( SELECT COALESCE(col1, '') AS col1, COALESCE(col2, '') AS col2, ..., COALESCE(colN, '') AS colN, 1 AS row_priority FROM older_df ), old_df_selected AS ( SELECT *, ROW_NUMBER() OVER (PARTITION BY key_column ORDER BY row_priority) AS rank FROM ( -- 选取 older_df 中的列,包括填充空缺的列和 "row_priority" 列 SELECT col1, col2, ..., colN, row_priority FROM old_df_filled -- 生成 key_column 列,用于分组 CROSS JOIN (SELECT col1 AS key_column FROM old_df_filled) key_columns ) ), -- 合并两个 DataFrame,并去重 merged_df AS ( SELECT * FROM new_df_selected UNION ALL SELECT * FROM old_df_selected ), -- 选取合并后的第一行 final_df AS ( SELECT *, ROW_NUMBER() OVER (PARTITION BY key_column ORDER BY rank) AS row_num FROM merged_df ) SELECT col1, col2, ..., colN FROM final_df WHERE row_num = 1 ``` 这段 SQL 代码的实现原理与 PySpark 代码相同,主要分为以下几个步骤: 1. 获取需要合并的列名。 2. 对 new_df 和 older_df 分别进行填充空缺列、添加 "row_priority" 列和选取列的操作,生成 new_df_selected 和 old_df_selected 两个数据集。 3. 将 two_df_selected 进行合并,并添加 rank 列,用于去重。 4. 选取合并后的第一行,得到最终的去重结果。
阅读全文

相关推荐

import numpy as np import pandas as pd import math def left_boundary(t): # 左边值 return 0 def right_boundary(t): # 右边值 return 0 def initial_T(x_max, t_max, delta_x, delta_t, m, n): # 给温度T初始化 T = np.zeros((n + 1, m + 1)) for i in range(m + 1): # 初值 T[0, i] = math.sin(i * delta_x) T[1, i] = delta_t*math.sin(i * delta_x)+math.sin(i * delta_x) for i in range(1, n + 1): # 注意不包括T[0,0]与T[0,-1] T[i, 0] = left_boundary(i * delta_t) # 左边值 T[i, -1] = right_boundary(i * delta_t) # 右边值 return T # 一、显格式 def one_dimensional_heat_conduction1(T, m, n, r,delta_t,delta_x): for k in range(2, n): # 时间层 for i in range(1, m): # 空间层 T[k, i] = (2 - 2 * r) * T[k - 1, i] + r * (T[k - 1, i - 1] + T[k - 1, i + 1]) - T[k - 1, i-1]+(delta_t)^2*2*np.exp(k * delta_t )*sin(i *delta_x) return T a = 1 # 热传导系数 x_max = 1j*math.pi/10 t_max = 0.8 delta_t = 1/50 # 时间步长 delta_x = math.pi/100 # 空间步长 m = int(x_max / delta_x) # 长度等分成m份 n = int(t_max / delta_t) # 时间等分成n份 t_grid = np.arange(0, t_max + delta_t, delta_t) # 时间网格 x_grid = np.arange(0, x_max + delta_x, delta_x) # 位置网格 r = (a * delta_t / (delta_x ** 2)).__round__(6) # 网格比 T = initial_T(x_max, t_max, delta_x, delta_t, m, n) print('长度等分成{}份'.format(m)) print('时间等分成{}份'.format(n)) print('网格比=', r) p = pd.ExcelWriter('二阶显格式-双曲型方程初边值问题.xlsx') T1 = one_dimensional_heat_conduction1(T, m, n, r,delta_t,delta_x) print('显格式',T1) T1 = pd.DataFrame(T1, columns=x_grid, index=t_grid) # colums是列号,index是行号 如何修改不过

<template> </template> <script> import * as echarts from '@/assets/echarts.min.js'; export default{ data(){ return{ data:[] } }, async created(){ const response = await fetch('/clothing_sales_data.csv'); const csvData = await response.text(); const rows = csvData.trim().split('\n'); this.data = rows.slice(1).map(row =>{ const colums = row.split(','); const Sales_Quantity = parseFloat(colums[3])//销售数量 const Sales_Stores = colums[15]//销售门店 return { SalesQuantity:Sales_Quantity, SalesStores:Sales_Stores } }); this.initChart(); }, methods:{ initChart(){ const myChart = echarts.init(document.getElementById('test02')); const SalesData = this.data.reduce((acc,item)=>{ if(!acc[item.SalesStores]){ acc[item.SalesStores] = 0; } acc[item.SalesStores] += Number(item.SalesStores ||0 ); return acc; },{}); const Sales_Data = Object.keys(SalesData) .map(Sales_Stores=>({ Sales_Stores:Sales_Stores, Total_Salesamount:SalesData[Sales_Stores] })) .sort((a,b)=>a.Total_Salesamount - b.Total_Salesamount); const low5DATA = Sales_Data.slice(0,5); const StoresName = low5DATA.map(item => item.Sales_Stores); const StoresSales = low5DATA.map(item => item.Total_Salesamount) const option={ title:{ text:'示2023~2024年销售数量最低的前5个门店', left:'top' }, tooltip:{ trigger:'axis' }, xAxis:{ type:'category', data:StoresName }, yAxis:{ type:'value' }, series:[{ data:StoresSales, type:'bar', label:{ show:true, position:'outside', formatter:function(params){ return params.value.toFixed(2) } }, }] } myChart.setOption(option); } } } </script> 检查代码,为什么没数据】

最新推荐

recommend-type

员工工资管理系统VBSQL样本 (1)(1).doc

员工工资管理系统VBSQL样本 (1)(1).doc
recommend-type

门户网站建设方案(1).doc

门户网站建设方案(1).doc
recommend-type

计算机逻辑结构与基础课件4_2ALU的组织new(1).ppt

计算机逻辑结构与基础课件4_2ALU的组织new(1).ppt
recommend-type

化工自动化控制仪表作业试题..(1).doc

化工自动化控制仪表作业试题..(1).doc
recommend-type

精选Java案例开发技巧集锦

从提供的文件信息中,我们可以看出,这是一份关于Java案例开发的集合。虽然没有具体的文件名称列表内容,但根据标题和描述,我们可以推断出这是一份包含了多个Java编程案例的开发集锦。下面我将详细说明与Java案例开发相关的一些知识点。 首先,Java案例开发涉及的知识点相当广泛,它不仅包括了Java语言的基础知识,还包括了面向对象编程思想、数据结构、算法、软件工程原理、设计模式以及特定的开发工具和环境等。 ### Java基础知识 - **Java语言特性**:Java是一种面向对象、解释执行、健壮性、安全性、平台无关性的高级编程语言。 - **数据类型**:Java中的数据类型包括基本数据类型(int、short、long、byte、float、double、boolean、char)和引用数据类型(类、接口、数组)。 - **控制结构**:包括if、else、switch、for、while、do-while等条件和循环控制结构。 - **数组和字符串**:Java数组的定义、初始化和多维数组的使用;字符串的创建、处理和String类的常用方法。 - **异常处理**:try、catch、finally以及throw和throws的使用,用以处理程序中的异常情况。 - **类和对象**:类的定义、对象的创建和使用,以及对象之间的交互。 - **继承和多态**:通过extends关键字实现类的继承,以及通过抽象类和接口实现多态。 ### 面向对象编程 - **封装、继承、多态**:是面向对象编程(OOP)的三大特征,也是Java编程中实现代码复用和模块化的主要手段。 - **抽象类和接口**:抽象类和接口的定义和使用,以及它们在实现多态中的不同应用场景。 ### Java高级特性 - **集合框架**:List、Set、Map等集合类的使用,以及迭代器和比较器的使用。 - **泛型编程**:泛型类、接口和方法的定义和使用,以及类型擦除和通配符的应用。 - **多线程和并发**:创建和管理线程的方法,synchronized和volatile关键字的使用,以及并发包中的类如Executor和ConcurrentMap的应用。 - **I/O流**:文件I/O、字节流、字符流、缓冲流、对象序列化的使用和原理。 - **网络编程**:基于Socket编程,使用java.net包下的类进行网络通信。 - **Java内存模型**:理解堆、栈、方法区等内存区域的作用以及垃圾回收机制。 ### Java开发工具和环境 - **集成开发环境(IDE)**:如Eclipse、IntelliJ IDEA等,它们提供了代码编辑、编译、调试等功能。 - **构建工具**:如Maven和Gradle,它们用于项目构建、依赖管理以及自动化构建过程。 - **版本控制工具**:如Git和SVN,用于代码的版本控制和团队协作。 ### 设计模式和软件工程原理 - **设计模式**:如单例、工厂、策略、观察者、装饰者等设计模式,在Java开发中如何应用这些模式来提高代码的可维护性和可扩展性。 - **软件工程原理**:包括软件开发流程、项目管理、代码审查、单元测试等。 ### 实际案例开发 - **项目结构和构建**:了解如何组织Java项目文件,合理使用包和模块化结构。 - **需求分析和设计**:明确项目需求,进行系统设计,如数据库设计、系统架构设计等。 - **代码编写和实现**:根据设计编写符合要求的代码,实现系统的各个模块功能。 - **测试和维护**:进行单元测试、集成测试,确保代码质量,对项目进行维护和升级。 ### 其他相关知识点 - **Java虚拟机(JVM)**:了解JVM的基本工作原理,包括类加载机制、内存管理、垃圾回收算法等。 - **常用Java框架**:比如Spring、Hibernate、MyBatis等,在实际开发中常常与Java基础结合使用,提高开发效率。 以上知识点可以作为学习Java案例开发的基础框架。在实际的开发实践中,开发者需要结合具体的项目需求,对这些知识点进行灵活运用。通过反复的案例实践,可以加深对Java编程的理解,并逐步提升开发技能。这份集锦可能包含的案例可能涉及上述知识点的具体应用,能够帮助学习者更好地理解理论与实践的结合,从而快速提升个人的Java开发能力。
recommend-type

【VASP报错深度解析】:5大技巧识别并永久解决离子距离太近警告

# 1. VASP软件简介及离子距离太近问题概述 ## 1.1 VASP软件简介 **VASP(Vienna Ab initio Simulation Package)** 是一款广泛应用于计算材料科学的软件,它基于密度泛函理论(DFT)计算固体、表面和分子的电子结构和性质。
recommend-type

npm error A complete log of this run can be found in: D:\Program Files\nodejs\node_cache\_logs\2025-04-20T15_11_51_454Z-debug-0.log

<think>好的,我需要帮助用户找到npm的错误调试日志位置,并解决他们遇到的npm错误。首先,用户已经提供了一个具体的日志路径:'D:\Program Files\nodejs\node_cache\_logs\2025-04-20T15_11_51_454Z-debug-0.log',但看起来这个路径可能有问题,因为日期是2025年,这可能是一个示例或输入错误。我需要确认正确的日志路径生成方式。 根据npm的默认配置,日志文件通常位于npm的缓存目录下的_logs文件夹中。默认情况下,Windows系统中npm的缓存路径是%AppData%\npm-cache,而日志文件会以当前日期和
recommend-type

深入理解内存技术文档详解

由于文件内容无法查看,仅能根据文件的标题、描述、标签以及文件名称列表来构建相关知识点。以下是对“内存详解”这一主题的详细知识点梳理。 内存,作为计算机硬件的重要组成部分,负责临时存放CPU处理的数据和指令。理解内存的工作原理、类型、性能参数等对优化计算机系统性能至关重要。本知识点将从以下几个方面来详细介绍内存: 1. 内存基础概念 内存(Random Access Memory,RAM)是易失性存储器,这意味着一旦断电,存储在其中的数据将会丢失。内存允许计算机临时存储正在执行的程序和数据,以便CPU可以快速访问这些信息。 2. 内存类型 - 动态随机存取存储器(DRAM):目前最常见的RAM类型,用于大多数个人电脑和服务器。 - 静态随机存取存储器(SRAM):速度较快,通常用作CPU缓存。 - 同步动态随机存取存储器(SDRAM):在时钟信号的同步下工作的DRAM。 - 双倍数据速率同步动态随机存取存储器(DDR SDRAM):在时钟周期的上升沿和下降沿传输数据,大幅提升了内存的传输速率。 3. 内存组成结构 - 存储单元:由存储位构成的最小数据存储单位。 - 地址总线:用于选择内存中的存储单元。 - 数据总线:用于传输数据。 - 控制总线:用于传输控制信号。 4. 内存性能参数 - 存储容量:通常用MB(兆字节)或GB(吉字节)表示,指的是内存能够存储多少数据。 - 内存时序:指的是内存从接受到请求到开始读取数据之间的时间间隔。 - 内存频率:通常以MHz或GHz为单位,是内存传输数据的速度。 - 内存带宽:数据传输速率,通常以字节/秒为单位,直接关联到内存频率和数据位宽。 5. 内存工作原理 内存基于电容器和晶体管的工作原理,电容器存储电荷来表示1或0的状态,晶体管则用于读取或写入数据。为了保持数据不丢失,动态内存需要定期刷新。 6. 内存插槽与安装 - 计算机主板上有专用的内存插槽,常见的有DDR2、DDR3、DDR4和DDR5等不同类型。 - 安装内存时需确保兼容性,并按照正确的方向插入内存条,避免物理损坏。 7. 内存测试与优化 - 测试:可以使用如MemTest86等工具测试内存的稳定性和故障。 - 优化:通过超频来提高内存频率,但必须确保稳定性,否则会导致数据损坏或系统崩溃。 8. 内存兼容性问题 不同内存条可能由于制造商、工作频率、时序、电压等参数的不匹配而产生兼容性问题。在升级或更换内存时,必须检查其与主板和现有系统的兼容性。 9. 内存条的常见品牌与型号 诸如金士顿(Kingston)、海盗船(Corsair)、三星(Samsung)和芝奇(G.Skill)等知名品牌提供多种型号的内存条,针对不同需求的用户。 由于“内存详解.doc”是文件标题指定的文件内容,我们可以预期在该文档中将详细涵盖以上知识点,并有可能包含更多的实践案例、故障排查方法以及内存技术的最新发展等高级内容。在实际工作中,理解并应用这些内存相关的知识点对于提高计算机性能、解决计算机故障有着不可估量的价值。
recommend-type

【机械特性分析进阶秘籍】:频域与时域对比的全面研究

# 1. 机械特性分析的频域与时域概述 ## 1.1 频域与时域分析的基本概念 机械特性分析是通
recommend-type

dslicsrv安装报错Too many errors

<think>好的,用户遇到了安装dslicsrv时出现“Too many errors”的问题,需要帮助解决。首先,我需要明确dslicsrv是什么。可能是指某个特定的软件服务,但根据常见软件库和搜索引擎的信息,没有直接对应的结果。可能是拼写错误,或者是某个特定领域的专有软件?比如,可能与Dell的某个服务有关?例如,Dell System License Manager Service(dsLicSvc)可能更接近。假设用户可能拼写错误,将dslicsrv理解为dsLicSvc,即Dell的系统许可证管理服务。 接下来,用户遇到的错误是安装时出现“Too many errors”,这通常