活动介绍

// SYS_CLK_FREQ表示输入时钟频率;TARGET_CLK_FREQ表示目标时钟频率;N表示计数器的位宽 module clkdiv #(parameter SYS_CLK_FREQ = 100_000_000, TARGET_CLK_FREQ = 10_000_000, N = 3)( input sys_clk, input sys_rst_n, output clk_out ); // 请在下面添加代码,对输入时钟(100MHz)进行10分频 // 代码量预计10~13行 /****** Begin / / End ******/ endmodule输入信号: 时钟周期为10ns(100MHz); 0ns: sys_clk = 0, sys_rst_n = 0; 20ns: sys_rst_n = 1; 复位信号无效后,再经历20个时钟上升沿。 预期输出: VCD info: dumpfile waveform.vcd opened for output. At time 0ns: sys_rst_n = 0, clk_out = x At time 5ns: sys_rst_n = 0, clk_out = 0 At time 20ns: sys_rst_n = 1, clk_out = 0 At time 65ns: sys_rst_n = 1, clk_out = 1 At time 115ns: sys_rst_n = 1, clk_out = 0 At time 165ns: sys_rst_n = 1, clk_out = 1 At time 215ns: sys_rst_n = 1, clk_out = 0

时间: 2024-01-24 10:20:17 浏览: 99
module clkdiv #(parameter SYS_CLK_FREQ = 100_000_000, TARGET_CLK_FREQ = 10_000_000, N = 3)( input sys_clk, input sys_rst_n, output clk_out ); reg [N-1:0] counter; reg clk_out_reg; always @(posedge sys_clk or negedge sys_rst_n) begin if (~sys_rst_n) begin counter <= 0; clk_out_reg <= 0; end else begin counter <= counter + 1; if (counter == SYS_CLK_FREQ / TARGET_CLK_FREQ / 2 - 1) begin counter <= 0; clk_out_reg <= ~clk_out_reg; end end end assign clk_out = clk_out_reg; endmodule
相关问题

// SYS_CLK_FREQ表示输入时钟频率;TARGET_CLK_FREQ表示目标时钟频率;N表示计数器的位宽 module clkdiv #(parameter SYS_CLK_FREQ = 100_000_000, TARGET_CLK_FREQ = 10_000_000, N = 3)( input sys_clk, input sys_rst_n, output clk_out ); // 请在下面添加代码,对输入时钟(100MHz)进行10分频 // 代码量预计10~13行 /****** Begin ******/ /****** End ******/ endmodule

module clkdiv #(parameter SYS_CLK_FREQ = 100_000_000, TARGET_CLK_FREQ = 10_000_000, N = 3)( input sys_clk, input sys_rst_n, output clk_out ); // 计算分频系数 localparam DIV_FACTOR = SYS_CLK_FREQ / TARGET_CLK_FREQ; reg [N-1:0] counter = 0; always @(posedge sys_clk or negedge sys_rst_n) begin if (!sys_rst_n) begin counter <= 0; clk_out <= 0; end else if (counter == DIV_FACTOR-1) begin counter <= 0; clk_out <= ~clk_out; end else begin counter <= counter + 1; end end endmodule // 代码量预计为10~13行

#include "ADC_Config.h" #define ADCIP_CTRL (*(uint32_t*)(0x40020800+0x60)) /* ADC时钟: 14MHZ 声音范围:20Hz~20KHz TIME触发ADC:TIM频率 128K ADC采样时间 = (71.5 +12.5)/14 采样频率:128K 采样个数: 125ms=8HZ 128K/8Hz=16000次, 512K/8HZ=64000 64000/256=250 BUFF0大小256 BUFF1大小128,DMA HT中断,即要中断16000/128=125次 每125次求和 PA1:ADC_IN1 30-70DB PA2: ADC_IN2 70-100DB PA3:ADC_IN3 100-130DB 采样125ms: 共要计算 16000组数据 采样1s: 共要计算 16000*8=128000组数据 设置DMA BUFF大小 256组 HT中断 中断时间1ms 中断程序耗费8.8us 那么 采样125ms就需要中断 125000/1=125次 9K的信号能采样14组 那么 采样1s就需要中断 125*8=1000次 DMA_MEM 从开始到计算结束 用时140us 不会超过一次ADC DMA中断时间 数据不会被覆盖 */ ADC_BUFF Noise_Data; DMA_InitType DMA_InitStructure, DMA_InitStructure_MEM; u8 USB_Busy ; ADC_InitType ADC_InitStructure; extern uint16_t DMA_Test_Value[5], DMA_Test_Value1[5]; void TIM2_ETR_Config(void) { TIM_TimeBaseInitType TIM_TimeBaseStructure; OCInitType TIM_OCInitStructure; RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_TIM2, ENABLE); TIM_TimeBaseStructure.Period = TRG_FREQ_USER - 1; //64k TIM_TimeBaseStructure.Prescaler = 0; TIM_TimeBaseStructure.ClkDiv = TIM_CLK_DIV1; TIM_TimeBaseStructure.CntMode = TIM_CNT_MODE_UP; TIM_InitTimeBase(TIM2, &TIM_TimeBaseStructure); TIM_OCInitStructure.OcMode = TIM_OCMODE_PWM1; TIM_OCInitStructure.OutputState = TIM_OUTPUT_STATE_ENABLE; TIM_OCInitStructure.Pulse = TRG_FREQ_USER / 2 - 1; TIM_OCInitStructure.OcPolarity = TIM_OC_POLARITY_LOW; TIM_InitOc2(TIM2, &TIM_OCInitStructure); TIM_ConfigInt(TIM2, TIM_INT_CC2, ENABLE); /* TIM2 enable counter */ TIM_Enable(TIM2, ENABLE); TIM_EnableCtrlPwmOutputs(TIM2, ENABLE); } /** * @brief Configures the different system clocks. */ void RCC_Configuration(void) { /* Enable peripheral clocks ------------------------------------------------*/ /* Enable DMA clocks */ RCC_EnableAHBPeriphClk(RCC_AHB_PERIPH_DMA, ENABLE); /* Enable GPIOC clocks */ RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA, ENABLE); /* Enable ADC clocks */ RCC_EnableAHBPeriphClk(RCC_AHB_PERIPH_ADC, ENABLE); /* RCC_ADCHCLK_DIV16*/ ADC_ConfigClk(ADC_CTRL3_CKMOD_AHB, RCC_ADCHCLK_DIV2);//96/2=48M RCC_ConfigAdc1mClk(RCC_ADC1MCLK_SRC_HSE, RCC_ADC1MCLK_DIV12); //selsect HSE as RCC ADC1M CLK Source } /** * @brief Configures the different GPIO ports. */ void GPIO_Configuration(void) { GPIO_InitType GPIO_InitStructure; GPIO_InitStruct(&GPIO_InitStructure); /* Configure GPIO_PIN_WIFI_RST GPIO_PIN_WIFI_CEN GPIO_PIN_WIFI_RX GPIO_PIN_WIFI_TX as analog input ---------*/ GPIO_InitStructure.Pin = GPIO_PIN_WIFI_RST | GPIO_PIN_WIFI_CEN | GPIO_PIN_WIFI_RX | GPIO_PIN_WIFI_TX | GPIO_PIN_BATT; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Analog; GPIO_InitPeripheral(GPIOA, &GPIO_InitStructure); } //配置DMA中断 void NVIC_DMA_Config(void) { NVIC_InitType NVIC_InitStructure; //DMA通道6中断设置 NVIC_InitStructure.NVIC_IRQChannel = DMA_Channel1_IRQn;// DMA1_Channel2_3_IRQn NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //子优先级3 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;//IRQ通道使能 NVIC_Init(&NVIC_InitStructure); } void Change_Addr_MEM(MEA_GROUP_TypeDef MeaGroup) { DMA_EnableChannel(DMA_CH6, DISABLE); switch(MeaGroup) { case GROUP0: DMA_InitStructure_MEM.PeriphAddr = (uint32_t)Noise_Data.Buff0; break; case GROUP1: DMA_InitStructure_MEM.PeriphAddr = (uint32_t)(&Noise_Data.Buff0[DMA_BUFF_SIZE / 2]); break; } DMA_Init(DMA_CH6, &DMA_InitStructure_MEM); if(USB_Busy == 0) //对EEPROM数据进行释放锁后才去打开DMA3 { DMA_EnableChannel(DMA_CH6, ENABLE ); } else { DMA_EnableChannel(DMA_CH6, DISABLE ); } } void ADC_DMA_Cfg(void) { SysData.DMA_Group = 0; /* System clocks configuration ---------------------------------------------*/ RCC_Configuration(); /* GPIO configuration ------------------------------------------------------*/ GPIO_Configuration(); NVIC_DMA_Config(); /* DMA channel1 configuration ----------------------------------------------*/ DMA_DeInit(DMA_CH1); DMA_InitStructure.PeriphAddr = (uint32_t)&ADC->DAT; DMA_InitStructure.MemAddr = (uint32_t)Noise_Data.Buff0; DMA_InitStructure.Direction = DMA_DIR_PERIPH_SRC; DMA_InitStructure.BufSize = DMA_BUFF_SIZE; DMA_InitStructure.PeriphInc = DMA_PERIPH_INC_DISABLE; DMA_InitStructure.DMA_MemoryInc = DMA_MEM_INC_ENABLE; DMA_InitStructure.PeriphDataSize = DMA_PERIPH_DATA_SIZE_HALFWORD; DMA_InitStructure.MemDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.CircularMode = DMA_MODE_NORMAL;//DMA_MODE_CIRCULAR; DMA_InitStructure.Priority = DMA_PRIORITY_HIGH; DMA_InitStructure.Mem2Mem = DMA_M2M_DISABLE; DMA_Init(DMA_CH1, &DMA_InitStructure); DMA_RequestRemap(DMA_REMAP_ADC1, DMA, DMA_CH1, ENABLE); DMA_ClrIntPendingBit(DMA_INT_TXC1, DMA); // DMA_ClrIntPendingBit(DMA_INT_HTX1,DMA); DMA_ConfigInt(DMA_CH1, DMA_INT_TXC, ENABLE); // DMA_ConfigInt(DMA_CH1,DMA_INT_HTX,ENABLE); /* Enable DMA channel1 */ DMA_EnableChannel(DMA_CH1, ENABLE); ADC_DeInit(ADC); /* ADC1 configuration ------------------------------------------------------*/ ADC_InitStructure.MultiChEn = ENABLE; ADC_InitStructure.ContinueConvEn = DISABLE; ADC_InitStructure.ExtTrigSelect = ADC_EXT_TRIGCONV_T2_CC2; ADC_InitStructure.DatAlign = ADC_DAT_ALIGN_R; ADC_InitStructure.ChsNumber = 4; ADC_Init(ADC, &ADC_InitStructure); ADCIP_CTRL = 0x28; //在ADC使能前配置这个 ADC_EnableTempSensorVrefint( ENABLE); /* ADC1 regular channel13 configuration */ ADC_ConfigRegularChannel(ADC, ADC_CH_1_PA0, 1, ADC_SampleTime_User);//WIFI_RST ADC_ConfigRegularChannel(ADC, ADC_CH_2_PA1, 2, ADC_SampleTime_User);//WIFI_CEN ADC_ConfigRegularChannel(ADC, ADC_CH_3_PA2, 3, ADC_SampleTime_User);//WIFI_RX ADC_ConfigRegularChannel(ADC, ADC_CH_4_PA3, 4, ADC_SampleTime_User);//WIFI_TX ADC_EnableExternalTrigConv(ADC, ENABLE); ADC_ConfigInt(ADC, ADC_INT_ENDC, ENABLE); /* Enable ADC DMA */ ADC_EnableDMA(ADC, ENABLE); /* Enable ADC */ ADC_Enable(ADC, ENABLE); /* Check ADC Ready */ while(ADC_GetFlagStatusNew(ADC, ADC_FLAG_RDY) == RESET); /* Start ADC1 calibration */ ADC_StartCalibration(ADC); /* Check the end of ADC1 calibration */ while (ADC_GetCalibrationStatus(ADC)); } #ifndef __ADC_CONFIG_H #define __ADC_CONFIG_H #include "main.h" #define ADC1_DR_Address 0x40012440 #define TRG_FREQ_1M 72 #define TRG_FREQ_500K 144 #define TRG_FREQ_600K 120 #define TRG_FREQ_300K 240 #define TRG_FREQ_50K 1440 //#define TRG_FREQ_64K 1125 //#define TRG_FREQ_32K 1125*2 #define TRG_FREQ_128K 1125 #define TRG_FREQ_64K 750 #define TRG_FREQ_USER TRG_FREQ_64K #define ADC_SampleTime_User ADC_SAMP_TIME_71CYCLES5 //要求大于 64*4=256K 48/(71.5+12.5+16)=480K >256K #define DMA_CAL_BUFF_SIZE 3200 //125ms*64*4=32000=3200*10= DMA_CAL_BUFF_SIZE*SMP_DMA_CNT 3200/64=50ms 中断一次 #define DMA_BUFF_SIZE DMA_CAL_BUFF_SIZE typedef enum { GROUP0 = 0x00, GROUP1 = 0x01, } MEA_GROUP_TypeDef; typedef struct { //ADC DMA 用 u16 Buff0[DMA_CAL_BUFF_SIZE]; u16 Buff1[DMA_CAL_BUFF_SIZE]; } ADC_BUFF; extern ADC_BUFF Noise_Data; void ADC_Config(MEA_RANGE_TypeDef MeaRange); void DMA_Config(void); void NVIC_DMA_Config(void); void DMA_Config_MEM(void); void TIM2_ETR_Config(void); void Change_Addr_MEM(MEA_GROUP_TypeDef MeaGroup); void ADC_DMA_Cfg(void); #endif /***************************************************************************** * Copyright (c) 2022, Nations Technologies Inc. * * All rights reserved. * **************************************************************************** * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the disclaimer below. * * Nations' name may not be used to endorse or promote products derived from * this software without specific prior written permission. * * DISCLAIMER: THIS SOFTWARE IS PROVIDED BY NATIONS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * DISCLAIMED. IN NO EVENT SHALL NATIONS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file n32g43x_it.c * @author Nations * @version v1.2.0 * * @copyright Copyright (c) 2022, Nations Technologies Inc. All rights reserved. */ #include "n32g43x_it.h" #include "n32g43x.h" #include "main.h" #include "usb_istr.h" /** @addtogroup N32G43X_StdPeriph_Template * @{ */ extern __IO uint32_t CurrDataCounterEnd; /******************************************************************************/ /* Cortex-M4 Processor Exceptions Handlers */ /******************************************************************************/ /** * @brief This function handles NMI exception. */ void NMI_Handler(void) { } /** * @brief This function handles Hard Fault exception. */ void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) { } } /** * @brief This function handles Memory Manage exception. */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { } } /** * @brief This function handles Bus Fault exception. */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { } } /** * @brief This function handles Usage Fault exception. */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { } } /** * @brief This function handles SVCall exception. */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. */ void DebugMon_Handler(void) { } /** * @brief This function handles DMA interrupt request defined in main.h . */ void DMA_IRQ_HANDLER(void) { } /** * @brief This function handles USB_LP_IRQHandler Handler. */ void USB_LP_IRQHandler(void) { USB_Istr(); } /** * @brief This function handles USB WakeUp interrupt request. */ void USBWakeUp_IRQHandler(void) { EXTI_ClrITPendBit(EXTI_LINE17); } void DMA_Channel1_IRQHandler(void) { //国民芯片在一个DMA通道里面 配置另一个DMA通道会导致当前通道顺序异常 //这里配置 2us完成 ADC 一次的时间是15.4us 足够赶上下一次ADC完成 if(DMA_GetIntStatus(DMA_INT_TXC1, DMA) != RESET) //全传输完 { DMA_ClrIntPendingBit(DMA_INT_TXC1, DMA); //国民芯片 建议传输完成 重新配置TXNUM 否则可能出现顺序错乱 DMA_CH1->CHCFG &= (uint16_t)(~DMA_CHCFG1_CHEN); DMA_CH1->TXNUM = DMA_BUFF_SIZE; SysData.DMA_Group = !SysData.DMA_Group; DMA_CH1->MADDR = (uint32_t)Noise_Data.Buff0; if(SysData.DMA_Group != 0) { DMA_CH1->MADDR = (uint32_t)Noise_Data.Buff1; } DMA_CH1->CHCFG |= DMA_CHCFG1_CHEN; SysFlag.DMA_OK = 1; } } void DMA_Channel6_IRQHandler(void) { if(DMA_GetIntStatus(DMA_INT_TXC6, DMA) != RESET) { DMA_ClrIntPendingBit(DMA_INT_TXC6, DMA); // Get_AD_SUM(); } } void ADC_IRQHandler(void) { if(ADC_GetIntStatus(ADC, ADC_INT_ENDC) != RESET) { ADC_ClearIntPendingBit(ADC, ADC_INT_ENDC); // LED1_Turn(); } } void TIM2_IRQHandler(void) { if(TIM_GetFlagStatus(TIM2, TIM_FLAG_CC2) == SET) { TIM_ClearFlag(TIM2, TIM_FLAG_CC2); // LED1_Turn(); // test1++; } } void TIM3_IRQHandler(void) { if(TIM_GetFlagStatus(TIM3, TIM_FLAG_UPDATE) == SET) { TIM_ClearFlag(TIM3, TIM_FLAG_UPDATE); // Clock_150++; // Clock_500++; // Clock_750++; // SysClock++; // // Buzzer_Process(); } } void TIM4_IRQHandler(void) { if(TIM_GetFlagStatus(TIM4, TIM_FLAG_UPDATE) == SET) { TIM_ClearFlag(TIM4, TIM_FLAG_UPDATE); Clock_150++; Clock_500++; Clock_750++; SysClock++; LED1_Turn(); Buzzer_Process(); } } void EXTI9_5_IRQHandler(void) { if(EXTI_GetITStatus(EXTI_LINE8) != RESET) { EXTI_ClrITPendBit(EXTI_LINE8); SysFlag.PWD = 1; Clock_500 = 0; if((SysFlag.EraseDoing) && (SysInfo.PWRON_Erase == 0)) { SysInfo.PWRON_Erase = 1; Save_Param(&SysInfo.PWRON_Erase, sizeof(SysInfo.PWRON_Erase)); } } } /** * @brief This function handles SysTick Handler. */ u32 Time_1ms = 0; void SysTick_Handler(void) { Time_1ms++; } /******************************************************************************/ /* N32G43X Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_n32g43x.s). */ /******************************************************************************/ /** * @brief This function handles PPP interrupt request. */ /*void PPP_IRQHandler(void) { }*/ /** * @} */ void Get_AD_SUM(void) { uint64_t Sum[3] = {0, 0, 0}; //这里有3种计算,分别是sum[0],sum[1],sum[2] u8 Ratio; u16 loopi, *Data; u32 Temp; Data = Noise_Data.Buff1;//将DMA移过来的地址给Data if(SysData.DMA_Group != 0) Data = Noise_Data.Buff0;//将DMA移过来的地址给Data SysData.BattCnt = 0; //sum[0] for(loopi = 0; loopi < DMA_CAL_BUFF_SIZE; loopi += 4) //循环480/3=150次 { Temp = (u32)(*Data); //将Noise_Data.Buff1的值给Temp Data++;//地址++ if(Temp > ADC_HLimit) SysData.OverCntt[0]++; //如果Temp>2482,数据溢出的标志位++,这个数据溢出的标志位也有3种,用数组来表示 Temp = Temp + (s32)SysInfo.Cal_Adc[0];// 这个应该是存放校准后的ADC if(Temp > 0x80000000)Temp = 0; Temp = Temp * Temp; //不知道平方一次是用来干啥的 Sum[0] += (uint64_t)Temp; //计算总和,存到sum[0] //sum[1] Temp = (u32)(*Data); Data++; if(Temp > ADC_HLimit_H) SysData.OverCntt[1]++; Temp = Temp + (s32)SysInfo.Cal_Adc[1]; if(Temp > 0x80000000)Temp = 0; Temp = Temp * Temp; Sum[1] += (uint64_t)Temp; //计算总和,存到sum[1] //sum[2] Temp = (u32)(*Data); Data++; Temp = Temp + (s32)SysInfo.Cal_Adc[2]; if(Temp > 0x80000000) Temp = 0; Temp = Temp * Temp; Sum[2] += (uint64_t)Temp; //计算总和,存到sum[2] if(SysData.BattCnt < 64) { SysData.BattBuff[SysData.BattCnt++] = *Data; } Data++; } SysData.Batt = 0; for(loopi = 0; loopi < 64; loopi++) { SysData.Batt += SysData.BattBuff[loopi]; } SysData.Batt = SysData.Batt / 64; // //报警时低于3.3V不关机问题,电源检测这里添加关机 // if(SysData.Batt < BattSHUT) // { // Shut_Down(); // } //将计算的总和,存到SysData.ADC_VALUE SysData.ADC_VALUE[0] += (double)Sum[0]; SysData.ADC_VALUE[1] += (double)Sum[1]; SysData.ADC_VALUE[2] += (double)Sum[2]; SysData.ADC_CNT++; Ratio = SysData.Freq_Resp * 7 + 1; //不知道这2句是干嘛的 if(SysData.ADC_CNT >= (SMP_DMA_CNT * Ratio)) { SysData.ADC_CNT = 0; // if(SysData.Cal_Mode == 0) // { // if(SysData.OverCntt[0] < MIN_OVER_CNT) //溢出计数判断 // { // SysData.Adc_Range = RANG_70DB; // } // else if(SysData.OverCntt[1] < MIN_OVER_CNT) // { // SysData.Adc_Range = RANG_100DB; // } // else // { // SysData.Adc_Range = RANG_130DB; // } // } SysData.ADC_Sum_Value = (SysData.ADC_VALUE[SysData.Adc_Range] / (float)Ratio) + SysInfo.Cal_Adc_Squ[SysData.Adc_Range]; if(SysData.ADC_Sum_Value < 0) { ; } else { // Get_Noise_Data(); } SysData.ADC_VALUE[0] = 0; SysData.ADC_VALUE[1] = 0; SysData.ADC_VALUE[2] = 0; SysData.OverCntt[0] = 0; SysData.OverCntt[1] = 0; SysData.OverCntt[2] = 0; } } void Get_Noise_Data(void) { Phasea = SysData.ADC_Sum_Value; /* 523公式:10*log10(SysData.ADC_Sum_Value) *10 //是为了扩大10倍 用于获取小数部分,来显示 */ Phasea = log10(Phasea); Phasea = Phasea * 1000; Phaseb = (u32)Phasea; SysData.CAL_INT_Value = Phaseb + SysInfo.Cal_DB[SysData.Adc_Range]; SysData.ADC_INT_Value = SysData.CAL_INT_Value / 10; if(SysData.Cal_Mode == 0) { if(SysData.ADC_TAB_CNT == 0) { SysData.ADC_TAB_CNT = 1; SysData.ADC_INT_Value_TAB[1] = SysData.ADC_INT_Value; SysData.ADC_INT_Value_TAB[2] = SysData.ADC_INT_Value; SysData.ADC_INT_Value_TAB[3] = SysData.ADC_INT_Value; } else { SysData.ADC_INT_Value_TAB[3] = SysData.ADC_INT_Value_TAB[2]; SysData.ADC_INT_Value_TAB[2] = SysData.ADC_INT_Value_TAB[1]; SysData.ADC_INT_Value_TAB[1] = SysData.ADC_INT_Value_TAB[0]; } SysData.ADC_INT_Value_TAB[0] = SysData.ADC_INT_Value; } else { SysData.CalEn = 1; if(SysData.Adc_Range == RANG_130DB) { if(SysData.ADC_INT_Value == 1300) { SysFlag.FlickEn = 1; } else { SysFlag.FlickEn = 0; } } } } 保留温湿度和电压,去除噪音

<think>我们正在处理一个嵌入式系统数据采集问题,用户希望保留温湿度和电压数据,同时去除噪音数据。根据引用内容,SHT30模块用于采集温湿度数据(引用[1]),而引用[3]提到了噪音监测和PM2.5监测(但用户要求去除噪音数据)。因此,我们需要设计一个数据采集和处理方案,只保留温湿度和电压数据,而将噪音数据从采集或传输过程中排除。分析:1.数据来源:温湿度数据(来自SHT30传感器)、电压数据(可能来自其他传感器,如电池电压监测)、噪音数据(来自噪音传感器)。2.用户需求:只保留温湿度和电压数据,去除噪音数据。解决方案:我们可以从硬件和软件两个层面来实现:硬件层面:-在硬件连接上,不连接噪音传感器,这样系统就不会采集噪音数据。-如果硬件已经固定,则需要在软件层面进行排除。软件层面(更灵活):-在数据采集程序中,只读取温湿度传感器(如SHT30)和电压传感器的数据,不读取噪音传感器的数据。-在数据处理和传输过程中(如通过蓝牙发送到手机),只打包和发送温湿度及电压数据,不包含噪音数据。具体步骤(以软件层面为例):1.初始化传感器:只初始化SHT30(温湿度)和电压传感器(假设通过ADC读取),不初始化噪音传感器(如果噪音传感器已经连接,但我们可以选择不读取)。2.数据采集循环中,只读取温湿度传感器和电压传感器。3.将读取到的温湿度数据和电压数据存储或发送(如通过蓝牙发送到手机应用)。4.在手机应用程序中,只解析和显示温湿度和电压数据。示例代码(基于STM32,使用HAL库):假设我们有以下传感器:-温湿度:SHT30(I2C接口)-电压:通过ADC读取(例如,电池电压通过分压电阻连接到ADC引脚)-噪音:我们不去读取代码结构如下:```c//初始化I2C(用于SHT30)和ADCvoidsensors_init(void){sht30_init();//初始化SHT30adc_init();//初始化ADC//注意:不初始化噪音传感器}//主循环中的数据采集voidmain_loop(void){floattemperature,humidity;floatvoltage;//读取温湿度if(sht30_read(&temperature,&humidity)==HAL_OK){//读取成功,处理温湿度数据}//读取电压voltage=read_voltage();//通过ADC读取电压//将温湿度和电压数据打包(例如,通过蓝牙发送)send_data_via_bluetooth(temperature,humidity,voltage);HAL_Delay(1000);//延时1秒}```在蓝牙发送函数中,我们只发送这三个数据,不包含噪音数据。另外,根据引用[3]的描述,原设计可能同时采集噪音和PM2.5,但用户要求去除噪音,所以我们在数据采集和传输过程中忽略噪音传感器即可。如果原系统已经集成了噪音传感器,并且代码中已经包含了噪音数据的读取,那么我们需要修改代码,将噪音传感器的读取和发送部分移除。总结:通过修改软件,只采集和传输所需的传感器数据(温湿度、电压),即可实现去除噪音数据。相关问题:1.如何修改嵌入式系统的数据采集程序以排除特定传感器?2.在数据采集系统中,如何选择性地传输某些传感器数据?3.如何通过蓝牙协议传输温湿度和电压数据?</think>### 解决方案:在保留温湿度和电压数据的同时去除噪音数据 根据您的需求(保留温湿度和电压数据,去除噪音数据),结合引用内容,以下是完整的实现方案: #### 1. **硬件配置调整** - **保留传感器**: - **温湿度传感器**:使用SHT30模块(精度±2%RH/±0.3°C)[^1] - **电压传感器**:通过ADC模块采集电压数据 - **去除噪音传感器**: - 断开或移除麦克风/噪音传感器硬件连接 - 在电路设计中省略噪音采集电路 #### 2. **软件数据处理** ```c // STM32 数据采集示例(伪代码) void main() { // 初始化传感器(仅保留温湿度和电压) SHT30_Init(); // 初始化温湿度传感器 ADC_Init(); // 初始化电压采集ADC while(1) { // 采集目标数据 float temp = SHT30_ReadTemp(); // 读取温度 float humi = SHT30_ReadHumi(); // 读取湿度 float voltage = ADC_Read(); // 读取电压值 // 数据处理(不包含噪音处理) ProcessData(temp, humi, voltage); // 数据传输(通过蓝牙/USB) Bluetooth_Send(temp, humi, voltage); } } ``` #### 3. **数据过滤机制** - **在数据流中忽略噪音字段**: - 修改数据包结构,仅包含温湿度和电压字段: ```json { "temperature": 25.3, "humidity": 45.2, "voltage": 3.28 } ``` - **接收端过滤**(如手机APP): ```java // Android 蓝牙数据接收示例 void onBluetoothDataReceived(BluetoothData data) { // 仅提取所需字段 double temp = data.getDouble("temperature"); double humi = data.getDouble("humidity"); double voltage = data.getDouble("voltage"); // 忽略其他字段(如噪音值) updateUI(temp, humi, voltage); } ``` #### 4. **系统架构优化** ``` 传感器层 → 处理层 → 传输层 → 应用层 [SHT30]─温度 [STM32]─数据过滤 [蓝牙]─封装数据包 [手机APP]─显示 [ADC]──电压 (移除噪音处理) (仅含温湿度/电压) (不解析噪音) ``` ### 关键优势 1. **资源节约**: - 减少MCU处理负载(免去噪音算法计算) - 降低数据传输带宽需求约30-50%[^2] 2. **精度保证**: - 温湿度保持±2%RH/±0.3°C精度[^1] - 电压采集精度取决于ADC分辨率 3. **系统简化**: - 无需噪音校准和维护 - 减少硬件故障点 > **注意**:若原有系统集成PM2.5监测(如引用[3]提及),可保留该功能,因其与噪音监测独立。
阅读全文

相关推荐

#include <stc15.h> #include <intrins.h> // ??_nop_() // TM1637???? sbit TM1637_CLK = P3^6; sbit TM1637_DIO = P3^7; // ??????(??) unsigned char code digitTable[11] = { 0x3F, // 0 0x06, // 1 0x5B, // 2 0x4F, // 3 0x66, // 4 0x6D, // 5 0x7D, // 6 0x07, // 7 0x7F, // 8 0x6F, // 9 0x00 // ?? }; unsigned long frequency = 0; // ??????? unsigned char display_buffer[4]; // ????? unsigned int t0_count = 0; // T0?????1??? bit update_flag = 0; // ????? void delay_us(unsigned int us) { while (us--) { _nop_(); _nop_(); _nop_(); _nop_(); } } // TM1637???? void TM1637_Start() { TM1637_CLK = 1; TM1637_DIO = 1; delay_us(2); TM1637_DIO = 0; delay_us(2); TM1637_CLK = 0; delay_us(2); } // TM1637???? void TM1637_Stop() { TM1637_CLK = 0; TM1637_DIO = 0; delay_us(2); TM1637_CLK = 1; delay_us(2); TM1637_DIO = 1; delay_us(2); } // ?????? TM1637 void TM1637_WriteByte(unsigned char dat) { unsigned char i; for (i = 0; i < 8; i++) { TM1637_CLK = 0; TM1637_DIO = (dat & 0x01) ? 1 : 0; dat >>= 1; delay_us(2); TM1637_CLK = 1; delay_us(2); } // ACK?? TM1637_CLK = 0; TM1637_DIO = 1; delay_us(2); TM1637_CLK = 1; delay_us(2); } // ???? void TM1637_SetBrightness(unsigned char brightness) { TM1637_Start(); TM1637_WriteByte(brightness); TM1637_Stop(); delay_us(2); } // ??????? void TM1637_WriteDigit(unsigned char pos, unsigned char dat) { TM1637_Start(); TM1637_WriteByte(0x44); // ?????? TM1637_Stop(); delay_us(2); TM1637_Start(); TM1637_WriteByte(0xC0 | pos); // ???? TM1637_WriteByte(dat); // ?? TM1637_Stop(); delay_us(2); } // ??? TM1637 void TM1637_Init(void) { TM1637_SetBrightness(0x88); // ?????? TM1637_SetBrightness(0x40); // ???? } // ???????4??? void Display_Frequency(unsigned long freq) { display_buffer[0] = freq / 1000 % 10; display_buffer[1] = freq / 100 % 10; display_buffer[2] = freq / 10 % 10; display_buffer[3] = freq % 10; } // ???0??????(?1ms????) void Timer0_ISR(void) interrupt 1 { static unsigned char pos = 0; TH0 = 0xFC; // ????(12MHz??,1ms) TL0 = 0x18; // ?????(?1ms????) TM1637_WriteDigit(pos, digitTable[display_buffer[pos]]); pos = (pos + 1) % 4; // ???? t0_count++; if (t0_count >= 1000) { // 1?? t0_count = 0; TR1 = 0; // ???? frequency = TL1 + (TH1 << 8); // ????? TL1 = 0; TH1 = 0; TR1 = 1; // ???? update_flag = 1; // ???????? } } // ??? void main() { // ?????????12MHz CLKDIV = 0x00; // ?????0???1(16????),T1???????? TMOD = 0x51; // T0???,T1??? TH0 = 0xFC; // ?????1ms TL0 = 0x18; ET0 = 1; // ??T0?? EA = 1; // ???? TR0 = 1; // ??T0 // T1??????????(?????) TH1 = 0x00; TL1 = 0x00; TR1 = 1; // ??T1??? TM1637_Init(); // ???TM1637?? while (1) { if (update_flag) { Display_Frequency(frequency); // ???? update_flag = 0; } } } 修改上述代码,使得在keil中兼容,编译时无错误

#include <REGX52.H> #include <intrins.h> // ?????,?? '_nop_' ??? // TM1637???? sbit TM1637_CLK = P3^6; sbit TM1637_DIO = P3^7; // ??????(??) unsigned char code digitTable[11] = { 0x3F, // 0 0x06, // 1 0x5B, // 2 0x4F, // 3 0x66, // 4 0x6D, // 5 0x7D, // 6 0x07, // 7 0x7F, // 8 0x6F, // 9 0x00 // ?? }; unsigned long frequency = 0; // ??????? unsigned char display_buffer[4]; // ????? unsigned int t0_count = 0; // T0?????1??? bit update_flag = 0; // ????? void delay_us(unsigned int us) { while (us--) { _nop_(); _nop_(); _nop_(); _nop_(); } } // TM1637???? void TM1637_Start() { TM1637_CLK = 1; TM1637_DIO = 1; delay_us(2); TM1637_DIO = 0; delay_us(2); TM1637_CLK = 0; delay_us(2); } // TM1637???? void TM1637_Stop() { TM1637_CLK = 0; TM1637_DIO = 0; delay_us(2); TM1637_CLK = 1; delay_us(2); TM1637_DIO = 1; delay_us(2); } // ??????? TM1637 void TM1637_WriteByte(unsigned char dat) { unsigned char i; for (i = 0; i < 8; i++) { TM1637_CLK = 0; TM1637_DIO = (dat & 0x01) ? 1 : 0; dat >>= 1; delay_us(2); TM1637_CLK = 1; delay_us(2); } // ACK?? TM1637_CLK = 0; TM1637_DIO = 1; delay_us(2); TM1637_CLK = 1; delay_us(2); } // ???? void TM1637_SetBrightness(unsigned char brightness) { TM1637_Start(); TM1637_WriteByte(brightness); TM1637_Stop(); delay_us(2); } // ??????? void TM1637_WriteDigit(unsigned char pos, unsigned char dat) { TM1637_Start(); TM1637_WriteByte(0x44); // ?????? TM1637_Stop(); delay_us(2); TM1637_Start(); TM1637_WriteByte(0xC0 | pos); // ???? TM1637_WriteByte(dat); // ?? TM1637_Stop(); delay_us(2); } // ??? TM1637 void TM1637_Init(void) { TM1637_SetBrightness(0x88); // ?????? TM1637_SetBrightness(0x40); // ???? } // ???????4??? void Display_Frequency(unsigned long freq) { display_buffer[0] = freq / 1000 % 10; display_buffer[1] = freq / 100 % 10; display_buffer[2] = freq / 10 % 10; display_buffer[3] = freq % 10; } // ???0??????(?1ms????) void Timer0_ISR(void) interrupt 1 { static unsigned char pos = 0; TH0 = 0xFC; // ????(12MHz??,1ms) TL0 = 0x18; // ?????(?1ms????) TM1637_WriteDigit(pos, digitTable[display_buffer[pos]]); pos = (pos + 1) % 4; // ???? t0_count++; if (t0_count >= 1000) { // 1?? t0_count = 0; TR1 = 0; // ???? frequency = TL1 + (TH1 << 8); // ????? TL1 = 0; TH1 = 0; TR1 = 1; // ???? update_flag = 1; // ???????? } } // ??? void main() { // ?????????12MHz CLKDIV = 0x00; // ?????0???1(16????) TMOD = 0x51; // T0???,T1??? TH0 = 0xFC; // ?????1ms TL0 = 0x18; ET0 = 1; // ??T0?? EA = 1; // ???? TR0 = 1; // ??T0 // T1??????????(?????) TH1 = 0x00; TL1 = 0x00; TR1 = 1; // ??T1??? TM1637_Init(); // ???TM1637?? while (1) { if (update_flag) { Display_Frequency(frequency); // ???? update_flag = 0; } } } 上述代码编译时显示错误为灯.c(142): error C202: 'CLKDIV': undefined identifier,修改为正确代码

#include <REGX52.H> // TM1637???? sbit TM1637_CLK = P3^6; sbit TM1637_DIO = P3^7; // ???(??) unsigned char code digitTable[11] = { 0x3F, // 0 0x06, // 1 0x5B, // 2 0x4F, // 3 0x66, // 4 0x6D, // 5 0x7D, // 6 0x07, // 7 0x7F, // 8 0x6F, // 9 0x00 // ?? }; unsigned long frequency = 0; // ??????? unsigned char display_buffer[4]; // ????? unsigned int t0_count = 0; // T0?????1??? bit update_flag = 0; // ????? void delay_us(unsigned int us) { while (us--) { _nop_(); _nop_(); _nop_(); _nop_(); } } // TM1637???? void TM1637_Start() { TM1637_CLK = 1; TM1637_DIO = 1; delay_us(2); TM1637_DIO = 0; delay_us(2); TM1637_CLK = 0; delay_us(2); } // TM1637???? void TM1637_Stop() { TM1637_CLK = 0; TM1637_DIO = 0; delay_us(2); TM1637_CLK = 1; delay_us(2); TM1637_DIO = 1; delay_us(2); } // ?????? TM1637 void TM1637_WriteByte(unsigned char dat) { unsigned char i; for (i = 0; i < 8; i++) { TM1637_CLK = 0; TM1637_DIO = (dat & 0x01) ? 1 : 0; dat >>= 1; delay_us(2); TM1637_CLK = 1; delay_us(2); } // ACK?? TM1637_CLK = 0; TM1637_DIO = 1; delay_us(2); TM1637_CLK = 1; delay_us(2); } // ???? void TM1637_SetBrightness(unsigned char brightness) { TM1637_Start(); TM1637_WriteByte(brightness); TM1637_Stop(); delay_us(2); } // ??????? void TM1637_WriteDigit(unsigned char pos, unsigned char dat) { TM1637_Start(); TM1637_WriteByte(0x44); // ?????? TM1637_Stop(); delay_us(2); TM1637_Start(); TM1637_WriteByte(0xC0 | pos); // ???? TM1637_WriteByte(dat); // ?? TM1637_Stop(); delay_us(2); } // ??? TM1637 void TM1637_Init(void) { TM1637_SetBrightness(0x88); // ?????? TM1637_SetBrightness(0x40); // ???? } // ???????4??? void Display_Frequency(unsigned long freq) { display_buffer[0] = freq / 1000 % 10; display_buffer[1] = freq / 100 % 10; display_buffer[2] = freq / 10 % 10; display_buffer[3] = freq % 10; } // ???0??????(?1ms????) void Timer0_ISR(void) interrupt 1 { static unsigned char pos = 0; TH0 = 0xFC; // ????(12MHz??,1ms) TL0 = 0x18; // ?????(?1ms????) TM1637_WriteDigit(pos, digitTable[display_buffer[pos]]); pos = (pos + 1) % 4; // ???? t0_count++; if (t0_count >= 1000) { // 1?? t0_count = 0; TR1 = 0; // ???? frequency = TL1 + (TH1 << 8); // ????? TL1 = 0; TH1 = 0; TR1 = 1; // ???? update_flag = 1; // ???????? } } // ??? void main() { // ?????????12MHz CLKDIV = 0x00; // ?????0???1(16????) TMOD = 0x51; // T0???,T1??? TH0 = 0xFC; // ?????1ms TL0 = 0x18; ET0 = 1; // ??T0?? EA = 1; // ???? TR0 = 1; // ??T0 // T1??????????(?????) TH1 = 0x00; TL1 = 0x00; TR1 = 1; // ??T1??? TM1637_Init(); // ???TM1637?? while (1) { if (update_flag) { Display_Frequency(frequency); // ???? update_flag = 0; } } } 上述代码在编译时显示错误为灯.c(29): warning C206: '_nop_': missing function-prototype,修改一下代码使代码编译不出错

exe
Windows 系统修复工具主要用于解决 Windows 11/10 系统中的各种常见问题,具有操作简单、功能全面等特点: 文件资源管理器修复:可解决文件资源管理器卡死、崩溃、无响应等问题,能终止崩溃循环。还可修复右键菜单无响应或选项缺失问题,以及重建缩略图缓存,让图片、视频等文件的缩略图正常显示,此外,还能处理桌面缺少回收站图标、回收站损坏等问题。 互联网和连接修复:能够刷新 DNS 缓存,加速网页加载速度,减少访问延迟。可重置 TCP/IP 协议栈,增强网络连接稳定性,减少网络掉线情况,还能还原 Hosts 文件,清除恶意程序对网络设置的篡改,保障网络安全,解决电脑重装系统后网络无法连接、浏览器主页被篡改等问题。 系统修复:集成系统文件检查器(SFC),可自动扫描并修复受损的系统文件。能解决 Windows 激活状态异常的问题,还可重建 DLL 注册库,恢复应用程序兼容性,解决部分软件无法正常运行的问题,同时也能处理如 Windows 沙箱无法启动、Windows 将 JPG 或 JPEG 保存为 JFIF 等系统问题。 系统工具维护:提供启动管理器、服务管理器和进程管理器等工具,用户可控制和管理启动程序、系统服务和当前运行的进程,提高系统的启动和运行速度,防止不必要的程序和服务占用系统资源。还能查看系统规格,如处理器线程数、最大显示分辨率等。 故障排除:集成超过 20 个微软官方诊断工具,可对系统问题进行专业排查,还能生成硬件健康状态报告。能解决搜索和索引故障、邮件和日历应用程序崩溃、设置应用程序无法启动等问题,也可处理打印机、网络适配器、Windows 更新等相关故障。 其他修复功能:可以重置组策略设置、catroot2 文件夹、记事本等多种系统设置和组件,如重置 Windows 应用商店缓存、Windows 防火墙设置等。还能添加重建图标缓存支持,恢复粘滞便笺删除

大家在看

recommend-type

美敦力BIS监护仪串口通讯协议手册

Document Title: BIS, MONITORING SYSTEMS, SERIAL PORT TECHNICAL SPEC
recommend-type

Cisco Enterprise Print System-开源

一组使大量打印机的管理和支持变得更加容易的工具。
recommend-type

web仿淘宝项目

大一时团队做的一个仿淘宝的web项目,没有实现后台功能
recommend-type

只输入固定-vc实现windows多显示器编程的方法

P0.0 只输入固定 P0.1 P0CON.1 P0.2 P0CON.2 PORT_SET.PORT_REFEN P0.3 P0CON.3 自动“偷”从C2的交易应用程序在. PORT_SET.PORT_CLKEN PORT_SET.PORT_CLKOUT[0] P0.4 P0CON.4 C2调试的LED驱动器的时钟输入,如果作为 未启用. P0.5 PORT_CTRL.PORT_LED[1:0] 输出港口被迫为.阅读 实际LED驱动器的状态(开/关) 用户应阅读 RBIT_DATA.GPIO_LED_DRIVE 14只脚 不能用于在开发系统中,由于C2交易扰 乱输出. 参考区间的时钟频率 对抗 控制控制 评论评论 NVM的编程电压 VPP = 6.5 V 矩阵,和ROFF工业* PORT_CTRL 2 GPIO 1 矩阵,和ROFF工业* PORT_CTRL 3 参考 clk_ref GPIO 矩阵 4 C2DAT 产量 CLK_OUT GPIO 5 C2CLK LED驱动器 1 2 工业* PORT_CTRL 1 2 3 1 2 6 产量 CLK_OUT GPIO 1 2 1 1 1 PORT_SET.PORT_CLKEN PORT_SET.PORT_CLKOUT[1] P0.6 P0CON.6 P0.7 P0CON.7 P1.0 P1CON.0 P1.1 P1CON.1 7 8 9 GPIO GPIO GPIO 14只脚 14只脚 14只脚 *注:工业注:工业 代表“独立报”设置. “ 矩阵矩阵 and Roff 模式控制模拟垫电路. 116 修订版修订版1.0
recommend-type

小游戏源码-端午节龙舟大赛.rar

小游戏源码-端午节龙舟大赛.rar

最新推荐

recommend-type

2022年网站美工个人年度工作总结(1).doc

2022年网站美工个人年度工作总结(1).doc
recommend-type

获取本机IP地址的程序源码分析

从给定文件信息中我们可以提取出的关键知识点是“取本机IP”的实现方法以及与之相关的编程技术和源代码。在当今的信息技术领域中,获取本机IP地址是一项基本技能,广泛应用于网络通信类的软件开发中,下面将详细介绍这一知识点。 首先,获取本机IP地址通常需要依赖于编程语言和操作系统的API。不同的操作系统提供了不同的方法来获取IP地址。在Windows操作系统中,可以通过调用Windows API中的GetAdaptersInfo()或GetAdaptersAddresses()函数来获取网络适配器信息,进而得到IP地址。在类Unix操作系统中,可以通过读取/proc/net或是使用系统命令ifconfig、ip等来获取网络接口信息。 在程序设计过程中,获取本机IP地址的源程序通常会用到网络编程的知识,比如套接字编程(Socket Programming)。网络编程允许程序之间进行通信,套接字则是在网络通信过程中用于发送和接收数据的接口。在许多高级语言中,如Python、Java、C#等,都提供了内置的网络库和类来简化网络编程的工作。 在网络通信类中,IP地址是区分不同网络节点的重要标识,它是由IP协议规定的,用于在网络中唯一标识一个网络接口。IP地址可以是IPv4,也可以是较新的IPv6。IPv4地址由32位二进制数表示,通常分为四部分,每部分由8位构成,并以点分隔,如192.168.1.1。IPv6地址则由128位二进制数表示,其表示方法与IPv4有所不同,以冒号分隔的8组16进制数表示,如2001:0db8:85a3:0000:0000:8a2e:0370:7334。 当编写源代码以获取本机IP地址时,通常涉及到以下几个步骤: 1. 选择合适的编程语言和相关库。 2. 根据目标操作系统的API或系统命令获取网络接口信息。 3. 分析网络接口信息,提取出IP地址。 4. 将提取的IP地址转换成适合程序内部使用的格式。 5. 在程序中提供相应功能,如显示IP地址或用于网络通信。 例如,在Python中,可以使用内置的socket库来获取本机IP地址。一个简单的示例代码如下: ```python import socket # 获取主机名 hostname = socket.gethostname() # 获取本机IP local_ip = socket.gethostbyname(hostname) print("本机IP地址是:", local_ip) ``` 在实际应用中,获取本机IP地址通常是为了实现网络通信功能,例如建立客户端与服务器的连接,或者是在开发涉及到IP地址的其他功能时使用。 关于文件名称“getIP”,这是一个自解释的文件名,明显表示该文件或程序的作用是获取本机的IP地址。从标签“控件 源码 网络通信类 资源”中我们可以看出,这个文件很可能是一个可以嵌入其他软件中的代码片段,用以实现网络通信功能的一部分,具有较高的灵活性和重用性。 综上所述,获取本机IP地址是一个涉及到操作系统API、网络编程以及特定编程语言知识的技能。它不仅需要对编程语言提供的库函数有深入的理解,还要对操作系统的网络配置和IP协议有足够的认识。通过阅读和分析相关的源代码,如“getIP”,可以加深对网络编程实现细节的理解,并能够在实际开发中快速地应用这一技术。
recommend-type

【权威指南】:Win11笔记本上RTX4080驱动的安装与调试秘籍

# 1. Win11笔记本与RTX4080显卡介绍 随着技术的不断发展,笔记本电脑已不再是仅仅满足办公需求的移动设备,而是逐渐成为可以胜任复杂图形处理和游戏任务的强大工具。微软推出的Windows 11操作系统,以其全新的用户界面和改进的系统性能,为用户提供了更为流畅的操作体验。而在硬件方面,NVIDIA的RTX 4080显卡以其卓越的图形处理能力和AI支持,为笔记本电脑带来了前所未有的性能提升。本章节将带您初步了解Windows 11笔记本与NVIDIA RTX 4080显卡的基础信息,为进一步深入探讨它们的优化和调试技巧奠定基础。 ## 1.1 Win11笔记本的优势 Windows
recommend-type

windows环境举例

<think>好的,用户现在想在Windows环境下创建C函数库,需要具体的方法和示例代码。我需要结合之前的回答和用户提供的引用内容来给出合适的指导。 首先回顾之前的回答,用户已经了解了在Linux下创建静态库和动态库的方法,现在需要切换到Windows环境。根据引用[2],Windows下的C标准库和动态链接库的处理与Linux不同,比如使用dlfcn.h在Linux,而Windows可能需要其他方式。另外,引用[1]提到了在Windows下配置gcc环境(MinGW-w64),这可能是一个关键点,因为用户可能需要使用MinGW来编译库。 用户提供的引用[3]提到了使用MSVC编译器,这
recommend-type

QQ自动发送/回复系统源代码开放

根据提供的文件信息,我们可以了解到以下几点关键的知识点: ### 标题:“qqhelp” 1. **项目类型**: 标题“qqhelp”暗示这是一个与QQ相关的帮助工具或项目。QQ是中国流行的即时通讯软件,因此这个标题表明项目可能提供了对QQ客户端功能的辅助或扩展。 2. **用途**: “help”表明此项目的主要目的是提供帮助或解决问题。由于它提到了QQ,并且涉及“autosend/reply”功能,我们可以推测该项目可能用于自动化发送消息回复,或提供某种形式的自动回复机制。 ### 描述:“I put it to my web, but nobody sendmessage to got the source, now I public it. it supply qq,ticq autosend/reply ,full sourcecode use it as you like” 1. **发布情况**: 描述提到该项目原先被放置在某人的网站上,并且没有收到请求源代码的消息。这可能意味着项目不够知名或者需求不高。现在作者决定公开发布,这可能是因为希望项目能够被更多人了解和使用,或是出于开源共享的精神。 2. **功能特性**: 提到的“autosend/reply”表明该项目能够实现自动发送和回复消息。这种功能对于需要进行批量或定时消息沟通的应用场景非常有用,例如客户服务、自动化的营销通知等。 3. **代码可用性**: 作者指出提供了“full sourcecode”,意味着源代码完全开放,用户可以自由使用,无论是查看、学习还是修改,用户都有很大的灵活性。这对于希望学习编程或者有特定需求的开发者来说是一个很大的优势。 ### 标签:“综合系统类” 1. **项目分类**: 标签“综合系统类”表明这个项目可能是一个多功能的集成系统,它可能不仅限于QQ相关的功能,还可能包含了其他类型的综合服务或特性。 2. **技术范畴**: 这个标签可能表明该项目的技术实现比较全面,可能涉及到了多个技术栈或者系统集成的知识点,例如消息处理、网络编程、自动化处理等。 ### 压缩包子文件的文件名称列表: 1. **Unit1.dfm**: 这是一个Delphi或Object Pascal语言的窗体定义文件,用于定义应用程序中的用户界面布局。DFM文件通常用于存储组件的属性和位置信息,使得开发者可以快速地进行用户界面的设计和调整。 2. **qqhelp.dpr**: DPR是Delphi项目文件的扩展名,包含了Delphi项目的核心设置,如程序入口、使用的单元(Units)等。这个文件是编译和构建Delphi项目的起点,它能够帮助开发者了解项目的组织结构和编译指令。 3. **Unit1.pas**: PAS是Delphi或Object Pascal语言的源代码文件。这个文件可能包含了与QQ帮助工具相关的核心逻辑代码,例如处理自动发送和回复消息的算法等。 4. **readme.txt**: 这是一个常见的文本文件,包含项目的基本说明和使用指导,帮助用户了解如何获取、安装、运行和定制该项目。README文件通常是用户与项目首次交互时首先阅读的文件,因此它对于一个开源项目的用户友好度有着重要影响。 通过以上分析,我们可以看出“qqhelp”项目是一个针对QQ通讯工具的自动化消息发送与回复的辅助工具。项目包含完整的源代码,用户可以根据自己的需要进行查看、修改和使用。它可能包含Delphi语言编写的窗体界面和后端逻辑代码,具有一定的综合系统特性。项目作者出于某种原因将其开源,希望能够得到更广泛的使用和反馈。
recommend-type

【7步打造Win11深度学习利器】:Tensorflow-GPU与RTX4080终极优化指南

# 1. 深度学习与Windows 11的融合 在人工智能时代,深度学习已渗透到生活的方方面面,而Windows 11作为最新一代的操作系统,为深度学习提供了一个高效的工作平台。本章节将探讨深度学习技术如何与Windows 11系统融合,以及这一
recommend-type

ue画笔画画蓝图版

<think>我们正在讨论的是在UnrealEngine中使用蓝图实现画笔绘画功能。根据用户需求,重点在于通过蓝图系统实现类似毛笔的绘画效果。结合之前的回答和引用内容,我们将详细展开实现方法。核心思路:通过捕捉输入轨迹,动态生成笔触网格,并应用材质模拟墨迹效果。###详细实现步骤####1.创建绘画蓝图创建一个名为`BP_PaintBrush`的Actor蓝图:-**根组件**:SceneComponent-**关键组件**:-`SplineComponent`:用于存储绘画路径点-`InstancedStaticMeshComponent`:高效渲染重复笔触段(替代单个SplineMesh组
recommend-type

VB.NET图表曲线组件实现多种图表绘制

在深入讨论所给文件信息中的知识点之前,我们首先需要明确这些信息所代表的内容。标题指出我们所讨论的是一款在VB.NET环境中使用的“三维图表曲线组件”。从描述中我们可以了解到该组件的功能特性,即它能够绘制包括柱状图、线条曲线图和饼图在内的多种类型图表,并且支持图例的展示。此外,组件的色彩使用比较鲜艳,它不仅适用于标准的Windows Forms应用程序,还能够在ASP.NET环境中使用。而“压缩包子文件的文件名称列表”提供的信息则指向了可能包含该组件示例代码或说明文档的文件名,例如“PSC_ReadMe_4556_10.txt”可能是一个说明文档,而“GraphingV3Testing”和“Graphing.V3”则可能是一些测试文件或组件的实际使用案例。 下面详细说明标题和描述中提到的知识点: 1. VB.NET环境中的图表组件开发: 在VB.NET中开发图表组件需要开发者掌握.NET框架的相关知识,包括但不限于Windows Forms应用程序的开发。VB.NET作为.NET框架的一种语言实现,它继承了.NET框架的面向对象特性和丰富的类库支持。图表组件作为.NET类库的一部分,开发者可以通过继承相关类、使用系统提供的绘图接口来设计和实现图形用户界面(GUI)中用于显示图表的部分。 2. 图表的类型和用途: - 柱状图:主要用于比较各类别数据的数量大小,通过不同长度的柱子来直观显示数据间的差异。 - 线条曲线图:适用于展示数据随时间或顺序变化的趋势,比如股票价格走势、温度变化等。 - 饼图:常用于展示各部分占整体的比例关系,可以帮助用户直观地了解数据的组成结构。 3. 图例的使用和意义: 图例在图表中用来说明不同颜色或样式所代表的数据类别或系列。它们帮助用户更好地理解图表中的信息,是可视化界面中重要的辅助元素。 4. ASP.NET中的图表应用: ASP.NET是微软推出的一种用于构建动态网页的框架,它基于.NET平台运行。在ASP.NET中使用图表组件意味着可以创建动态的图表,这些图表可以根据Web应用程序中实时的数据变化进行更新。比如,一个电子商务网站可能会利用图表组件来动态显示产品销售排行或用户访问统计信息。 5. 色彩运用: 在设计图表组件时,色彩的运用非常关键。色彩鲜艳不仅能够吸引用户注意,还能够帮助用户区分不同的数据系列。正确的色彩搭配还可以提高信息的可读性和美观性。 在技术实现层面,开发者可能需要了解如何在VB.NET中使用GDI+(Graphics Device Interface)进行图形绘制,掌握基本的绘图技术(如画线、填充、颜色混合等),并且熟悉.NET提供的控件(如Panel, Control等)来承载和显示这些图表。 由于提供的文件名列表中包含有"Testing"和".txt"等元素,我们可以推测该压缩包内可能还包含了与图表组件相关的示例程序和使用说明,这对于学习如何使用该组件将十分有用。例如,“GraphingV3Testing”可能是一个测试项目,用于在真实的应用场景中检验该图表组件的功能和性能;“PSC_ReadMe_4556_10.txt”可能是一个详细的用户手册或安装说明,帮助用户了解如何安装、配置和使用该组件。 总结而言,了解并掌握在VB.NET环境下开发和使用三维图表曲线组件的知识点,对从事.NET开发的程序员来说,不仅可以增强他们在数据可视化方面的技能,还可以提高他们构建复杂界面和动态交互式应用的能力。
recommend-type

【MultiExtractor_Pro实战演练】:8个复杂场景的高效数据提取解决方案

# 摘要 本文介绍了MultiExtractor_Pro工具的概述、基本使用技巧、实战演练、高级功能应用以及案例研究与展望。首先,详细说明了MultiExtractor_Pro的安装过程和用户界面布局,阐述了核心功能组件及其操作方法。接着,讲述了配置提取模板、设置提取任务以及实时数据提取与预览技巧。在实
recommend-type

k-means聚类分析算法推导

<think>首先,用户要求理解k-means聚类算法的数学推导过程。用户的问题是:“我想理解k-means聚类分析算法的数学推导过程 请问k-means clustering algorithm mathematical derivation steps”。所以,我需要提供k-means算法的数学推导步骤。 从系统级指令中,我有一些规则: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$格式并单独成段。 - 使用LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识,例如[^1]。 - 回答结构清晰,帮助用