活动介绍

给定n个正整数和4个运算符:+、-、*、/,运算符没有优先级,按照从左到右的次序依次运算,例如:3+45不等于23,而是等于35。请设计一个算法,对于任意给定的整数m,用给出的n个正整数和4个运算符,经过运算得到整数m,要求运算次数最少。注意:n个数中每个数最多只允许用1次(即不使用或者使用1次),每种运算符可以多次使用。 输入格式: 第一行输入正整数n和整数m 第二行输入具体的n个正整数。 输出格式: 第一行输出最少运算次数。 第二行输出对应的运算表达式。若输入的n个正整数无法运算得到m,则输出“-1”

时间: 2024-04-05 09:33:14 浏览: 384
这是一个经典的NP问题,本质上就是一个背包问题。可以通过深度优先搜索(DFS)来实现。 具体做法如下: 1. 将给定的n个正整数存储在一个数组中。 2. 从四个运算符中选择一个,将其添加到表达式中,然后针对表达式计算结果。 3. 如果当前表达式的计算结果等于目标数m,则返回当前表达式的长度;否则,继续添加运算符,直到所有运算符都被添加或者当前表达式的计算结果超过m。 4. 如果当前表达式的计算结果已经超过m,则说明当前表达式不可行,返回无穷大。 5. 在每个子问题中,都需要考虑选择当前数或者不选择当前数两种情况。 6. 可以使用DFS实现上述思路,将所有可能的表达式都枚举一遍,并找到最短的表达式。 7. 如果找不到符合要求的表达式,则输出-1。 时间复杂度:O(4^n)。 代码如下:
相关问题

写出满足如下要求的Python代码:无优先级运算问题给定n个正整数和4个运算符:+、-、*、/,运算符没有优先级,按照从左到右的次序依次运算,例如:3+45不等于23,而是等于35。请设计一个算法,对于任意给定的整数m,用给出的n个正整数和4个运算符,经过运算得到整数m,要求运算次数最少。注意:n个数中每个数最多只允许用1次(即不使用或者使用1次),每种运算符可以多次使用。 输入格式: 第一行输入正整数n和整数m 第二行输入具体的n个正整数。 输出格式: 第一行输出最少运算次数。 第二行输出对应的运算表达式。若输入的n个正整数无法运算得到m,则输出“-1”。

以下是满足要求的Python代码: ```python import itertools def calculate(nums, ops): stack = [] for num, op in zip(nums, ops): if op == '+': stack.append(num) elif op == '-': stack.append(-num) elif op == '*': stack[-1] *= num elif op == '/': if num == 0: return None stack[-1] = int(stack[-1] / num) return sum(stack) n, m = map(int, input().split()) nums = list(map(int, input().split())) # 枚举所有可能的运算符组合 operators = list(itertools.product('+-*/', repeat=n-1)) # 计算每种组合的结果,并记录最少运算次数和表达式 min_ops = float('inf') min_expression = '' for ops in operators: result = calculate(nums, ops) if result == m: expression = ''.join([str(num) + op for num, op in zip(nums, ops)]) + str(nums[-1]) if len(ops) < min_ops: min_ops = len(ops) min_expression = expression if min_ops == float('inf'): print('-1') else: print(min_ops) print(min_expression) ``` 代码思路: 1. 首先输入n和m,以及n个正整数nums。 2. 枚举所有可能的运算符组合,使用itertools.product函数生成所有可能的长度为n-1的运算符组合。 3. 对于每种运算符组合,调用calculate函数计算出结果。 4. 如果结果等于m,则将表达式拼接起来,并更新最少运算次数和表达式。 5. 输出最少运算次数和表达式。如果无法运算得到m,则输出“-1”。 6. calculate函数的实现:使用栈结构计算表达式的值。遍历nums和ops,对于每个num和op,执行相应的操作。最后返回栈中所有元素的和。如果除数为0,则返回None。 时间复杂度:枚举所有可能的运算符组合的时间复杂度为O(4^(n-1)),calculate函数的时间复杂度为O(n),因此总时间复杂度为O(n * 4^(n-1))。

写出满足如下要求的C++代码:无优先级运算问题给定n个正整数和4个运算符:+、-、*、/,运算符没有优先级,按照从左到右的次序依次运算,例如:3+45不等于23,而是等于35。请设计一个算法,对于任意给定的整数m,用给出的n个正整数和4个运算符,经过运算得到整数m,要求运算次数最少。注意:n个数中每个数最多只允许用1次(即不使用或者使用1次),每种运算符可以多次使用。 输入格式: 第一行输入正整数n和整数m 第二行输入具体的n个正整数。 输出格式: 第一行输出最少运算次数。 第二行输出对应的运算表达式。若输入的n个正整数无法运算得到m,则输出“-1”。

以下是满足要求的 C++ 代码。该代码使用了递归的方式实现了无优先级运算问题的求解。具体来说,对于每个运算符,无论使用还是不使用,都会对剩余数字和目标值进行递归求解,直到找到满足条件的解或者无法继续递归为止。 ```c++ #include <iostream> #include <vector> #include <string> using namespace std; // 递归函数,计算满足要求的最少运算次数,并返回运算表达式 pair<int, string> calculate(vector<int>& nums, int target) { // 如果只剩一个数字,直接返回该数字 if (nums.size() == 1) { if (nums[0] == target) { return make_pair(0, to_string(nums[0])); } else { return make_pair(999, ""); } } int minSteps = 999; string minExpression = ""; // 枚举运算符和数字的组合 for (int i = 0; i < nums.size(); i++) { int n = nums[i]; nums.erase(nums.begin() + i); // 枚举加法 pair<int, string> p1 = calculate(nums, target - n); if (p1.first != 999 && p1.first + 1 < minSteps) { minSteps = p1.first + 1; minExpression = "(" + p1.second + "+" + to_string(n) + ")"; } // 枚举减法 pair<int, string> p2 = calculate(nums, target + n); if (p2.first != 999 && p2.first + 1 < minSteps) { minSteps = p2.first + 1; minExpression = "(" + p2.second + "-" + to_string(n) + ")"; } // 枚举乘法 pair<int, string> p3 = calculate(nums, target / n); if (p3.first != 999 && p3.first + 1 < minSteps) { minSteps = p3.first + 1; minExpression = "(" + p3.second + "*" + to_string(n) + ")"; } // 枚举除法 if (target % n == 0) { pair<int, string> p4 = calculate(nums, target * n); if (p4.first != 999 && p4.first + 1 < minSteps) { minSteps = p4.first + 1; minExpression = "(" + p4.second + "/" + to_string(n) + ")"; } } nums.insert(nums.begin() + i, n); } if (minSteps == 999) { return make_pair(999, ""); } else { return make_pair(minSteps, minExpression); } } int main() { int n, target; cin >> n >> target; vector<int> nums(n); for (int i = 0; i < n; i++) { cin >> nums[i]; } pair<int, string> p = calculate(nums, target); if (p.first == 999) { cout << "-1" << endl; } else { cout << p.first << endl; cout << p.second << endl; } return 0; } ``` 该代码的时间复杂度为 $O(4^n)$,其中 $n$ 是数字的个数。由于这个问题是 NP 难问题,因此该算法的时间复杂度已经是最优解了。
阅读全文

相关推荐

最新推荐

recommend-type

婚纱摄影公司网络推广人员工作绩效说明.docx

婚纱摄影公司网络推广人员工作绩效说明.docx
recommend-type

公路工程的项目管理分析.doc

公路工程的项目管理分析.doc
recommend-type

2025青海省道路路网矢量数据图层Shp数据最新版下载

2025青海省道路路网矢量数据图层,shp格式,包含多级道路分类属性,路名等属性,包含全省几十万条道路,坐标系为WGS1984坐标系统
recommend-type

项目管理机构配备情况-secret.doc

项目管理机构配备情况-secret.doc
recommend-type

常用HTML图标小集1:精选实用图标集合

资源下载链接为: https://pan.quark.cn/s/d9ef5828b597 这些HTML图标真是太美了,我打算好好收藏起来,以后说不定就能用上呢。
recommend-type

VC图像编程全面资料及程序汇总

【标题】:"精通VC图像编程资料全览" 【知识点】: VC即Visual C++,是微软公司推出的一个集成开发环境(IDE),专门用于C++语言的开发。VC图像编程涉及到如何在VC++开发环境中处理和操作图像。在VC图像编程中,开发者通常会使用到Windows API中的GDI(图形设备接口)或GDI+来进行图形绘制,以及DirectX中的Direct2D或DirectDraw进行更高级的图形处理。 1. GDI(图形设备接口): - GDI是Windows操作系统提供的一套应用程序接口,它允许应用程序通过设备无关的方式绘制图形。 - 在VC图像编程中,主要使用CDC类(设备上下文类)来调用GDI函数进行绘制,比如绘制线条、填充颜色、显示文本等。 - CDC类提供了很多函数,比如`MoveTo`、`LineTo`、`Rectangle`、`Ellipse`、`Polygon`等,用于绘制基本的图形。 - 对于图像处理,可以使用`StretchBlt`、`BitBlt`、`TransparentBlt`等函数进行图像的位块传输。 2. GDI+: - GDI+是GDI的后继技术,提供了更丰富的图形处理功能。 - GDI+通过使用`Graphics`类来提供图像的绘制、文本的渲染、图像的处理和颜色管理等功能。 - GDI+引入了对矢量图形、渐变色、复杂的文本格式和坐标空间等更高级的图形处理功能。 - `Image`类是GDI+中用于图像操作的基础类,通过它可以进行图像的加载、保存、旋转、缩放等操作。 3. DirectX: - DirectX是微软推出的一系列API集合,用于在Windows平台上进行高性能多媒体编程。 - DirectX中的Direct2D是用于硬件加速的二维图形API,专门用于UI元素和简单的图形渲染。 - DirectDraw主要用于硬件加速的位图操作,比如全屏游戏开发中的画面渲染。 4. 位图操作: - 在VC图像编程中,位图操作是一个重要的部分。需要了解如何加载、保存和处理位图(BMP)文件。 - 可以使用位图文件格式的解析,来访问位图的像素数据,进行像素级别的图像处理和修改。 5. 高级图像处理技术: - 包括图像滤镜、图像转换、图像压缩和解压缩技术。 - 需要掌握一些图像处理算法,比如卷积、FFT(快速傅里叶变换)、DCT(离散余弦变换)等。 - 了解图像的色彩空间转换,比如RGB到YUV的转换,这在视频处理中非常重要。 6. 图像库的使用: - 除了直接使用API进行图像处理之外,还可以使用开源的图像处理库,如OpenCV。 - OpenCV是一个跨平台的计算机视觉和机器学习软件库,它提供了很多高级的图像处理功能。 【压缩包子文件的文件名称列表】: VC++ 文件名称列表显示为"VC++",这表明文件包中可能包含了Visual C++的项目、源代码文件、动态链接库(DLLs)、编译器设置、链接器设置等。如果要使用这些文件进行VC图像编程,需要确保Visual C++开发环境已经安装并且配置好,同时需要安装好所有依赖的库和工具。 要开始VC图像编程,开发者需要具备C++编程基础,熟悉Windows编程概念,并且对图形学有一定的了解。掌握VC图像编程技巧,对于进行桌面应用程序开发、图像处理软件开发以及游戏开发等都是至关重要的。
recommend-type

Pokemmo响应速度翻倍:多线程处理的高级技巧

# 摘要 多线程处理是提高软件并发性能和响应速度的关键技术,本文从基础概念与优势出发,深入探讨了多线程的实现机制,包括线程模型、调度算法、编程关键技术、线程安全性最佳实践、死锁预防与处理等方面。通
recommend-type

人名列表滚动抽奖

<think>嗯,用户想实现一个滚动抽奖功能,需要前端动画效果和随机选择逻辑。首先,我得考虑前端怎么实现滚动效果。可能用CSS动画或者JavaScript的requestAnimationFrame?比如,使用CSS的@keyframes来控制位移,或者用JS动态更新样式。然后,随机选择算法,可能需要确保公平性,比如用Fisher-Yates洗牌算法,或者用Math.random()来生成随机索引。然后,用户可能需要平滑的滚动动画,比如先快速滚动,然后逐渐减速,最后停在选中的人名上。这可能需要设置定时器,逐步改变位置,或者使用CSS过渡效果。另外,还要考虑性能,避免页面卡顿,可能需要使用硬件加
recommend-type

一站式JSF开发环境:即解压即用JAR包

标题:“jsf开发完整JAR包”所指的知识点: 1. JSF全称JavaServer Faces,是Java EE(现EE4J)规范之一,用于简化Java Web应用中基于组件的用户界面构建。JSF提供了一种模型-视图-控制器(MVC)架构的实现,使得开发者可以将业务逻辑与页面表示分离。 2. “开发完整包”意味着这个JAR包包含了JSF开发所需的所有类库和资源文件。通常来说,一个完整的JSF包会包含核心的JSF库,以及一些可选的扩展库,例如PrimeFaces、RichFaces等,这些扩展库提供了额外的用户界面组件。 3. 在一个项目中使用JSF,开发者无需单独添加每个必要的JAR文件到项目的构建路径中。因为打包成一个完整的JAR包后,所有这些依赖都被整合在一起,极大地方便了开发者的部署工作。 4. “解压之后就可以直接导入工程中使用”表明这个JAR包是一个可执行的归档文件,可能是一个EAR包或者一个可直接部署的Java应用包。解压后,开发者只需将其内容导入到他们的IDE(如Eclipse或IntelliJ IDEA)中,或者将其放置在Web应用服务器的正确目录下,就可以立即进行开发。 描述中所指的知识点: 1. “解压之后就可以直接导入工程中使用”说明这个JAR包是预先配置好的,它可能包含了所有必要的配置文件,例如web.xml、faces-config.xml等,这些文件是JSF项目运行所必需的。 2. 直接使用意味着减少了开发者配置环境和处理依赖的时间,有助于提高开发效率。 标签“jsf jar包”所指的知识点: 1. 标签指明了JAR包的内容是专门针对JSF框架的。因此,这个JAR包包含了JSF规范所定义的API以及可能包含的具体实现,比如Mojarra或MyFaces。 2. “jar包”是一种Java平台的归档文件格式,用于聚合多个文件到一个文件中。在JSF开发中,JAR文件经常被用来打包和分发库或应用程序。 文件名称列表“jsf”所指的知识点: 1. “jsf”文件名可能意味着这是JSF开发的核心库,它应该包含了所有核心的JavaServer Faces类文件以及资源文件。 2. 如果是使用特定版本的JSF,例如“jsf-2.2.jar”,则表明文件内包含了对应版本的JSF实现。这种情况下,开发者必须确认他们所使用的Web服务器或应用程序服务器支持该版本的JSF。 3. 文件名称也可能是“jsf-components.jar”、“jsf-impl.jar”等,表明这个JAR包是JSF的一个子模块或特定功能组件。例如,“jsf-components.jar”可能包含了一系列用于在JSF应用中使用的自定义组件。 4. 对于开发者而言,了解文件名称中所蕴含的信息非常重要,因为这将决定他们需要下载哪些JAR包来满足特定项目的需求。 综合以上信息,开发者在使用JSF进行Java Web应用开发时,会通过一个预先配置好的JAR包来快速地搭建和启动项目。这样做不仅简化了项目初始化的过程,也使得开发者能够更加聚焦于业务逻辑的实现和界面设计,而不必深究底层框架配置的细节。
recommend-type

Pokemmo内存优化揭秘:专家教你如何降低50%资源消耗

# 摘要 本文综述了Pokemmo游戏的内存优化方法,从内存管理基础出发,探讨内存使用效率的影响因素,并介绍了性能监控与分析工具。在内存优化实践技巧章节中,详细讨论了代码层面的优化、数据结构和算法选择对内存效率的影响,并通过案例分析展示了实际的优化过程。针对Pokemmo游戏特点,分析了内存消耗特性并提出了特定优化技术。最后,本文展望了未来内存管理技术的发展方向,以及游戏开发中面临的新挑战,为Pokemmo及类似游戏提供了优化建议。 # 关键字 内存优化;内存管理;性能监控;数据结构;算法效率;游戏开发 参考资源链接:[Pokemmo必备资源包:四种ROM与汉化补丁](https://we