活动介绍

def gradient_compute(model, layername, img): """ 计算模型最后输出与你的layer的梯度 并将每个特征图的梯度进行平均 再将其与卷积层输出相乘 :param model: 模型 :param layername: 你想可视化热力的层名 :param img: 预处理后的图像 :return: 卷积层与平均梯度相乘的输出值 """ preds = model.predict(img) idx = np.argmax(preds[1]) # 返回预测图片最大可能性的index索引,最佳训练样本 print('最佳训练样本索引:%i'%idx) output = model.output[:, idx] # 获取到我们对应索引的输出张量 last_layer = model.get_layer(layername) disable_eager_execution()#避免TF版本不兼容导致的超时错误 #grads = K.gradients(output, last_layer.output)[0] grads = gradients(output, last_layer.output)[0] # with GradientTape() as g: # grads = g.watch(last_layer.output) #print(grads) pooled_grads = K.mean(grads, axis=(0, 1)) # 对每张梯度特征图进行平均, # 返回的是一个大小是通道维数的张量 iterate = K.function([model.input], [pooled_grads, last_layer.output[0]]) pooled_grads_value, conv_layer_output_value = iterate([img]) for i in range(pooled_grads.shape[0]): conv_layer_output_value[:, i] *= pooled_grads_value[i] return conv_layer_output_value, img[idx,:,:]#返回最佳训练样本及其梯度值

时间: 2023-06-04 14:05:30 浏览: 181
这是一个用于计算模型最后输出与指定层的梯度的函数。函数会对每个特征图的梯度进行平均再将其与卷积层输出相乘。参数包括模型、你想可视化热力的层名和预处理后的图像。最终返回卷积层与平均梯度相乘的输出值。在函数中还有调用model.predict和使用numpy中的argmax函数选取预测结果中最大概率值索引的代码。
相关问题

逐行详细解释以下代码并加注释from tensorflow import keras import matplotlib.pyplot as plt base_image_path = keras.utils.get_file( "coast.jpg", origin="https://img-datasets.s3.amazonaws.com/coast.jpg") plt.axis("off") plt.imshow(keras.utils.load_img(base_image_path)) #instantiating a model from tensorflow.keras.applications import inception_v3 model = inception_v3.InceptionV3(weights='imagenet',include_top=False) #配置各层对DeepDream损失的贡献 layer_settings = { "mixed4": 1.0, "mixed5": 1.5, "mixed6": 2.0, "mixed7": 2.5, } outputs_dict = dict( [ (layer.name, layer.output) for layer in [model.get_layer(name) for name in layer_settings.keys()] ] ) feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict) #定义损失函数 import tensorflow as tf def compute_loss(input_image): features = feature_extractor(input_image) loss = tf.zeros(shape=()) for name in features.keys(): coeff = layer_settings[name] activation = features[name] loss += coeff * tf.reduce_mean(tf.square(activation[:, 2:-2, 2:-2, :])) return loss #梯度上升过程 @tf.function def gradient_ascent_step(image, learning_rate): with tf.GradientTape() as tape: tape.watch(image) loss = compute_loss(image) grads = tape.gradient(loss, image) grads = tf.math.l2_normalize(grads) image += learning_rate * grads return loss, image def gradient_ascent_loop(image, iterations, learning_rate, max_loss=None): for i in range(iterations): loss, image = gradient_ascent_step(image, learning_rate) if max_loss is not None and loss > max_loss: break print(f"... Loss value at step {i}: {loss:.2f}") return image #hyperparameters step = 20. num_octave = 3 octave_scale = 1.4 iterations = 30 max_loss = 15. #图像处理方面 import numpy as np def preprocess_image(image_path): img = keras.utils.load_img(image_path) img = keras.utils.img_to_array(img) img = np.expand_dims(img, axis=0) img = keras.applications.inception_v3.preprocess_input(img) return img def deprocess_image(img): img = img.reshape((img.shape[1], img.shape[2], 3)) img /= 2.0 img += 0.5 img *= 255. img = np.clip(img, 0, 255).astype("uint8") return img #在多个连续 上运行梯度上升 original_img = preprocess_image(base_image_path) original_shape = original_img.shape[1:3] successive_shapes = [original_shape] for i in range(1, num_octave): shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape]) successive_shapes.append(shape) successive_shapes = successive_shapes[::-1] shrunk_original_img = tf.image.resize(original_img, successive_shapes[0]) img = tf.identity(original_img) for i, shape in enumerate(successive_shapes): print(f"Processing octave {i} with shape {shape}") img = tf.image.resize(img, shape) img = gradient_ascent_loop( img, iterations=iterations, learning_rate=step, max_loss=max_loss ) upscaled_shrunk_original_img = tf.image.resize(shrunk_original_img, shape) same_size_original = tf.image.resize(original_img, shape) lost_detail = same_size_original - upscaled_shrunk_original_img img += lost_detail shrunk_original_img = tf.image.resize(original_img, shape) keras.utils.save_img("DeepDream.png", deprocess_image(img.numpy()))

这段代码是一个使用 DeepDream 技术对一张图像进行处理的例子。下面对每一部分进行详细解释: 1. 导入所需的库 ```python from tensorflow import keras import matplotlib.pyplot as plt ``` 导入了 TensorFlow 和 Keras 库,以及用于绘制图像的 Matplotlib 库。 2. 加载图像 ```python base_image_path = keras.utils.get_file( "coast.jpg", origin="https://img-datasets.s3.amazonaws.com/coast.jpg") plt.axis("off") plt.imshow(keras.utils.load_img(base_image_path)) ``` 使用 `keras.utils.get_file` 函数从亚马逊 S3 存储桶中下载名为 "coast.jpg" 的图像,并使用 `keras.utils.load_img` 函数加载该图像。`plt.axis("off")` 和 `plt.imshow` 函数用于绘制该图像并关闭坐标轴。 3. 实例化模型 ```python from tensorflow.keras.applications import inception_v3 model = inception_v3.InceptionV3(weights='imagenet',include_top=False) ``` 使用 Keras 库中的 InceptionV3 模型对图像进行处理。`weights='imagenet'` 表示使用预训练的权重,`include_top=False` 表示去掉模型的顶层(全连接层)。 4. 配置 DeepDream 损失 ```python layer_settings = { "mixed4": 1.0, "mixed5": 1.5, "mixed6": 2.0, "mixed7": 2.5, } outputs_dict = dict( [(layer.name, layer.output) for layer in [model.get_layer(name) for name in layer_settings.keys()]] ) feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict) ``` 通过配置不同层对 DeepDream 损失的贡献来控制图像的风格。该代码块中的 `layer_settings` 字典定义了每层对损失的贡献,`outputs_dict` 变量将每层的输出保存到一个字典中,`feature_extractor` 变量实例化一个新模型来提取特征。 5. 定义损失函数 ```python import tensorflow as tf def compute_loss(input_image): features = feature_extractor(input_image) loss = tf.zeros(shape=()) for name in features.keys(): coeff = layer_settings[name] activation = features[name] loss += coeff * tf.reduce_mean(tf.square(activation[:, 2:-2, 2:-2, :])) return loss ``` 定义了一个计算 DeepDream 损失的函数。该函数首先使用 `feature_extractor` 模型提取输入图像的特征,然后计算每层对损失的贡献并相加,最终返回总损失。 6. 梯度上升过程 ```python @tf.function def gradient_ascent_step(image, learning_rate): with tf.GradientTape() as tape: tape.watch(image) loss = compute_loss(image) grads = tape.gradient(loss, image) grads = tf.math.l2_normalize(grads) image += learning_rate * grads return loss, image def gradient_ascent_loop(image, iterations, learning_rate, max_loss=None): for i in range(iterations): loss, image = gradient_ascent_step(image, learning_rate) if max_loss is not None and loss > max_loss: break print(f"... Loss value at step {i}: {loss:.2f}") return image ``` 定义了一个用于实现梯度上升过程的函数。`gradient_ascent_step` 函数计算输入图像的损失和梯度,然后对图像进行梯度上升并返回更新后的图像和损失。`gradient_ascent_loop` 函数使用 `gradient_ascent_step` 函数实现多次迭代,每次迭代都会计算损失和梯度,并对输入图像进行更新。 7. 设置超参数 ```python step = 20. num_octave = 3 octave_scale = 1.4 iterations = 30 max_loss = 15. ``` 设置了一些 DeepDream 算法的超参数,例如梯度上升步长、金字塔层数、金字塔缩放比例、迭代次数和损失上限。 8. 图像处理 ```python import numpy as np def preprocess_image(image_path): img = keras.utils.load_img(image_path) img = keras.utils.img_to_array(img) img = np.expand_dims(img, axis=0) img = keras.applications.inception_v3.preprocess_input(img) return img def deprocess_image(img): img = img.reshape((img.shape[1], img.shape[2], 3)) img /= 2.0 img += 0.5 img *= 255. img = np.clip(img, 0, 255).astype("uint8") return img ``` 定义了两个函数,`preprocess_image` 函数将输入图像进行预处理,`deprocess_image` 函数将处理后的图像进行还原。 9. DeepDream 算法过程 ```python original_img = preprocess_image(base_image_path) original_shape = original_img.shape[1:3] successive_shapes = [original_shape] for i in range(1, num_octave): shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape]) successive_shapes.append(shape) successive_shapes = successive_shapes[::-1] shrunk_original_img = tf.image.resize(original_img, successive_shapes[0]) img = tf.identity(original_img) for i, shape in enumerate(successive_shapes): print(f"Processing octave {i} with shape {shape}") img = tf.image.resize(img, shape) img = gradient_ascent_loop( img, iterations=iterations, learning_rate=step, max_loss=max_loss ) upscaled_shrunk_original_img = tf.image.resize(shrunk_original_img, shape) same_size_original = tf.image.resize(original_img, shape) lost_detail = same_size_original - upscaled_shrunk_original_img img += lost_detail shrunk_original_img = tf.image.resize(original_img, shape) keras.utils.save_img("DeepDream.png", deprocess_image(img.numpy())) ``` 使用预先定义的函数和变量实现了 DeepDream 算法的过程。首先对原始图像进行预处理,然后根据金字塔层数和缩放比例生成多个连续的图像,对每个图像进行梯度上升处理,最终将所有处理后的图像进行合并,并使用 `keras.utils.save_img` 函数保存最终结果。

import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange class ViTGradCAM: def __init__(self, model): self.model = model self.feature_maps = None self.gradient = None def save_feature_maps(self, module, input, output): self.feature_maps = output.detach() def save_gradient(self, grad): self.gradient = grad[0].detach() def register_hooks(self): target_layer = self.model.blocks[-1] # 修改为您希望可视化的目标层 target_layer.register_forward_hook(self.save_feature_maps) target_layer.register_backward_hook(self.save_gradient) def generate_heatmap(self, input_image, target_class=None): self.model.zero_grad() output = self.model(input_image) if target_class is None: target_class = torch.argmax(output) output[0, target_class].backward() weights = F.adaptive_avg_pool2d(self.gradient, 1) heatmap = torch.mul(self.feature_maps, weights).sum(dim=1, keepdim=True) heatmap = F.relu(heatmap) heatmap /= torch.max(heatmap) ***可以帮我解释一下这段代码吗

当使用ViT模型时,上述代码实现了对输入图像生成GradAM热力图的功能。下面是对代码的解释: 1. `ViTGradCAM`类:这是一个用于生成-CAM热力图的类。它接受一个ViT模型作为输入,并保存了模型、特征图和梯度。 2. `save_feature_maps`方法:这个方法是一个钩子函数,用于在目标层的前向传播过程中保存特征图。它将目标层的输出保存在`self.feature_maps`中。 3. `save_gradient`方法:这个方法也是一个钩子函数,用于在目标层的反向传播过程中保存梯度。它将梯度保存在`self.gradient`中。 4. `register_hooks`方法:这个方法用于注册钩子函数。它将目标层设定为模型的最后一个块(通过修改`self.model.blocks[-1]`),并分别注册前向传播和反向传播的钩子函数。 5. `generate_heatmap`方法:这个方法用于生成Grad-CAM热力图。它接受输入图像和目标类别作为输入参数。 - `self.model.zero_grad()`用于清除模型参数的梯度。 - `output = self.model(input_image)`通过模型进行前向传播,得到输出。 - 如果未指定目标类别,则选择输出的最大概率类别作为目标类别。 - `output[0, target_class].backward()`对目标类别的输出进行反向传播,计算梯度。 - `weights = F.adaptive_avg_pool2d(self.gradient, 1)`将梯度进行自适应平均池化,并保存在`weights`中。 - `heatmap = torch.mul(self.feature_maps, weights).sum(dim=1, keepdim=True)`将特征图与权重相乘,并按通道求和得到热力图。 - `heatmap = F.relu(heatmap)`对热力图进行ReLU激活。 - `heatmap /= torch.max(heatmap)`对热力图进行归一化,使得最大值为1。 这样,通过调用`generate_heatmap`方法,可以生成对输入图像的Grad-CAM热力图。 希望这个解释对您有帮助!如果您有任何其他问题,请随时提问。
阅读全文

相关推荐

def Grad_Cam(model, image, layer_name): # 获取模型提取全链接之前的特征图 new_model = nn.Sequential(*list(model.children())[:44]) print(new_model) new_model.eval() feature_maps = new_model(image) # 获取模型最后一层卷积层 target_layer = model._modules.get(layer_name) # 将模型最后一层卷积层的输出结果作为反向传播的梯度 gradient = torch.zeros(feature_maps.size()) # 返回一个形状与feature_maps相同全为标量 0 的张量 gradient[:, :, feature_maps.size()[2]//2, feature_maps.size()[3]//2] = 1 target_layer.zero_grad() # 将模型中参数的梯度置为0 feature_maps.backward(gradient=gradient) # 获取模型最后一层卷积层的输出结果和梯度 _, _, H, W = feature_maps.size() output_activations = feature_maps.detach().numpy()[0] gradients = target_layer.weight.grad.detach().numpy() # 计算特征图中每个像素点的权重 weights = np.mean(gradients, axis=(2, 3))[0] cam = np.zeros((H, W), dtype=np.float32) for i, w in enumerate(weights): cam += w * output_activations[i, :, :] # 对权重进行归一化处理 cam = np.maximum(cam, 0) cam = cv2.resize(cam, (1440, 1440)) cam = cam - np.min(cam) cam = cam / np.max(cam) # 将热力图叠加到原图上 heatmap = cv2.applyColorMap(np.uint8(255 * cam), cv2.COLORMAP_JET) heatmap = np.float32(heatmap) / 255 image = image.detach().numpy() image = np.transpose(image, (0, 2, 3, 1)) img_CCT = cv2.imread("F:/BaiduSyncdisk/python/svm_CCT/picture CCT_CP/2L5830N023_CCT.png") img_CP = cv2.imread("F:/BaiduSyncdisk/python/svm_CCT/picture CCT_CP/2L5830N023_CP.png") img_CCT = cv2.resize(img_CCT, (1440, 1440)) img_CP = cv2.resize(img_CP, (1440, 1440)) cam_img = heatmap + np.float32(img_CCT[0]) cam_img = cam_img / np.max(cam_img) return np.uint8(255 * cam_img) 上述代码不显示热力图,怎么解决

最新推荐

recommend-type

Python实现多元线性回归方程梯度下降法与求函数极值

在每一步迭代中,梯度下降算法计算损失函数关于每个参数的梯度(导数),并沿梯度的负方向移动,以期望快速降低损失。 梯度是一个向量,包含了函数在各维度上的偏导数,它指示了函数值增加最快的方向。在梯度下降中...
recommend-type

PyTorch: 梯度下降及反向传播的实例详解

反向传播(Backpropagation)是深度学习中计算梯度的关键算法,它利用链式法则从输出层反向计算每一层的梯度。虽然这里没有涉及到神经网络,但原理相同。在简单的线性模型中,反向传播的过程实际上就是计算损失函数...
recommend-type

基于Python共轭梯度法与最速下降法之间的对比

在优化领域,共轭梯度法(Conjugate Gradient Method)和最速下降法(Steepest Descent Method)是两种广泛使用的迭代方法,尤其在解决大型线性系统和无约束优化问题时。这两种方法都是解决二次规划问题的有效工具,...
recommend-type

tensorflow 实现自定义梯度反向传播代码

在传统的反向传播过程中,TensorFlow 自动计算每个操作的梯度,这在大多数情况下已经足够。然而,对于一些非光滑或有特殊性质的函数(例如本文中的 sign 函数),默认的自动梯度可能不适用或不准确。sign 函数返回...
recommend-type

员工工资管理系统VBSQL样本 (1)(1).doc

员工工资管理系统VBSQL样本 (1)(1).doc
recommend-type

精选Java案例开发技巧集锦

从提供的文件信息中,我们可以看出,这是一份关于Java案例开发的集合。虽然没有具体的文件名称列表内容,但根据标题和描述,我们可以推断出这是一份包含了多个Java编程案例的开发集锦。下面我将详细说明与Java案例开发相关的一些知识点。 首先,Java案例开发涉及的知识点相当广泛,它不仅包括了Java语言的基础知识,还包括了面向对象编程思想、数据结构、算法、软件工程原理、设计模式以及特定的开发工具和环境等。 ### Java基础知识 - **Java语言特性**:Java是一种面向对象、解释执行、健壮性、安全性、平台无关性的高级编程语言。 - **数据类型**:Java中的数据类型包括基本数据类型(int、short、long、byte、float、double、boolean、char)和引用数据类型(类、接口、数组)。 - **控制结构**:包括if、else、switch、for、while、do-while等条件和循环控制结构。 - **数组和字符串**:Java数组的定义、初始化和多维数组的使用;字符串的创建、处理和String类的常用方法。 - **异常处理**:try、catch、finally以及throw和throws的使用,用以处理程序中的异常情况。 - **类和对象**:类的定义、对象的创建和使用,以及对象之间的交互。 - **继承和多态**:通过extends关键字实现类的继承,以及通过抽象类和接口实现多态。 ### 面向对象编程 - **封装、继承、多态**:是面向对象编程(OOP)的三大特征,也是Java编程中实现代码复用和模块化的主要手段。 - **抽象类和接口**:抽象类和接口的定义和使用,以及它们在实现多态中的不同应用场景。 ### Java高级特性 - **集合框架**:List、Set、Map等集合类的使用,以及迭代器和比较器的使用。 - **泛型编程**:泛型类、接口和方法的定义和使用,以及类型擦除和通配符的应用。 - **多线程和并发**:创建和管理线程的方法,synchronized和volatile关键字的使用,以及并发包中的类如Executor和ConcurrentMap的应用。 - **I/O流**:文件I/O、字节流、字符流、缓冲流、对象序列化的使用和原理。 - **网络编程**:基于Socket编程,使用java.net包下的类进行网络通信。 - **Java内存模型**:理解堆、栈、方法区等内存区域的作用以及垃圾回收机制。 ### Java开发工具和环境 - **集成开发环境(IDE)**:如Eclipse、IntelliJ IDEA等,它们提供了代码编辑、编译、调试等功能。 - **构建工具**:如Maven和Gradle,它们用于项目构建、依赖管理以及自动化构建过程。 - **版本控制工具**:如Git和SVN,用于代码的版本控制和团队协作。 ### 设计模式和软件工程原理 - **设计模式**:如单例、工厂、策略、观察者、装饰者等设计模式,在Java开发中如何应用这些模式来提高代码的可维护性和可扩展性。 - **软件工程原理**:包括软件开发流程、项目管理、代码审查、单元测试等。 ### 实际案例开发 - **项目结构和构建**:了解如何组织Java项目文件,合理使用包和模块化结构。 - **需求分析和设计**:明确项目需求,进行系统设计,如数据库设计、系统架构设计等。 - **代码编写和实现**:根据设计编写符合要求的代码,实现系统的各个模块功能。 - **测试和维护**:进行单元测试、集成测试,确保代码质量,对项目进行维护和升级。 ### 其他相关知识点 - **Java虚拟机(JVM)**:了解JVM的基本工作原理,包括类加载机制、内存管理、垃圾回收算法等。 - **常用Java框架**:比如Spring、Hibernate、MyBatis等,在实际开发中常常与Java基础结合使用,提高开发效率。 以上知识点可以作为学习Java案例开发的基础框架。在实际的开发实践中,开发者需要结合具体的项目需求,对这些知识点进行灵活运用。通过反复的案例实践,可以加深对Java编程的理解,并逐步提升开发技能。这份集锦可能包含的案例可能涉及上述知识点的具体应用,能够帮助学习者更好地理解理论与实践的结合,从而快速提升个人的Java开发能力。
recommend-type

【VASP报错深度解析】:5大技巧识别并永久解决离子距离太近警告

# 1. VASP软件简介及离子距离太近问题概述 ## 1.1 VASP软件简介 **VASP(Vienna Ab initio Simulation Package)** 是一款广泛应用于计算材料科学的软件,它基于密度泛函理论(DFT)计算固体、表面和分子的电子结构和性质。
recommend-type

npm error A complete log of this run can be found in: D:\Program Files\nodejs\node_cache\_logs\2025-04-20T15_11_51_454Z-debug-0.log

<think>好的,我需要帮助用户找到npm的错误调试日志位置,并解决他们遇到的npm错误。首先,用户已经提供了一个具体的日志路径:'D:\Program Files\nodejs\node_cache\_logs\2025-04-20T15_11_51_454Z-debug-0.log',但看起来这个路径可能有问题,因为日期是2025年,这可能是一个示例或输入错误。我需要确认正确的日志路径生成方式。 根据npm的默认配置,日志文件通常位于npm的缓存目录下的_logs文件夹中。默认情况下,Windows系统中npm的缓存路径是%AppData%\npm-cache,而日志文件会以当前日期和
recommend-type

深入理解内存技术文档详解

由于文件内容无法查看,仅能根据文件的标题、描述、标签以及文件名称列表来构建相关知识点。以下是对“内存详解”这一主题的详细知识点梳理。 内存,作为计算机硬件的重要组成部分,负责临时存放CPU处理的数据和指令。理解内存的工作原理、类型、性能参数等对优化计算机系统性能至关重要。本知识点将从以下几个方面来详细介绍内存: 1. 内存基础概念 内存(Random Access Memory,RAM)是易失性存储器,这意味着一旦断电,存储在其中的数据将会丢失。内存允许计算机临时存储正在执行的程序和数据,以便CPU可以快速访问这些信息。 2. 内存类型 - 动态随机存取存储器(DRAM):目前最常见的RAM类型,用于大多数个人电脑和服务器。 - 静态随机存取存储器(SRAM):速度较快,通常用作CPU缓存。 - 同步动态随机存取存储器(SDRAM):在时钟信号的同步下工作的DRAM。 - 双倍数据速率同步动态随机存取存储器(DDR SDRAM):在时钟周期的上升沿和下降沿传输数据,大幅提升了内存的传输速率。 3. 内存组成结构 - 存储单元:由存储位构成的最小数据存储单位。 - 地址总线:用于选择内存中的存储单元。 - 数据总线:用于传输数据。 - 控制总线:用于传输控制信号。 4. 内存性能参数 - 存储容量:通常用MB(兆字节)或GB(吉字节)表示,指的是内存能够存储多少数据。 - 内存时序:指的是内存从接受到请求到开始读取数据之间的时间间隔。 - 内存频率:通常以MHz或GHz为单位,是内存传输数据的速度。 - 内存带宽:数据传输速率,通常以字节/秒为单位,直接关联到内存频率和数据位宽。 5. 内存工作原理 内存基于电容器和晶体管的工作原理,电容器存储电荷来表示1或0的状态,晶体管则用于读取或写入数据。为了保持数据不丢失,动态内存需要定期刷新。 6. 内存插槽与安装 - 计算机主板上有专用的内存插槽,常见的有DDR2、DDR3、DDR4和DDR5等不同类型。 - 安装内存时需确保兼容性,并按照正确的方向插入内存条,避免物理损坏。 7. 内存测试与优化 - 测试:可以使用如MemTest86等工具测试内存的稳定性和故障。 - 优化:通过超频来提高内存频率,但必须确保稳定性,否则会导致数据损坏或系统崩溃。 8. 内存兼容性问题 不同内存条可能由于制造商、工作频率、时序、电压等参数的不匹配而产生兼容性问题。在升级或更换内存时,必须检查其与主板和现有系统的兼容性。 9. 内存条的常见品牌与型号 诸如金士顿(Kingston)、海盗船(Corsair)、三星(Samsung)和芝奇(G.Skill)等知名品牌提供多种型号的内存条,针对不同需求的用户。 由于“内存详解.doc”是文件标题指定的文件内容,我们可以预期在该文档中将详细涵盖以上知识点,并有可能包含更多的实践案例、故障排查方法以及内存技术的最新发展等高级内容。在实际工作中,理解并应用这些内存相关的知识点对于提高计算机性能、解决计算机故障有着不可估量的价值。
recommend-type

【机械特性分析进阶秘籍】:频域与时域对比的全面研究

# 1. 机械特性分析的频域与时域概述 ## 1.1 频域与时域分析的基本概念 机械特性分析是通