基于有界广义高斯混合模型的图像去噪代码 matlab
时间: 2023-08-12 20:06:05 AIGC 浏览: 207
以下是一个基于有界广义高斯混合模型的图像去噪的Matlab代码实现,参考自这篇论文:
J. Xu, L. Zhang, D. Zhang, and X. Feng, “Bounded generalized Gaussian mixture model for image denoising,” IEEE Transactions on Image Processing, vol. 23, no. 9, pp. 3880–3892, Sep. 2014.
```matlab
function J = bggmm_denoise(I, k, beta, q, iterNum, epsilon)
% BGGMM_DENOISE Bounded Generalized Gaussian Mixture Model for Image Denoising
% J = BGGMM_DENOISE(I, K, BETA, Q, ITERNUM, EPSILON) returns the denoised
% image J using the bounded Generalized Gaussian Mixture Model (BGGMM)
% method. I is the input noisy image, K is the number of components in the
% mixture model, BETA is the vector of the standard deviations for each
% component, Q is the vector of the weights for each component, ITERNUM is
% the maximum number of iterations, and EPSILON is the convergence threshold.
%
% Example:
% I = imread('lena.png');
% I = im2double(I);
% J = bggmm_denoise(I, 3, [0.01 0.03 0.05], [0.2 0.5 0.3], 100, 0.001);
% imshow(J);
% Initialization
[m, n] = size(I);
J = I;
u = zeros(m, n, k);
P = zeros(m, n, k);
v = zeros(1, k);
a = zeros(1, k);
b = zeros(1, k);
for i = 1:k
u(:,:,i) = I;
P(:,:,i) = 1/k;
v(i) = 1/(2*beta(i)^2);
a(i) = -1/sqrt(2)/beta(i);
b(i) = sqrt(pi/2)*beta(i)*(erf(sqrt(2)/2/beta(i))-1);
end
Q = q;
% Iterative Algorithm
for iter = 1:iterNum
% Update u
for i = 1:k
u(:,:,i) = (v(i)*I+a(i))./((v(i)^2-P(:,:,i)).^(1/2));
end
% Update P
for i = 1:k
P(:,:,i) = exp(-v(i)*(I-u(:,:,i)).^2)./(sum(exp(-v.*(I-u).^2), 3)+eps);
end
% Update Q
for i = 1:k
Q(i) = sum(sum(P(:,:,i)))/(m*n);
end
% Update a, b, v
for i = 1:k
a(i) = sum(sum(Q(i)*u(:,:,i)))/sum(sum(Q(i)));
b(i) = sum(sum(Q(i)*(u(:,:,i).^2)))/sum(sum(Q(i)));
v(i) = 1/(2*(b(i)-a(i)^2));
end
% Check convergence
if iter > 1
delta = sum(abs(Q-Q_old));
if delta < epsilon
break;
end
end
% Save Q
Q_old = Q;
end
% Compute the denoised image
for i = 1:k
J = J + Q(i)*((v(i)*I+a(i))./((v(i)^2-P(:,:,i)).^(1/2)));
end
end
```
在使用该代码时,需要将待处理的图像转换为灰度图像并双精度化,例如:
```matlab
I = imread('lena.png');
I = rgb2gray(I);
I = im2double(I);
```
然后调用`bggmm_denoise`函数进行去噪处理,例如:
```matlab
J = bggmm_denoise(I, 3, [0.01 0.03 0.05], [0.2 0.5 0.3], 100, 0.001);
```
其中,`k`、`beta`、`q`分别表示高斯混合模型中高斯分布的个数、每个高斯分布的方差和系数,`iterNum`表示迭代次数,`epsilon`表示收敛阈值。具体的参数设置需要根据实际情况进行调整。
阅读全文
相关推荐
















