from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X) X_s= scaler.transform(X) X_s[:3] from sklearn.ensemble import RandomForestRegressor model = RandomForestRegressor(n_estimators=5000, max_features=int(X.shape[1] / 3), random_state=0) model.fit(X_s,y) model.score(X_s,y) pred = model.predict(X_s) plt.scatter(pred, y, alpha=0.6) w = np.linspace(min(pred), max(pred), 100) plt.plot(w, w) plt.xlabel('pred') plt.ylabel('y_test') plt.title('Comparison of GDP fitted value and true value') print(model.feature_importances_) sorted_index = model.feature_importances_.argsort() plt.barh(range(X.shape[1]), model.feature_importances_[sorted_index]) plt.yticks(np.arange(X.shape[1]),X.columns[sorted_index],fontsize=14) plt.xlabel('X Importance',fontsize=12) plt.ylabel('covariate X',fontsize=12) plt.title('Importance Ranking Plot of Covariate ',fontsize=15) plt.tight_layout()
时间: 2024-04-20 21:25:52 浏览: 186
这段代码是一个机器学习模型的训练和评估过程,其中使用了StandardScaler对特征进行标准化处理,然后使用RandomForestRegressor模型进行训练,并计算了模型在训练数据上的得分(score)。接着对预测值和真实值进行了散点图的可视化,并绘制了重要性排名图。
需要注意的是,代码中的X和y表示输入的特征和目标变量,需要根据具体的数据进行替换。另外,代码中使用了一些库,需要确保这些库已经安装并导入。如果需要运行这段代码,请确保相关的依赖已经安装,并替换X和y为实际的数据。
相关问题
#数据标准化 from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X_train) X_train_s = scaler.transform(X_train) X_val_s = scaler.transform(X_val) test_s=scaler.transform(test)
这段代码的作用是将数据进行标准化处理。首先从sklearn库导入StandardScaler类,然后创建一个StandardScaler对象scaler,并使用fit方法对训练数据X_train进行拟合,得到数据的均值和标准差。接下来分别使用transform方法对训练数据X_train,验证数据X_val和测试数据test进行标准化处理,使得它们的均值为0,方差为1。这个过程可以使得数据的分布更加符合标准正态分布,有利于提高模型的性能和稳定性。
from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X = scaler.fit_transform(X)
这是一个用于数据预处理的代码片段,使用了Scikit-learn库中的StandardScaler类。这个类可以对数据进行标准化处理,使得数据的均值为0,标准差为1。这个代码片段中,首先创建了一个StandardScaler类的对象scaler,然后使用它的fit_transform方法对数据X进行标准化处理,得到一个新的标准化后的数据。标准化后的数据可以使得不同的特征之间具有可比性,提高模型的准确性。
阅读全文
相关推荐
















