活动介绍

outputs = torch.argmax(torch.softmax(outputs, dim=1), dim=1, keepdim=True)什么意思

时间: 2023-08-31 10:33:30 AIGC 浏览: 295
### 回答1: 这行代码使用了 PyTorch 框架中的函数,用于从模型的输出 `outputs` 中得到最终的预测结果。具体来说,该行代码完成以下操作: 1. 使用 `torch.softmax()` 函数将模型输出 `outputs` 在维度1上进行 softmax,使得每个输出的值在 0 到 1 之间,并且所有输出值的和等于 1。这一步通常被称为概率归一化。 2. 使用 `torch.argmax()` 函数在维度1上找到最大值的索引。因为经过 softmax 归一化后,输出值表示的是每个类别的概率,所以找到最大值的索引就对应着最终的预测类别。 3. 使用 `keepdim=True` 保持维度1的维度大小不变,这样最终输出的张量将是形状为 `[batch_size, 1]` 的二维张量,其中每一行是一个样本的预测类别。 综上所述,这行代码的作用是将模型输出 `outputs` 转化为预测结果的形式,其中预测结果是一个形状为 `[batch_size, 1]` 的二维张量。 ### 回答2: 这行代码的含义为,在PyTorch中,使用torch.softmax()函数对outputs进行softmax操作,然后使用torch.argmax()函数找到每行中最大值的索引,并将结果保持为一维张量(即保持维度)。 具体而言,outputs是一个张量,它的维度为[N, C],其中N表示样本数量,C表示类别数量。torch.softmax()函数对outputs进行一行一行的softmax操作,使得每行的值都在0到1之间,并且每行的和为1。然后torch.argmax()函数找到每行中最大值的索引,返回一个一维张量,表示每个样本对应的预测类别。 通过在结果中使用keepdim=True参数,保持输出的维度不变,即最终得到的张量维度为[N, 1],表示每个样本的预测类别。这样做的目的是为了能够与标签进行比较,进行准确率等评估。 ### 回答3: 这段代码是基于PyTorch框架中的一条指令。它的作用是对模型输出进行处理,并返回预测的类别。 具体地说,该指令的含义如下: 1. `torch.softmax(outputs, dim=1)`:通过对`outputs`进行softmax操作,对模型输出进行概率计算,将其转换为类别分布,其中`dim=1`表示在第一个维度上进行softmax操作。 2. `torch.argmax(..., dim=1, keepdim=True)`:通过对上一步中得到的概率分布使用`torch.argmax`函数,找到概率最大的类别索引。其中,`dim=1`表示在第一个维度上找到最大值,而`keepdim=True`表示保持输出的维度。 简而言之,该指令的目的是将模型输出的概率分布转换为预测的类别索引,即返回具有最高概率的类别。
阅读全文

相关推荐

为以下代码写注释:class TransformerClassifier(torch.nn.Module): def __init__(self, num_labels): super().__init__() self.bert = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=num_labels) # print(self.bert.config.hidden_size) #768 self.dropout = torch.nn.Dropout(0.1) self.classifier1 = torch.nn.Linear(640, 256) self.classifier2 = torch.nn.Linear(256, num_labels) self.regress1 = torch.nn.Linear(640, 256) self.regress2 = torch.nn.Linear(256, 2) self.regress3 = torch.nn.Linear(640, 256) self.regress4 = torch.nn.Linear(256, 2) # self.regress3 = torch.nn.Linear(64, 1) # self.regress3 = torch.nn.Linear(640, 256) # self.regress4 = torch.nn.Linear(256, 1) # self.soft1 = torch.nn.Softmax(dim=1) def forward(self, input_ids, attention_mask, token_type_ids): # outputs = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) # pooled_output = outputs.logits # # pooled_output = self.dropout(pooled_output) # # logits = self.classifier(pooled_output) outputs = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) logits = outputs.logits clas = F.relu(self.classifier1(logits)) clas = self.classifier2(clas) death = F.relu(self.regress1(logits)) # xingqi = F.relu(self.regress2(xingqi)) death = self.regress2(death) life = F.relu(self.regress3(logits)) # xingqi = F.relu(self.regress2(xingqi)) life = self.regress4(life) # fakuan = F.relu(self.regress3(logits)) # fakuan = self.regress4(fakuan) # print(logits.shape) # logits = self.soft1(logits) # print(logits) # print(logits.shape) return clas,death,life

如何在编程import torch import numpy as np import pandas as pd import openpyxl from torch import nn from torch.utils.data import DataLoader from transformer import Myhybridmodel from modelliu import SwinTransformer # 创建模型,部署gpu device = torch.device("cuda" if torch.cuda.is_available() else "gpu") x = pd.read_csv('train1234.csv', header=None) x = np.array(x) y = pd.read_csv('real1234.csv', header=None) y = np.array(y) x = torch.from_numpy(x) y = torch.from_numpy(y) x = x.to(device) y = y.to(device) dataloader = DataLoader(x, batch_size=1) # model = Myhybridmodel(512).to(device) model = SwinTransformer().to(device) # 定义优化器 optimizer = torch.optim.SGD(model.parameters(), lr=0.001,momentum=0.8) #optimizer = torch.optim.Adam(model.parameters(), lr=0.001,) #optimizer = torch.optim.RMSprop(model.parameters(), lr=0.1,alpha=0.9) #损失函数 loss_fn = nn.CrossEntropyLoss() #优化器 #learning_rate =0.01 #optimizer = torch.optim.SGD(LeNet.parameters(), lr=learning_rate) def L2Loss(model, alpha): l2_loss = torch.tensor(0.0, requires_grad=True) for name, parma in model.named_parameters(): if 'bias' not in name: l2_loss = l2_loss + (0.5 * alpha * torch.sum(torch.pow(parma, 2))) return l2_loss def focal_loss_with_regularization(y_pred, y_true): loss = loss_fn(y_pred, y_true) l2_loss = L2Loss(model, 0.001) loss_total = loss + l2_loss return loss_total # 训练的轮数 epoch = 40 save_path = './resswin-40q.pth' loss_list = [] filename='LOSS-40q.xlsx' for epoch in range(epoch): i = 0 j = 0 for data in dataloader: # inputs = data # print(inputs) inputs = data.reshape(16, 16) inputs = inputs.to(torch.float) inputs = inputs.unsqueeze(0) #inputs = inputs.unsqueeze(0) # print(inputs) # print(inputs.shape) #inputs = torch.unsqueeze(inputs[:, 0, :, :], 1) # ... #outputs = model(torch.squeeze(inputs, 1)) # 保存训练结果 #outputs = model(inputs) #outputs = model(torch.unsqueeze(inputs, 1)) outputs = model(inputs.unsqueeze(0)) #print(outputs) #print(outputs.shape) #outputs = torch.squeeze(outputs) #print(outputs) #print(outputs.shape) # outputs = outputs.to(device, dtype=torch.long) targets = y[i] #print(targets) #print(targets.shape) # targets = targets.to(device, dtype=torch.long) targets = targets.to(torch.float) #print(targets) # print(targets.shape) targets = targets.unsqueeze(0) #print(targets.shape) #loss = focal_loss_with_regularization(outputs, targets) loss = loss_fn(outputs, targets) # loss_list = [] if(j==100): print(loss) # j=0 # plt.plot(epoch, loss, 'r', label='Training loss') # 初始化梯度 optimizer.zero_grad() activation = 'relu' # 反向传播 loss.backward() # 更新参数 optimizer.step() i += 1 j += 1 loss_list.append(loss.item()) print('Finished Training:',epoch) # 将数据写入新文件 f = openpyxl.Workbook() ws=f['Sheet'] # 将数据写入第 i 行,第 j 列 for j in range(len(loss_list)): ws.cell(row=j+1, column=1).value= loss_list[j] f.save(filename) # 保存文件 print(loss_list) # f = open("k.txt", "w") # # f.writelines(loss_list) # f.close() torch.save(model, save_path)类似这种训练函数

这段代码中的损失函数是哪些:import os import torch import torchvision import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import models, datasets, transforms import torch.utils.data as tud import numpy as np from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler from PIL import Image from PIL import Image import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") device = torch.device("cuda:0" if torch.cuda.is_available() else 'cpu') n_classes = 3 # 几种分类的 preteain = False # 是否下载使用训练参数 有网true 没网false epoches = 50 # 训练的轮次 traindataset = datasets.ImageFolder(root='./dataset/train/', transform=transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ])) testdataset = datasets.ImageFolder(root='./dataset/test/', transform=transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ])) classes = testdataset.classes print(classes) model = models.resnet18(pretrained=preteain) if preteain == True: for param in model.parameters(): param.requires_grad = False model.fc = nn.Linear(in_features=512, out_features=n_classes, bias=True) model = model.to(device) def train_model(model, train_loader, loss_fn, optimizer, epoch): model.train() total_loss = 0. total_corrects = 0. total = 0. for idx, (inputs, labels) in enumerate(train_loader): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) loss = loss_fn(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() preds = outputs.argmax(dim=1) total_corrects += torch.sum(preds.eq(labels)) total_loss += loss.item() * inputs.size(0) total += labels.size(0) total_loss = total_loss / total acc = 100 * total_corrects / total print("轮次:%4d|训练集损失:%.5f|训练集准确率:%6.2f%%" % (epoch + 1, total_loss, acc)) return total_loss, acc def test_model(model, test_loader, loss_fn, optimizer, epoch): model.train() total_loss = 0. total_corrects = 0. total = 0. with torch.no_grad(): for idx, (inputs, labels) in enumerate(test_loader): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) loss = loss_fn(outputs, labels) preds = outputs.argmax(dim=1) total += labels.size(0) total_loss += loss.item() * inputs.size(0) total_corrects += torch.sum(preds.eq(labels)) loss = total_loss / total accuracy = 100 * total_corrects / total print("轮次:%4d|测试集损失:%.5f|测试集准确率:%6.2f%%" % (epoch + 1, loss, accuracy)) return loss, accuracy loss_fn = nn.CrossEntropyLoss().to(device) optimizer = optim.Adam(model.parameters(), lr=0.0001) train_loader = DataLoader(traindataset, batch_size=50, shuffle=True) test_loader = DataLoader(testdataset, batch_size=50, shuffle=True) for epoch in range(0, epoches): loss1, acc1 = train_model(model, train_loader, loss_fn, optimizer, epoch) loss2, acc2 = test_model(model, test_loader, loss_fn, optimizer, epoch) classes = testdataset.classes transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) path = r'D:\PyCharm\untitled\dataset\test\2S1\sample_0.png' # 测试图片路径 model.eval() img = Image.open(path) img_p = transform(img).unsqueeze(0).to(device) output = model(img_p) pred = output.argmax(dim=1).item() plt.imshow(img) plt.show() p = 100 * nn.Softmax(dim=1)(output).detach().cpu().numpy()[0]

RuntimeError: CUDA error: device-side assert triggered CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1 Compile with TORCH_USE_CUDA_DSA to enable device-side assertions. !pip install transformers datasets torch rouge-score matplotlib import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader from transformers import BertTokenizerFast import time import numpy as np from datasets import load_dataset from rouge_score import rouge_scorer import matplotlib.pyplot as plt from IPython.display import clear_output # 设备配置 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"使用设备: {device}") # 数据预处理(严格过滤无效样本) class SummaryDataset(Dataset): def __init__(self, dataset_split, tokenizer, max_article_len=384, max_summary_len=96, subset_size=0.01): self.tokenizer = tokenizer self.max_article_len = max_article_len self.max_summary_len = max_summary_len self.subset = dataset_split.select(range(int(len(dataset_split) * subset_size))) # 严格过滤无效样本 self.articles = [] self.summaries = [] self.vocab = set(tokenizer.vocab.keys()) for item in self.subset: article = item['article'].strip() summary = item['highlights'].strip() if len(article) > 20 and len(summary) > 10: article_tokens = tokenizer.tokenize(article) summary_tokens = tokenizer.tokenize(summary) if all(t in self.vocab for t in article_tokens) and all(t in self.vocab for t in summary_tokens): self.articles.append(article) self.summaries.append(summary) self.pad_token_id = tokenizer.pad_token_id self.unk_token_id = tokenizer.unk_token_id def __len__(self): return len(self.articles) def __getitem__(self, idx): src = self.tokenizer( self.articles[idx], max_length=self.max_article_len, truncation=True, padding='max_length', return_tensors='pt', add_special_tokens=True ) tgt = self.tokenizer( self.summaries[idx], max_length=self.max_summary_len, truncation=True, padding='max_length', return_tensors='pt', add_special_tokens=True ) tgt_labels = tgt['input_ids'].squeeze() tgt_labels[tgt_labels == self.pad_token_id] = -100 # 忽略填充 tgt_labels[tgt_labels >= len(self.tokenizer.vocab)] = self.unk_token_id # 过滤无效id return { 'input_ids': src['input_ids'].squeeze(), 'attention_mask': src['attention_mask'].squeeze(), 'labels': tgt_labels } # 基础Seq2Seq模型 class BasicEncoder(nn.Module): def __init__(self, vocab_size, emb_dim=128, hidden_dim=256): super().__init__() self.embedding = nn.Embedding(vocab_size, emb_dim, padding_idx=0) self.gru = nn.GRU(emb_dim, hidden_dim, num_layers=2, batch_first=True, bidirectional=True) self.fc_hidden = nn.Linear(hidden_dim * 2, hidden_dim) def forward(self, src): embedded = self.embedding(src) outputs, hidden = self.gru(embedded) # 取第二层双向隐藏状态 forward_hidden = hidden[-2, :, :] # 第二层正向 backward_hidden = hidden[-1, :, :] # 第二层反向 hidden = torch.cat([forward_hidden, backward_hidden], dim=1) # (batch, 2*hidden_dim) hidden = self.fc_hidden(hidden).unsqueeze(0) # (1, batch, hidden_dim) return hidden class BasicDecoder(nn.Module): def __init__(self, vocab_size, emb_dim=128, hidden_dim=256): super().__init__() self.embedding = nn.Embedding(vocab_size, emb_dim, padding_idx=0) self.gru = nn.GRU(emb_dim + hidden_dim, hidden_dim, num_layers=1, batch_first=True) self.fc = nn.Linear(hidden_dim * 2 + emb_dim, vocab_size) def forward(self, input_ids, hidden, context): input_embedded = self.embedding(input_ids.unsqueeze(1)) # (batch, 1, emb_dim) input_combined = torch.cat([input_embedded, context.unsqueeze(1)], dim=2) # (batch, 1, emb_dim+hidden_dim) output, hidden = self.gru(input_combined, hidden) # (batch, 1, hidden_dim) output = output.squeeze(1) # (batch, hidden_dim) combined = torch.cat([output, context, input_embedded.squeeze(1)], dim=1) # (batch, 2*hidden_dim+emb_dim) logits = self.fc(combined) return logits, hidden class BasicSeq2Seq(nn.Module): def __init__(self, vocab_size, emb_dim=128, hidden_dim=256): super().__init__() self.encoder = BasicEncoder(vocab_size, emb_dim, hidden_dim) self.decoder = BasicDecoder(vocab_size, emb_dim, hidden_dim) self.device = device self.sos_token_id = 101 # [CLS] self.eos_token_id = 102 # [SEP] self.unk_token_id = 100 # [UNK] def forward(self, src, tgt): hidden = self.encoder(src) context = hidden.squeeze(0) batch_size, tgt_len = tgt.size() outputs = torch.zeros(batch_size, tgt_len, self.decoder.fc.out_features).to(device) input_ids = tgt[:, 0] for t in range(1, tgt_len): logits, hidden = self.decoder(input_ids, hidden, context) outputs[:, t] = logits input_ids = tgt[:, t] return outputs def generate(self, src, max_length=80): src = src.to(device) hidden = self.encoder(src) context = hidden.squeeze(0) # 修正后的生成初始化 generated = torch.full((src.size(0), 1), self.sos_token_id, device=device) # 注意这里的修正 for _ in range(max_length-1): logits, hidden = self.decoder(generated[:, -1], hidden, context) next_token = torch.argmax(logits, dim=1, keepdim=True) # 防止过早生成标点 if generated.size(1) < 5: punctuation = [',', '.', ';', ':', '!', '?', "'", '"', '', '~'] punct_ids = [self.tokenizer.convert_tokens_to_ids(p) for p in punctuation] if next_token.item() in punct_ids: # 替换为最常见的实词 next_token = torch.tensor([[self.tokenizer.convert_tokens_to_ids('the')]], device=device) generated = torch.cat([generated, next_token], dim=1) if (next_token == self.eos_token_id).all(): break return generated # 注意力Seq2Seq模型 class Attention(nn.Module): def __init__(self, hidden_dim): super().__init__() self.W = nn.Linear(2 * hidden_dim, hidden_dim) self.v = nn.Linear(hidden_dim, 1, bias=False) def forward(self, hidden, encoder_outputs): src_len = encoder_outputs.size(1) hidden = hidden.unsqueeze(1).repeat(1, src_len, 1) # (batch, src_len, hidden_dim) combined = torch.cat([hidden, encoder_outputs], dim=2) # (batch, src_len, 2*hidden_dim) energy = self.v(torch.tanh(self.W(combined))).squeeze(2) # (batch, src_len) return torch.softmax(energy, dim=1) class AttnEncoder(nn.Module): def __init__(self, vocab_size, emb_dim=128, hidden_dim=256): super().__init__() self.embedding = nn.Embedding(vocab_size, emb_dim, padding_idx=0) self.lstm = nn.LSTM(emb_dim, hidden_dim, num_layers=2, batch_first=True, bidirectional=True, dropout=0.1) self.fc_hidden = nn.Linear(hidden_dim * 2, hidden_dim) # 双向输出拼接 self.fc_cell = nn.Linear(hidden_dim * 2, hidden_dim) def forward(self, src): embedded = self.embedding(src) outputs, (hidden, cell) = self.lstm(embedded) # outputs: (batch, src_len, 2*hidden_dim) # 取第二层双向隐藏状态 hidden = torch.cat([hidden[-2, :, :], hidden[-1, :, :]], dim=1) # (batch, 2*hidden_dim) cell = torch.cat([cell[-2, :, :], cell[-1, :, :]], dim=1) hidden = self.fc_hidden(hidden).unsqueeze(0) # (1, batch, hidden_dim) cell = self.fc_cell(cell).unsqueeze(0) return outputs, (hidden, cell) class AttnDecoder(nn.Module): def __init__(self, vocab_size, emb_dim=128, hidden_dim=256): super().__init__() self.embedding = nn.Embedding(vocab_size, emb_dim, padding_idx=0) self.attention = Attention(hidden_dim) self.lstm = nn.LSTM(emb_dim + 2 * hidden_dim, hidden_dim, num_layers=1, batch_first=True) self.fc = nn.Linear(hidden_dim + emb_dim, vocab_size) def forward(self, input_ids, hidden, cell, encoder_outputs): input_embedded = self.embedding(input_ids.unsqueeze(1)) # (batch, 1, emb_dim) attn_weights = self.attention(hidden.squeeze(0), encoder_outputs) # (batch, src_len) context = torch.bmm(attn_weights.unsqueeze(1), encoder_outputs) # (batch, 1, 2*hidden_dim) lstm_input = torch.cat([input_embedded, context], dim=2) # (batch, 1, emb_dim+2*hidden_dim) output, (hidden, cell) = self.lstm(lstm_input, (hidden, cell)) # output: (batch, 1, hidden_dim) logits = self.fc(torch.cat([output.squeeze(1), input_embedded.squeeze(1)], dim=1)) # (batch, vocab_size) return logits, hidden, cell class AttnSeq2Seq(nn.Module): def __init__(self, vocab_size, emb_dim=128, hidden_dim=256): super().__init__() self.encoder = AttnEncoder(vocab_size, emb_dim, hidden_dim) self.decoder = AttnDecoder(vocab_size, emb_dim, hidden_dim) self.device = device self.sos_token_id = 101 # [CLS] self.eos_token_id = 102 # [SEP] self.unk_token_id = 100 # [UNK] def forward(self, src, tgt): encoder_outputs, (hidden, cell) = self.encoder(src) batch_size, tgt_len = tgt.size() outputs = torch.zeros(batch_size, tgt_len, self.decoder.fc.out_features).to(device) input_ids = tgt[:, 0] for t in range(1, tgt_len): logits, hidden, cell = self.decoder(input_ids, hidden, cell, encoder_outputs) outputs[:, t] = logits input_ids = tgt[:, t] return outputs def generate(self, src, max_length=80): encoder_outputs, (hidden, cell) = self.encoder(src) # 修正后的生成初始化 generated = torch.full((src.size(0), 1), self.sos_token_id, device=device) # 注意这里的修正 for _ in range(max_length-1): logits, hidden, cell = self.decoder(generated[:, -1], hidden, cell, encoder_outputs) next_token = torch.argmax(logits, dim=1, keepdim=True) # 防止过早生成标点 if generated.size(1) < 5: punctuation = [',', '.', ';', ':', '!', '?', "'", '"', '', '~'] punct_ids = [self.tokenizer.convert_tokens_to_ids(p) for p in punctuation] if next_token.item() in punct_ids: # 替换为最常见的实词 next_token = torch.tensor([[self.tokenizer.convert_tokens_to_ids('the')]], device=device) generated = torch.cat([generated, next_token], dim=1) if (next_token == self.eos_token_id).all(): break return generated # Transformer模型 class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=5000): super().__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe.unsqueeze(0)) def forward(self, x): return x + self.pe[:, :x.size(1)] class TransformerModel(nn.Module): def __init__(self, vocab_size, d_model=128, nhead=8, num_layers=3, dim_feedforward=512, max_len=5000): super().__init__() self.embedding = nn.Embedding(vocab_size, d_model, padding_idx=0) self.pos_encoder = PositionalEncoding(d_model, max_len) # 编码器 encoder_layer = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout=0.1) self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers) # 解码器 decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout=0.1) self.transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers) self.fc = nn.Linear(d_model, vocab_size) self.d_model = d_model self.sos_token_id = 101 # [CLS] self.eos_token_id = 102 # [SEP] def _generate_square_subsequent_mask(self, sz): mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) return mask def forward(self, src, tgt): src_mask = None tgt_mask = self._generate_square_subsequent_mask(tgt.size(1)).to(device) src_key_padding_mask = (src == 0) tgt_key_padding_mask = (tgt == 0) src = self.embedding(src) * np.sqrt(self.d_model) src = self.pos_encoder(src) tgt = self.embedding(tgt) * np.sqrt(self.d_model) tgt = self.pos_encoder(tgt) memory = self.transformer_encoder(src.transpose(0, 1), src_mask, src_key_padding_mask) output = self.transformer_decoder( tgt.transpose(0, 1), memory, tgt_mask, None, tgt_key_padding_mask, src_key_padding_mask ) output = self.fc(output.transpose(0, 1)) return output def generate(self, src, max_length=80): src_mask = None src_key_padding_mask = (src == 0) src = self.embedding(src) * np.sqrt(self.d_model) src = self.pos_encoder(src) memory = self.transformer_encoder(src.transpose(0, 1), src_mask, src_key_padding_mask) batch_size = src.size(0) generated = torch.full((batch_size, 1), self.sos_token_id, device=device) for i in range(max_length-1): tgt_mask = self._generate_square_subsequent_mask(generated.size(1)).to(device) tgt_key_padding_mask = (generated == 0) tgt = self.embedding(generated) * np.sqrt(self.d_model) tgt = self.pos_encoder(tgt) output = self.transformer_decoder( tgt.transpose(0, 1), memory, tgt_mask, None, tgt_key_padding_mask, src_key_padding_mask ) output = self.fc(output.transpose(0, 1)[:, -1, :]) next_token = torch.argmax(output, dim=1, keepdim=True) generated = torch.cat([generated, next_token], dim=1) if (next_token == self.eos_token_id).all(): break return generated # 训练函数 def train_model(model, train_loader, optimizer, criterion, epochs=3): model.train() optimizer = optim.Adam(model.parameters(), lr=1e-4) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=1, factor=0.5) start_time = time.time() for epoch in range(epochs): total_loss = 0 model.train() for i, batch in enumerate(train_loader): src = batch['input_ids'].to(device) tgt = batch['labels'].to(device) optimizer.zero_grad() outputs = model(src, tgt[:, :-1]) # 检查模型输出有效性 if torch.isnan(outputs).any(): print("警告:模型输出包含NaN,跳过此批次") continue loss = criterion(outputs.reshape(-1, outputs.size(-1)), tgt[:, 1:].reshape(-1)) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) # 梯度裁剪 optimizer.step() total_loss += loss.item() if (i+1) % 10 == 0: print(f"Epoch {epoch+1}/{epochs} | Batch {i+1}/{len(train_loader)} | Loss: {loss.item():.4f}") avg_loss = total_loss / len(train_loader) scheduler.step(avg_loss) print(f"Epoch {epoch+1} | 平均损失: {avg_loss:.4f}") torch.cuda.empty_cache() total_time = time.time() - start_time print(f"训练完成!总耗时: {total_time:.2f}s ({total_time/60:.2f}分钟)") return model, total_time # 评估函数 def evaluate_model(model, val_loader, tokenizer, num_examples=2): model.eval() scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True) rouge_scores = {'rouge1': [], 'rouge2': [], 'rougeL': []} valid_count = 0 with torch.no_grad(): for i, batch in enumerate(val_loader): src = batch['input_ids'].to(device) tgt = batch['labels'].to(device) generated = model.generate(src) for s, p, t in zip(src, generated, tgt): src_txt = tokenizer.decode(s, skip_special_tokens=True) pred_txt = tokenizer.decode(p, skip_special_tokens=True) true_txt = tokenizer.decode(t[t != -100], skip_special_tokens=True) if len(pred_txt.split()) > 3 and len(true_txt.split()) > 3: valid_count += 1 if valid_count <= num_examples: print(f"\n原文: {src_txt[:100]}...") print(f"生成: {pred_txt}") print(f"参考: {true_txt[:80]}...") print("-"*60) if true_txt and pred_txt: scores = scorer.score(true_txt, pred_txt) for key in rouge_scores: rouge_scores[key].append(scores[key].fmeasure) if valid_count > 0: avg_scores = {key: sum(rouge_scores[key])/len(rouge_scores[key]) for key in rouge_scores} print(f"\n评估结果 (基于{valid_count}个样本):") print(f"ROUGE-1: {avg_scores['rouge1']*100:.2f}%") print(f"ROUGE-2: {avg_scores['rouge2']*100:.2f}%") print(f"ROUGE-L: {avg_scores['rougeL']*100:.2f}%") else: print("警告:未生成有效摘要") avg_scores = {key: 0.0 for key in rouge_scores} return avg_scores # 可视化模型性能 def visualize_model_performance(model_names, train_times, rouge_scores): plt.figure(figsize=(15, 6)) # 训练时间对比图 plt.subplot(1, 2, 1) bars = plt.bar(model_names, train_times) plt.title('模型训练时间对比') plt.ylabel('时间 (分钟)') for bar in bars: height = bar.get_height() plt.text(bar.get_x() + bar.get_width()/2., height, f'{height:.1f} min', ha='center', va='bottom') # ROUGE分数对比图 plt.subplot(1, 2, 2) x = np.arange(len(model_names)) width = 0.25 plt.bar(x - width, [scores['rouge1'] for scores in rouge_scores], width, label='ROUGE-1') plt.bar(x, [scores['rouge2'] for scores in rouge_scores], width, label='ROUGE-2') plt.bar(x + width, [scores['rougeL'] for scores in rouge_scores], width, label='ROUGE-L') plt.title('模型ROUGE分数对比') plt.ylabel('F1分数') plt.xticks(x, model_names) plt.legend() plt.tight_layout() plt.savefig('performance_comparison.png') plt.show() print("性能对比图已保存为 performance_comparison.png") # 交互式文本摘要生成 def interactive_summarization(models, tokenizer, model_names, max_length=80): while True: print("\n" + "="*60) print("文本摘要交互式测试 (输入 'q' 退出)") print("="*60) input_text = input("请输入要摘要的文本:\n") if input_text.lower() == 'q': break if len(input_text) < 50: print("请输入更长的文本(至少50个字符)") continue # 生成摘要 inputs = tokenizer( input_text, max_length=384, truncation=True, padding='max_length', return_tensors='pt' ).to(device) print("\n生成摘要中...") all_summaries = [] for i, model in enumerate(models): model.eval() with torch.no_grad(): generated = model.generate(inputs["input_ids"]) summary = tokenizer.decode(generated[0], skip_special_tokens=True) all_summaries.append(summary) # 打印结果 print(f"\n{model_names[i]} 摘要:") print("-"*50) print(summary) print("-"*50) print("\n所有模型摘要对比:") for i, (name, summary) in enumerate(zip(model_names, all_summaries)): print(f"{i+1}. {name}: {summary}") # 主程序 print("加载数据集...") dataset = load_dataset("cnn_dailymail", "3.0.0") tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased') vocab_size = len(tokenizer.vocab) # 准备训练数据 print("准备训练数据...") train_ds = SummaryDataset(dataset['train'], tokenizer, subset_size=0.01) # 使用1%的数据 val_ds = SummaryDataset(dataset['validation'], tokenizer, subset_size=0.01) train_loader = DataLoader(train_ds, batch_size=4, shuffle=True, num_workers=0) val_loader = DataLoader(val_ds, batch_size=8, shuffle=False, num_workers=0) # 定义损失函数 criterion = nn.CrossEntropyLoss(ignore_index=-100) # 训练基础Seq2Seq print("\n" + "="*60) print("训练基础Seq2Seq模型") print("="*60) basic_model = BasicSeq2Seq(vocab_size).to(device) trained_basic, basic_time = train_model(basic_model, train_loader, None, criterion, epochs=3) basic_rouge = evaluate_model(trained_basic, val_loader, tokenizer) # 训练注意力Seq2Seq print("\n" + "="*60) print("训练注意力Seq2Seq模型") print("="*60) attn_model = AttnSeq2Seq(vocab_size).to(device) trained_attn, attn_time = train_model(attn_model, train_loader, None, criterion, epochs=3) attn_rouge = evaluate_model(trained_attn, val_loader, tokenizer) # 训练Transformer print("\n" + "="*60) print("训练Transformer模型") print("="*60) transformer_model = TransformerModel(vocab_size).to(device) trained_transformer, transformer_time = train_model(transformer_model, train_loader, None, criterion, epochs=3) transformer_rouge = evaluate_model(trained_transformer, val_loader, tokenizer) # 可视化模型性能 print("\n" + "="*60) print("模型性能对比") print("="*60) model_names = ['基础Seq2Seq', '注意力Seq2Seq', 'Transformer'] train_times = [basic_time/60, attn_time/60, transformer_time/60] rouge_scores = [basic_rouge, attn_rouge, transformer_rouge] visualize_model_performance(model_names, train_times, rouge_scores) # 交互式测试 print("\n" + "="*60) print("交互式文本摘要测试") print("="*60) print("提示:输入一段文本,将同时生成三个模型的摘要结果") interactive_summarization( [trained_basic, trained_attn, trained_transformer], tokenizer, model_names ) 修改完错误后发完整代码给我

解释以下代码: def forward(self, input_ids, attention_mask, token_type_ids, word_ids=None, word_mask=None, label=None, label1=None): batch_size = input_ids.shape[0] outputs = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) out = outputs[1] # [CLS] [batch_size, embedding_size] if self.args.is_lstm or self.args.is_gru: sequence_output = outputs[0] # [batch_size, max_sen_len, embedding_size] hiddens = self.rnn(sequence_output, attention_mask) # output = self.cnn(input_embed) # (16, 768) out = torch.mean(hiddens, dim=1) word_emb = self.embedding(word_ids) cnn_out = self.cnn(word_emb) cnn_out = self.cnn_fc(cnn_out) out1 = torch.cat([out.unsqueeze(dim=1), cnn_out.unsqueeze(dim=1)], dim=1) out_gate = self.gate_fc(out1) out2 = torch.matmul(out1.transpose(1, 2), out_gate) out2 = out2.squeeze(dim=-1) # out = outputs[0] # if self.label_num == 35: # out1 = self.fc3(outputs[1]) # # # out = self.rnn(sequence_output, attention_mask) # # # # out = torch.mean(out, dim=1) # # out = self.cnn(out) # # out2 = self.fc4(out) # # out = torch.cat([out1, out2], dim=1) # # out = out1 + out2 # # # out_8 = self.fc_8_mlp(out) # # out_8 = self.fc_8_mlp1(out_8) # # # # out_35 = self.fc_35_mlp(out) # # out_35 = self.fc_35_mlp1(out_35) # # # # logits1 = self.fc1(out_8) # # logits0 = self.fc2(out) # # if self.label_num == 8: # out = self.cnn(out) # logits0 = self.fc(out) # logits0 = F.log_softmax(logits0, dim=-1) logits0 = self.fc(out2) logits = logits0 if label is not None: if self.label_num == 1: logits = logits.squeeze(-1) loss = self.loss_fct_bce(logits, label) else: # loss = self.loss_fct_cros(logits.view(-1, self.label_num), label.view(-1)) loss = self.loss_fct_bce(logits, label) # label1 = label1.unsqueeze(dim=-1) # label1 = torch.zeros(batch_size, 8).to(label1.device).scatter_(1, label1, 1) # loss1 = self.loss_fct_bce(logits1, label1) # loss1 = self.loss_fct_cros(logits1, label1) # nce_loss = self.info_nce_loss(out, label) # if nce_loss: # loss = loss + nce_loss # print("nce loss", nce_loss) # loss = loss + loss1 outputs = (loss,) + (logits,) else: outputs = logits return outputs # (loss), logits

# -*- coding: utf-8 -*- import time import torch from datetime import datetime import os class Common: ''' 通用配置 ''' basePath = "C:\\Users\\MR\\Desktop\\模式识别实验\\实验四\\1.3-4.30\\all\\" # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # imageSize = (224,224) # labels = ["cloudy","haze","rainy","shine","snow","sunny","sunrise","thunder"] # class Train: ''' 训练相关配置 ''' batch_size =128 num_workers = 0 # lr = 0.001 epochs = 1 logDir = ".\log\\" + time.strftime('%Y-%m-%d-%H-%M-%S',time.gmtime()) # 日志存放位置 #logDir = os.path.join(".\log", datetime.now().strftime("%Y%m%d_%H%M%S")) modelDir = "./model/" # � import torch from torch import nn from torch.utils.data import Dataset, DataLoader from torchvision import transforms import os from PIL import Image import torch.utils.data as Data import numpy # transform = transforms.Compose([ transforms.Resize(Common.imageSize), transforms.ToTensor() ]) def loadDataFromDir(): ''' 从文件夹中获取数�? ''' images = [] labels = [] # 1. 遍历每个类别文件夹 for d in os.listdir(Common.basePath): for imagePath in os.listdir(Common.basePath + d): # 2. 遍历类别文件夹中的每个图像 # 3. 打开图像并转换为RGB格式 image = Image.open(Common.basePath + d + "/" + imagePath).convert('RGB') print("加载数据" + str(len(images)) + "") # 4. 应用变换并添加到图像列表 images.append(transform(image)) # 5. 创建one-hot编码标签 label = [0] * len(Common.labels) categoryIndex = Common.labels.index(d) # � label[categoryIndex] = 1 # label = torch.tensor(label,dtype=torch.float) # � # 6. 添加标签到标签列表 labels.append(label) # 7. 关闭图像 image.close() # return images, labels class WeatherDataSet(Dataset): ''' 自定义DataSet ''' def __init__(self): ''' 初始化DataSet :param transform: 自定义转换器 ''' images, labels = loadDataFromDir() # self.images = images self.labels = labels def __len__(self): ''' 返回数据总长�? :return: ''' return len(self.images) def __getitem__(self, idx): image = self.images[idx] label = self.labels[idx] return image, label def splitData(dataset): ''' 分割数据�? :param dataset: :return: ''' # total_length = len(dataset) # train_length = int(total_length * 0.8) validation_length = total_length - train_length # train_dataset,validation_dataset = Data.random_split(dataset=dataset, lengths=[train_length, validation_length]) return train_dataset, validation_dataset # 1. train_dataset, validation_dataset = splitData(WeatherDataSet()) # 2. trainLoader = DataLoader(train_dataset, batch_size=Train.batch_size, shuffle=True, num_workers=Train.num_workers) # 3. valLoader = DataLoader(validation_dataset, batch_size=Train.batch_size, shuffle=False, num_workers=Train.num_workers) import torch from torch import nn import torchvision.models as models # net = models.resnet50() net.load_state_dict(torch.load("./model/resnet50-11ad3fa6.pth")) class WeatherModel(nn.Module): def __init__(self, net): super(WeatherModel, self).__init__() # resnet50 self.net = net self.relu = nn.ReLU() self.dropout = nn.Dropout(0.1) self.fc = nn.Linear(1000, 8) self.output = nn.Softmax(dim=1) def forward(self, x): x = self.net(x) x = self.relu(x) x = self.dropout(x) x = self.fc(x) x = self.output(x) return x model = WeatherModel(net) # import time import torch from torch import nn import matplotlib.pyplot as plt from torch.utils.tensorboard import SummaryWriter from torch import optim # 1. model.to(Common.device) # 2. criterion = nn.CrossEntropyLoss() # 3. optimizer = optim.Adam(model.parameters(), lr=0.001) os.makedirs(Train.logDir, exist_ok=True) # 4. writer = SummaryWriter(log_dir=Train.logDir, flush_secs=500) def train(epoch): ''' 训练函数 ''' # 1. loader = trainLoader # 2. model.train() print() print('========== Train Epoch:{} Start =========='.format(epoch)) epochLoss = 0 # epochAcc = 0 # correctNum = 0 # for data, label in loader: data, label = data.to(Common.device), label.to(Common.device) # 加载到对应设�? batchAcc = 0 # batchCorrectNum = 0 # optimizer.zero_grad() # output = model(data) # loss = criterion(output, label) # loss.backward() # optimizer.step() # epochLoss += loss.item() * data.size(0) # # labels = torch.argmax(label, dim=1) outputs = torch.argmax(output, dim=1) for i in range(0, len(labels)): if labels[i] == outputs[i]: correctNum += 1 batchCorrectNum += 1 batchAcc = batchCorrectNum / data.size(0) print("Epoch:{}\t TrainBatchAcc:{}".format(epoch, batchAcc)) epochLoss = epochLoss / len(trainLoader.dataset) # epochAcc = correctNum / len(trainLoader.dataset) # print("Epoch:{}\t Loss:{} \t Acc:{}".format(epoch, epochLoss, epochAcc)) writer.add_scalar("train_loss", epochLoss, epoch) # writer.add_scalar("train_acc", epochAcc, epoch) # return epochAcc def val(epoch): ''' 验证函数 :param epoch: 轮次 :return: ''' # 1. loader = valLoader # 2. valLoss = [] valAcc = [] # 3. model.eval() print() print('========== Val Epoch:{} Start =========='.format(epoch)) epochLoss = 0 # epochAcc = 0 # correctNum = 0 # with torch.no_grad(): for data, label in loader: data, label = data.to(Common.device), label.to(Common.device) # batchAcc = 0 # batchCorrectNum = 0 # output = model(data) # loss = criterion(output, label) # epochLoss += loss.item() * data.size(0) # # labels = torch.argmax(label, dim=1) outputs = torch.argmax(output, dim=1) for i in range(0, len(labels)): if labels[i] == outputs[i]: correctNum += 1 batchCorrectNum += 1 batchAcc = batchCorrectNum / data.size(0) print("Epoch:{}\t ValBatchAcc:{}".format(epoch, batchAcc)) epochLoss = epochLoss / len(valLoader.dataset) # 平均损失 epochAcc = correctNum / len(valLoader.dataset) # 正确�? print("Epoch:{}\t Loss:{} \t Acc:{}".format(epoch, epochLoss, epochAcc)) writer.add_scalar("val_loss", epochLoss, epoch) # 写入日志 writer.add_scalar("val_acc", epochAcc, epoch) # 写入日志 return epochAcc if __name__ == '__main__': maxAcc = 0.95 for epoch in range(1,Train.epochs + 1): trainAcc = train(epoch) valAcc = val(epoch) if valAcc > maxAcc: maxAcc = valAcc # 保存最大模�? torch.save(model, Train.modelDir + "weather-" + time.strftime('%Y-%m-%d-%H-%M-%S', time.gmtime()) + ".pth") # 保存模型 torch.save(model,Train.modelDir+"weather-"+time.strftime('%Y-%m-%d-%H-%M-%S',time.gmtime())+".pth") 原代码是这个,怎么改进

大家在看

recommend-type

铁磁材料的铁损耗-电机与电力拖动基础第一讲绪论

四、铁磁材料的铁损耗 带铁心的交流线圈中,除了线圈电阻上的功率损耗(铜损耗)外,由于其铁心处于反复磁化下,铁心中也将产生功率损耗,以发热的方式表现出来,称为铁磁损耗,简称铁耗。 铁耗有磁滞损耗和涡流损耗两部分。
recommend-type

MISRA C 2023 编码标准&规范指南

MISRA C 2023 编码标准&规范指南(MISRA C2012的2023修订版)。每一条规则都非常详细(包含规则说明、违规代码示例、修复代码示例、参考说明等)。 使用时打开主页面“MISRAC2012.html”即可看到所有编码规则的目录,点击相关条目链接即可跳转至相关规则的详细说明。
recommend-type

Zynq-based SoC Implementation of an Induction Machine Control Algorithm

In this paper, a new hardware/software design and implementation of an Induction Machine (IM) drive control topology is presented. Power electronic applications such as threephase inverter require highly accurate switching frequency. This design uses a System on Chip (SoC) approach and implemented on a Field Programmable Gate Array (FPGA). The on-chip processor is used for high level programing while the FPGA’s programmable fabric is used to create precise gating signals for a three-phase inverter. These signals are generated in the hardware side of the design. Floating-point calculations and control flow of the whole design are managed by SoC. This method is suitable for any power electronic application where precise gating signals are required. The methodology used in this solution is explained and experimental results are presented.
recommend-type

“Advanced Systems Format” or “ASF.文件格式规范

“Advanced Systems Format” or “ASF” means version 1.2 of the extensible file storage format developed by or for Microsoft for authoring, editing, archiving, distributing, streaming, playing, referencing, or otherwise manipulating content.
recommend-type

FANUC-OI -TD

FANUC-OI -TD

最新推荐

recommend-type

AI 智能算力平台多架构容器镜像管理部署包 - Harbor

主要用于AI 智能算力平台多架构容器镜像管理,部署包信息如下: 版本:v2.14.0 架构:ARM64 部署包类型:离线部署 依赖:Docker 特性: - 支持国产化操作系统部署 - 支持最新版本特性
recommend-type

基于Django框架开发的猫耳影评网是一个集电影信息展示与用户互动交流于一体的综合性影评平台_通过Python多线程爬虫技术采集并清洗网络电影数据_利用MySQL数据库存储结构化信.zip

基于Django框架开发的猫耳影评网是一个集电影信息展示与用户互动交流于一体的综合性影评平台_通过Python多线程爬虫技术采集并清洗网络电影数据_利用MySQL数据库存储结构化信.zip
recommend-type

前端分析-2023071100789s89

前端分析-2023071100789s89
recommend-type

基于深度学习人脸情绪识别.zip

基于深度学习人脸情绪识别.zip
recommend-type

Moon: 提升团队工作效率的网络界面

从给定的文件信息中,我们可以提取并详细阐释以下知识点: ### 标题知识点 #### Moon 网络界面 1. **定义团队状态**: Moon 应用程序提供了一个界面,用户可以据此定义自己的状态,如在线、忙碌、离开或离线。这一功能有助于团队成员了解彼此的可用性,从而减少不必要的打扰,提高工作效率。 2. **时间可用性管理**: Moon 旨在管理用户的时间可用性。通过提供一个平台来显示团队成员的状态,可以减少对工作流程的干扰,使团队能够更专注于手头的任务。 ### 描述知识点 #### 安装和使用Moon应用程序 1. **安装过程**: Moon应用程序通过使用Docker进行安装和运行,这是一种流行的容器化平台,允许开发者打包应用及其依赖于一个可移植的容器中,简化了部署过程。 - 使用git clone命令从GitHub克隆Moon项目的仓库。 - 进入克隆的项目目录。 - 使用docker build命令构建Moon应用程序的镜像。 - 最后,使用docker run命令运行应用程序。 2. **设置和环境变量**: 在运行Moon应用程序时,需要设置一系列环境变量来指定API的URI、端口和入口点。这些变量帮助应用程序正确地与后端API进行通信。 ### 标签知识点 #### 关键技术栈和应用领域 1. **React**: Moon应用程序很可能使用了React框架来构建其用户界面。React是一个由Facebook开发的前端JavaScript库,用于构建用户界面,尤其是单页应用程序(SPA)。 2. **生产力提升工具**: 从标签“productivity-booster”中我们可以推断,Moon被设计为一种提升个人或团队生产力的工具。它通过减少不必要的通信干扰来帮助用户专注于当前的工作任务。 3. **JavaScript**: 这个标签表明Moon应用程序的前端或后端可能广泛使用了JavaScript编程语言。JavaScript是一种广泛应用于网页开发中的脚本语言,能够实现动态交互效果。 ### 文件名称列表知识点 #### 文件和目录结构 1. **moon-master**: 文件名称“moon-master”暗示了Moon项目的主要目录。通常,“master”表示这是一个主分支或主版本的代码库,它包含了应用程序的核心功能和最新的开发进展。 ### 综合知识点 #### Moon 应用程序的价值和目标 - **提高专注度**: Moon应用程序允许用户设置特定的专注时间,这有助于提高工作效率和质量。通过将注意力集中在特定任务上,可以有效地降低多任务处理时的认知负荷和可能的干扰。 - **优化团队协作**: 明确的团队状态标识有助于减少不必要的沟通,从而使得团队成员能够在各自专注的时间内高效工作。这种管理方式还可以在团队中培养一种专注于当前任务的文化。 - **简洁性和易用性**: Moon的界面设计被描述为“漂亮”,这表明除了功能性外,用户界面的美观和简洁性也是该应用程序的重点,这有助于提高用户体验。 综上所述,Moon应用程序是一个旨在通过网络界面帮助用户管理个人和团队状态的工具,利用Docker进行简洁的部署,强化工作中的专注度,并通过简化团队状态的沟通,提升整体生产力。
recommend-type

远程控制ESP32-CAM机器人汽车及相关库的使用

# 远程控制ESP32 - CAM机器人汽车及相关库的使用 ## 1. 远程控制ESP32 - CAM机器人汽车 ### 1.1 硬件连接 ESP32 - CAM机器人汽车的硬件连接涉及多个组件,具体连接方式如下表所示: | 组件 | 连接到 | 再连接到 | | --- | --- | --- | | TB6612FNG VM | 18650电池正极 | LM2596 IN正极 | | TB6612FNG VCC | ESP32 - CAM VCC (3.3V) | - | | TB6612FNG GND | 18650电池负极 | LM2596 IN负极 | | TB6612FNG A1
recommend-type

CFE层流结构

### CFE层流结构在流量计中的定义和作用 在流量计中,CFE通常指 **Core Flow Executive** 或 **Control Flow Executive**,其“层流结构”(Laminar Flow Structure)是流量计内部用于实现高精度流体测量的核心部件之一。该结构的设计基于流体力学中的层流原理,通过特定几何形状的通道,使流体在通过时形成稳定的层流状态,从而便于测量流体的体积或质量流量。 层流结构通常由多个平行微通道或蜂窝状结构组成,其主要作用是消除流体流动中的湍流效应,确保流体以均匀、稳定的速度分布通过测量区域。这种设计显著提高了流量计的线性度和测量精度,尤
recommend-type

网络货币汇率计算器:实时汇率API应用

货币汇率计算器是一个实用的网络应用程序,它能够帮助用户进行不同货币之间的汇率计算。在这个应用中,用户可以输入一定数量的源货币金额,选择相应的货币对,然后计算出目标货币的等值金额。该应用程序主要涉及到前端技术的实现,包括HTML、CSS和JavaScript,这些技术在网页设计和开发中起着至关重要的作用。下面我们将详细介绍这些技术,以及如何使用这些技术开发货币汇率计算器。 ### HTML (HyperText Markup Language) HTML是构建网页内容的标记语言,是网页的基础。它通过一系列的标签(elements)来定义网页的结构和内容。在货币汇率计算器中,HTML用于创建用户界面,比如输入框、按钮和结果显示区域。HTML标签用于定义各种元素,例如: - `<form>`:用于创建一个表单,用户可以在此输入数据,比如货币金额和货币对。 - `<input>`:用于创建输入字段,用户可以在其中输入要转换的金额。 - `<button>`:用于创建按钮,用户点击按钮后触发汇率计算功能。 - `<span>` 或 `<div>`:用于创建显示计算结果的区域。 ### CSS (Cascading Style Sheets) CSS是一种样式表语言,用于设置网页的视觉格式,如布局、颜色、字体等。在货币汇率计算器中,CSS用来美化界面,提供良好的用户体验。CSS可能被用来: - 设置表单和按钮的样式,比如颜色、字体大小、边距和对齐。 - 定义结果展示区域的背景、文字颜色和字体样式。 - 响应式设计,确保应用在不同大小的屏幕上都可正确显示。 ### JavaScript JavaScript是一种在浏览器中运行的编程语言,它使网页可以交互,执行各种操作。在货币汇率计算器中,JavaScript负责处理用户输入、调用汇率API以及展示计算结果。JavaScript可能需要完成以下功能: - 获取用户输入的金额和选择的货币对。 - 调用一个汇率API来获取实时的货币汇率数据。 - 将获取到的汇率数据进行处理,并计算出目标货币的金额。 - 更新网页上的结果显示区域,展示最终的计算结果。 ### 使用汇率API 应用程序使用汇率API来显示数据,API(Application Programming Interface,应用程序编程接口)是一个使软件应用之间能够进行交互的接口。在货币汇率计算器中,需要注册并使用某个提供实时汇率信息的API服务。通过发送请求到API,并接收API返回的JSON或XML格式数据,应用程序可以获取到当前的汇率信息,并进行计算。 ### 开发货币汇率计算器的步骤 1. **项目准备**:创建项目文件夹,设置基础的HTML结构。 2. **界面设计**:使用HTML构建用户界面,用CSS进行样式设计。 3. **功能实现**:编写JavaScript代码,处理用户输入和调用汇率API。 4. **测试与调试**:确保应用在不同的浏览器和设备上运行无误。 5. **部署上线**:将应用程序部署到服务器上,供用户访问。 6. **维护更新**:根据用户反馈和市场汇率波动,定期更新应用。 ### 贡献与许可 该文档还提到了如何为该项目贡献代码。首先需要将项目克隆到本地计算机,然后创建一个新的分支进行修改或增加功能,之后将分支推送到自己的GitHub仓库,并向原项目提交一个拉取请求(Pull Request)。此外,文档提到了项目的许可信息,但具体的内容未在摘要中给出。 总结以上内容,货币汇率计算器是基于前端技术实现的一个应用程序,通过HTML、CSS和JavaScript技术构建用户界面并实现功能,它依赖于外部的汇率API来获取实时数据。开发者可以遵循文档中给出的步骤对项目进行贡献,并遵守项目的许可协议。
recommend-type

蓝牙低功耗(BLE)信标与通信技术详解

### 蓝牙低功耗(BLE)信标与通信技术详解 #### 1. BLE信标数据设置 在BLE应用中,信标数据的设置是关键步骤。以下是一段设置信标数据的代码示例: ```cpp beaconData[11] = 0xAD; beaconData[12] = 0x0C; // UUID Instance BID[0 to 5] beaconData[13] = 0xFA; // 0cfa43d07079 beaconData[14] = 0x43; beaconData[15] = 0xD0; beaconData[16] = 0x70; beaconData[17] = 0x79;
recommend-type

C++的只能锁

在 C++11 及后续标准中,`std::unique_lock` 和 `std::lock_guard` 是两种常用的智能锁机制,用于管理互斥量(`std::mutex`)的加锁和解锁操作。它们均属于 RAII(Resource Acquisition Is Initialization)风格的资源管理方式,确保在异常情况下也能正确释放互斥量资源。 ### lock_guard 的使用方法 `std::lock_guard` 是一种轻量级的智能锁,适用于简单的加锁场景。它在构造时自动加锁,在析构时自动解锁,不支持手动解锁或延迟加锁操作。 示例代码: ```cpp #include <