fromsklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, classification_report import numpy as npimport pandas as pd # 读取数据 df = pd.read_csv("data.csv") # 分离特征和标签 X = df.drop('Outcome', axis=1)y = df['Outcome'] # 分割数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=35 / 769) # 构建决策树模型 classifier=DecisionTreeClassifier(criterion='entropy',max_depth=3, min_ weight_fraction_leaf=0.01) classifier.fit(X_train, y_train) # 模型预测 y_pred = classifier.predict(X_test) # 输出模型评估结果 print('决策树模型') print(confusion_matrix(y_test, y_pred)) print(classification_report(y_test, y_pred)) print('决策树模型预测结果:', classifier.predict(X_test)) # 输出原始数据集真实结果 y_ = np.array(y_test)print('原始数据集真实结果:', y_) # 输出模型得分 modelscore = format(classifier.score(X_test, y_test)) print('模型得分:{:.2f}'.format(classifier.score(X_test, y_test))) # 判断模型准确率是否达标 if float(modelscore) >= 0.88: print("模型预测准确率较高,适合用来预测糖尿病") else: print("模型预测准确率较低,不宜用来预测糖尿病")根据代码画决策树

时间: 2024-03-17 12:47:02 浏览: 104
很抱歉,作为一个语言模型,我无法画图。但是,你可以使用sklearn中的export_graphviz函数将决策树模型导出为.dot格式,然后使用Graphviz工具可视化决策树。你可以参考以下代码: ```python from sklearn.tree import export_graphviz import graphviz dot_data = export_graphviz(classifier, out_file=None, feature_names=X.columns, class_names=['0', '1'], filled=True, rounded=True, special_characters=True) graph = graphviz.Source(dot_data) graph.render('diabetes_decision_tree') # 保存决策树图像 ``` 这段代码会将决策树保存为diabetes_decision_tree.pdf文件,你可以使用PDF阅读器打开查看。如果你想要在Jupyter Notebook中直接显示决策树,可以使用以下代码: ```python graphviz.Source(dot_data).view() ``` 这会在Notebook中显示决策树。
相关问题

import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix

这段代码是在 Python 中导入了一些常用的机器学习库和模块,包括 pandas、numpy、matplotlib、sklearn 等。其中: - pandas 是 Python 中常用的数据分析库,可以用来读取和处理数据; - numpy 是 Python 中常用的科学计算库,提供了数组、矩阵等数据结构和各种数学函数; - matplotlib 是 Python 中常用的数据可视化库,可以用来绘制各种图表; - sklearn 是 Python 中常用的机器学习库,提供了许多常用的机器学习算法和工具,比如数据预处理、模型选择、模型评估等。 这段代码中还导入了不同的机器学习算法,包括逻辑回归、决策树、K近邻和支持向量机等。最后还导入了一些评估指标,比如分类报告和混淆矩阵。

import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.ensemble import BaggingClassifier from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.metrics import (accuracy_score, roc_auc_score, recall_score, confusion_matrix, roc_curve, precision_score) from sklearn.utils import resample from sklearn.feature_selection import SelectFromModel # 读取数据 train_data = pd.read_excel('pcr-特征/pre_processed_results/train_rf_top15.xlsx') test_data = pd.read_excel('pcr-特征/pre_processed_results/test_rf_top15.xlsx') # 特征与目标变量 X_train = train_data.drop(columns=['id', 'pcr','local']) y_train = train_data['pcr'] X_test = test_data.drop(columns=['id', 'pcr','local']) y_test = test_data['pcr']后续通过决策树建立模型

<think>好的,我现在需要帮助用户解决如何使用pandas读取Excel数据并通过决策树建立分类模型的问题,同时包括数据预处理、模型训练和评估。让我先理清用户的需求。 首先,用户提到了几个引用,涉及AUC-ROC曲线以及不同分类模型的应用,比如决策树、随机森林等。用户可能希望了解具体的实现步骤,包括数据读取、预处理、模型训练和评估指标。我需要确保回答覆盖所有这些方面,并且符合用户提供的系统级指令,比如使用正确的LaTeX格式和引用标记。 接下来,我需要考虑用户可能的背景。他们可能对Python和机器学习有一定基础,但需要具体的代码示例和步骤解释。用户提到的评估指标包括准确率、ROC-AUC、召回率、混淆矩阵、ROC曲线、精确率,这些都需要在回答中详细说明。 首先,数据读取部分,使用pandas的read_excel函数,这里需要提醒用户安装必要的库,比如xlrd或openpyxl,特别是Excel文件格式不同时可能需要不同的引擎。然后,数据预处理步骤,包括处理缺失值、特征选择、数据划分等,可能需要使用SimpleImputer、train_test_split等工具。 然后是模型训练,使用sklearn的DecisionTreeClassifier,需要解释参数如max_depth的作用,以及如何避免过拟合。评估部分,需要涵盖用户提到的所有指标,可能要用到classification_report、confusion_matrix、roc_auc_score,以及绘制ROC曲线。 需要注意的是,用户提供的引用中提到了AUC-ROC曲线在二分类中的应用,因此要确保评估部分正确应用这一指标,特别是在多分类问题中的处理可能不同。此外,代码示例需要正确无误,并且注释清晰,方便用户理解每一步的作用。 可能遇到的问题包括:数据中存在缺失值或非数值特征,如何处理?需要提醒用户进行数据编码,比如OneHotEncoder。另外,决策树容易过拟合,是否需要提到剪枝参数?比如max_depth、min_samples_leaf等,这可以作为优化方法的一部分,但用户的问题主要是建立模型,可能后续问题会涉及优化。 在评估指标部分,准确率、精确率、召回率、F1值、ROC-AUC都是重要的,需要分别计算。混淆矩阵的可视化可以使用ConfusionMatrixDisplay,而ROC曲线需要计算概率,使用predict_proba方法,并处理二分类与多分类的情况。根据引用[^1],AUC-ROC主要适用于二分类,因此如果用户的数据是多分类,可能需要调整评估方法,但用户的问题中没有明确,所以假设是二分类。 最后,生成的相关问题需要围绕决策树模型的进一步分析,比如特征重要性、过拟合处理、参数调优、与其他模型的比较,以及处理不平衡数据的方法。这些问题可以帮助用户深入了解决策树的应用和优化。 现在,我需要将这些思考整理成一个结构清晰、步骤分明的回答,确保代码正确,解释到位,并且引用标记正确添加。</think>以下是通过决策树建立分类模型的完整实现流程,包含数据预处理、模型训练和性能评估: ### 一、数据读取与预处理 ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder, OneHotEncoder from sklearn.impute import SimpleImputer # 1. 读取Excel数据 data = pd.read_excel('dataset.xlsx', engine='openpyxl') # 需要安装openpyxl # 2. 处理缺失值 imputer = SimpleImputer(strategy='most_frequent') data_filled = pd.DataFrame(imputer.fit_transform(data), columns=data.columns) # 3. 特征工程 X = data_filled.drop('target_column', axis=1) # 替换为实际目标列名 y = data_filled['target_column'] # 4. 编码分类特征(决策树可处理类别特征,但建议编码) le = LabelEncoder() y = le.fit_transform(y) # 标签编码 X = pd.get_dummies(X) # 独热编码 # 5. 数据集划分 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` ### 二、模型训练 ```python from sklearn.tree import DecisionTreeClassifier # 创建决策树分类器(可调整参数优化性能) dt_model = DecisionTreeClassifier( max_depth=5, # 控制树深度防止过拟合 min_samples_split=10, criterion='gini', random_state=42 ) # 训练模型 dt_model.fit(X_train, y_train) ``` ### 三、模型评估 ```python from sklearn.metrics import (accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, RocCurveDisplay) import matplotlib.pyplot as plt # 1. 预测结果 y_pred = dt_model.predict(X_test) y_proba = dt_model.predict_proba(X_test)[:, 1] # 获取正类概率 # 2. 基础指标计算 print(f"准确率: {accuracy_score(y_test, y_pred):.4f}") print(f"精确率: {precision_score(y_test, y_pred):.4f}") print(f"召回率: {recall_score(y_test, y_pred):.4f}") print(f"F1分数: {f1_score(y_test, y_pred):.4f}") print(f"AUC值: {roc_auc_score(y_test, y_proba):.4f}") # 3. 混淆矩阵可视化 ConfusionMatrixDisplay.from_estimator(dt_model, X_test, y_test) plt.title('Confusion Matrix') plt.show() # 4. ROC曲线绘制 fpr, tpr, _ = roc_curve(y_test, y_proba) plt.plot(fpr, tpr, label=f'AUC = {roc_auc_score(y_test, y_proba):.2f}') plt.plot([0, 1], [0, 1], 'k--') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC Curve') plt.legend() plt.show() # 5. 分类报告 print(classification_report(y_test, y_pred)) ``` ### 四、关键解释 1. **特征处理**:决策树可以处理类别特征,但通过独热编码可提升可解释性[^2] 2. **过拟合控制**:通过设置`max_depth`和`min_samples_split`参数防止模型过拟合 3. **评估指标**: - 准确率:$$\frac{TP+TN}{TP+TN+FP+FN}$$ - 精确率:$$\frac{TP}{TP+FP}$$ - 召回率:$$\frac{TP}{TP+FN}$$ - AUC值:表示模型区分正负类的能力,值越接近1性能越好[^1] ###
阅读全文

相关推荐

# -*- coding: utf-8 -*- import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, classification_report, confusion_matrix from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression # 设置中文字体 plt.rcParams["font.sans-serif"] = ["SimHei"] plt.rcParams["axes.unicode_minus"] = False # 数据加载与预处理 data = load_iris() X = pd.DataFrame(data.data, columns=["萼片长度", "萼片宽度", "花瓣长度", "花瓣宽度"]) y = data.target target_names_cn = ["山鸢尾", "变色鸢尾", "维吉尼亚鸢尾"] # 划分数据集 X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42, stratify=y ) # 模型定义 models = { "支持向量机": SVC(), "决策树": DecisionTreeClassifier(max_depth=3), "K近邻": KNeighborsClassifier(n_neighbors=3), "随机森林": RandomForestClassifier(n_estimators=100), "逻辑回归": LogisticRegression(max_iter=200) } # 训练评估与可视化 for name, model in models.items(): model.fit(X_train, y_train) y_pred = model.predict(X_test) # 输出评估结果 print(f"\n{name}评估结果".center(50, "=")) print(f"准确率:{accuracy_score(y_test, y_pred):.4f}") print("分类报告:\n", classification_report(y_test, y_pred, target_names=target_names_cn)) # 绘制混淆矩阵 cm = confusion_matrix(y_test, y_pred) plt.figure(figsize=(6, 4)) sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=target_names_cn, yticklabels=target_names_cn) plt.title(f"{name}混淆矩阵") plt.xlabel("预测标签") plt.ylabel("真实标签") plt.tight_layout() plt.show() 以上代码的可视化结果

1. Use the credictcard-reduced.csv dataset ([Data description](https://www.kaggle.com/mlg-ulb/creditcardfraud)) and build Five classification models. Please plot confusion matrix, and evaluate your model performance using accuracy, precision, recall, F-score (70 points). A list of classification models can be found [here](https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html) 我现在要完成以上作业,已输入下面代码from sklearn.model_selection import train_test_split # this function provides a single "Hold-Out" Validation. import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score #similar to MAE, we use accuracy_score evaluation metric. import pandas as pd import numpy as np data = pd.read_csv('Credit_approval.csv',header='infer') data.head(5)Y = data['Approved'] #this is our prediction target X = data.drop(['Approved'],axis=1) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.4, random_state=1) rom sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier(max_depth=2) # number estimators is the key parameter clf = clf.fit(X_train, Y_train) Y_predTrain = clf.predict(X_train) Y_predTest = clf.predict(X_test) print('Training accuracy is %f' % accuracy_score(Y_train, Y_predTrain)) print('Validation accuracy is %f' %accuracy_score(Y_test, Y_predTest))from sklearn.ensemble import RandomForestClassifier np.random.seed(1) #because the model has random sampling, a random seed can ensure repeated results. clf = RandomForestClassifier(max_depth=2,n_estimators=500) clf = clf.fit(X_train, Y_train) Y_predTrain = clf.predict(X_train) Y_predTest = clf.predict(X_test) print('Training accuracy is %f' % accuracy_score(Y_train, Y_predTrain)) print('Validation accuracy is %f' %accuracy_score(Y_test, Y_predTest)) 接下来怎么办

from sklearn.feature_selection import RFECV from sklearn.model_selection import StratifiedKFold from sklearn.tree import DecisionTreeClassifier, plot_tree from sklearn.metrics import classification_report, roc_auc_score, confusion_matrix, precision_recall_curve from imblearn.over_sampling import SMOTE import matplotlib.pyplot as plt import seaborn as sns import numpy as np from sklearn.utils.class_weight import compute_class_weight # ==================== # 数据集SMOTE重采样 # ==================== # 使用SMOTE进行训练集的重采样 smote = SMOTE(random_state=42) X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train) # ==================== # 递归特征消除 (RFECV) # ==================== # 初始化基模型 base_model = DecisionTreeClassifier( max_depth=3, min_samples_split=10, min_samples_leaf=5, class_weight='balanced', random_state=42 ) # 配置RFECV selector = RFECV( estimator=base_model, step=1, # 每次迭代移除1个特征 min_features_to_select=3, # 至少保留3个特征 cv=StratifiedKFold(5), # 分层交叉验证 scoring='roc_auc', n_jobs=-1 ) # 执行特征选择 selector.fit(X_train_resampled, y_train_resampled) # 获取选择的特征 selected_features = X_train.columns[selector.support_].tolist() print(f"\nRFECV选择特征数: {len(selected_features)}/{X_train.shape[1]}") print("选中的特征:", selected_features) # 筛选数据集 X_train_rfe = X_train_resampled[selected_features] X_test_rfe = X_test[selected_features] # ==================== # 使用最优特征重新训练 # ==================== optimized_model = DecisionTreeClassifier( max_depth=4, min_samples_split=10, min_samples_leaf=5, class_weight='balanced', random_state=42 ) optimized_model.fit(X_train_rfe, y_train_resampled) # ==================== # 完整评估函数(增强版) # ==================== def enhanced_evaluation(model, X_train, y_train, X_test, y_test): def get_metrics(y_true, y_pred, y_proba): tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel() specificity = tn / (tn + fp) recall = tp / (tp + fn) ppv = tp / (tp + fp)

import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay from sklearn.pipeline import make_pipeline # 选择5个分类器 selected_classifiers = { "Random Forest": RandomForestClassifier(n_estimators=100, random_state=42), "Logistic Regression": LogisticRegression(max_iter=1000, random_state=42), "XGBoost": XGBClassifier(use_label_encoder=False, eval_metric='logloss'), "SVM": SVC(kernel='rbf', probability=True, random_state=42), "Neural Network": MLPClassifier(hidden_layer_sizes=(50,), max_iter=1000, random_state=42) } # 数据准备 df = pd.read_csv('credictcard-reduced.csv') X = df.drop(['Time', 'Class'], axis=1) # 移除时间和标签列 y = df['Class'] # 划分数据集 X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, stratify=y, random_state=42 ) # 标准化处理 scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # 创建可视化画布 fig, axes = plt.subplots(2, 5, figsize=(25, 10)) plt.subplots_adjust(wspace=0.4, hspace=0.4) # 训练和评估模型 for idx, (name, clf) in enumerate(selected_classifiers.items()): # 训练模型 clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # 计算评估指标 report = classification_report(y_test, y_pred, output_dict=True) metrics_df = pd.DataFrame(report).transpose() # 绘制混淆矩阵 cm = confusion_matrix(y_test, y_pred) disp = ConfusionMatrixDisplay(confusion_matrix=cm) disp.plot(ax=axes[0, idx], cmap='Blues') axes[0, idx].set_title(f'{name}\nConfusion Matrix') # 显示指标表格 cell_text = [[f"{metrics_df.loc['1']['precision']:.2f}", f"{metrics_df.loc['1']['recall']:.2f}", f"{metrics_df.loc['1']['f1-score']:.2f}"]] table = axes[1, idx].table(cellText=cell_text, colLabels=['Precision', 'Recall', 'F1'], loc='center', cellLoc='center') table.set_fontsize(14) table.scale(1, 2) axes[1, idx].axis('off') axes[1, idx].set_title('Class 1 Metrics') plt.show() # 输出详细评估报告 print("\n\033[1m综合性能报告:\033[0m") for name, clf in selected_classifiers.items(): y_pred = clf.predict(X_test) print(f"\n\033[1m{name}\033[0m") print(classification_report(y_test, y_pred, target_names=['0', '1'])) 将这一段的代码里面的XGBoost 改成decision tree ,jiang svm改成 adaboots,并且增加之前没有的from sklearn ... 的没有预先导入的内容

import argparse import numpy as np import os from sklearn.metrics import confusion_matrix from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from get_cls_map import get_classification_map, list_to_colormap, classification_map # 根据数据集选择对应的数据加载函数 #from cls_SSFTT_IP.IP_train_Pavia import loadData, applyPCA, createImageCubes, splitTrainTestSet from cls_SSFTT_IP.IP_train import loadData, applyPCA, createImageCubes, splitTrainTestSet # from cls_SSFTT_IP.IP_train_Houston import loadData, applyPCA, createImageCubes, splitTrainTestSet parser = argparse.ArgumentParser("Traditional_ML") parser.add_argument('--dataset', choices=['Indian', 'Houston', 'Pavia'], default='Pavia') parser.add_argument('--mode', choices=['KNN', 'SVM', 'RF'], default='SVM') args = parser.parse_args() # 读取数据 data, labels = loadData() # PCA降维 pca_components = 30 X_pca = applyPCA(data, numComponents=pca_components) # 创建数据立方体 patch_size = 5 X_pca, y_all = createImageCubes(X_pca, labels, windowSize=patch_size) # 划分训练集和测试集 test_ratio = 0.90 Xtrain, Xtest, ytrain, ytest = splitTrainTestSet(X_pca, y_all, test_ratio) # 数据预处理:展平为二维数组(样本数 × 特征数) def flatten_data(X): return X.reshape(X.shape[0], -1) Xtrain_flat = flatten_data(Xtrain) Xtest_flat = flatten_data(Xtest) Xall_flat = flatten_data(X_pca) # 初始化分类器 if args.mode == 'KNN': classifier = KNeighborsClassifier(n_neighbors=10) elif args.mode == 'SVM': classifier = SVC(kernel='rbf', C=10000, gamma=0.01) elif args.mode == 'RF': classifier = RandomForestClassifier(n_estimators=200) # 训练模型 classifier.fit(Xtrain_flat, ytrain) # 测试集预测 pre_test = classifier.predict(Xtest_flat) # 全图预测 pree_all = classifier.predict(Xall_flat) # 评估指标计算 matrix = confusion_matrix(ytest, pre_test) OA = np.trace(matrix) / np.sum(matrix) row_sums = np.sum(matrix, axis=1) valid_indices = row_sums != 0 AA = np.zeros(len(row_sums)) AA[valid_indices] = np.diag(matrix)[valid_indices] / row_su

#安装 numpy、scipy、matplotlib三个库 pip install numpy pip install scipy pip install matplotlib pip install sklearn #导入包 import pandas as pd import numpy as np import matplotlib.pyplot as plt from pylab import * mpl.rcParams['font.sans-serif'] = ['SimHei'] #用于画图时显示中文 from sklearn.datasets import load_iris #导入数据集iris iris = load_iris() #载入数据集 print(iris.data) #打印输出数据集 #共150条记录,分别代表50条山鸢尾 (Iris-setosa)、变色鸢尾(Iris-versicolor)、维吉尼亚鸢尾(Iris-virginica) print(iris.target) iris.data.shape # iris数据集150行4列的二维数组 url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data" names = ['花萼-length', '花萼-width', '花瓣-length', '花瓣-width', 'class'] dataset = pd.read_csv(url, names=names) #************************可视化显示*************************************# #显示直方图 zhifangtu=dataset.hist() #数据直方图histograms plt.show(zhifangtu.data) print(dataset.describe()) #显示散点图 sandian=dataset.plot(x='花萼-length', y='花萼-width', kind='scatter') #散点图,x轴表示花萼长度,y轴表示花萼宽度 plt.show(sandian) #kde图 plt.show(dataset.plot(kind='kde')) #KDE图,也被称作密度图(Kernel Density Estimate,核密度估计) #显示箱图 #kind='box'绘制箱图,包含子图且子图的行列布局layout为2*2,子图共用x轴、y轴刻度,标签为False xiangtu = dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False) plt.show(xiangtu.data) #*****************************线性回归*************************************# pos = pd.DataFrame(dataset) #获取花瓣的长和宽,转换Series为ndarray x = pos['花瓣-length'].values y = pos['花瓣-width'].values x = x.reshape(len(x),1) y = y.reshape(len(y),1) from sklearn.linear_model import LinearRegression clf = LinearRegression() clf.fit(x,y) pre = clf.predict(x) plt.scatter(x,y,s=100) plt.plot(x,pre,'r-',linewidth=4) for idx, m in enumerate(x): plt.plot([m,m],[y[idx],pre[idx]], 'g-') plt.show() #*****************************决策树分析***********************************# from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier iris = load_iris() clf = DecisionTreeClassifier() clf.fit(iris.data, iris.target) predicted = clf.predict(iris.data) #获取花卉两列数据集 L1 = pos['花萼-length'].values L2 = pos['花萼-width'].values import numpy as np import matplotlib.pyplot as plt plt.scatter(L1, L2, c=predicted, marker='x') #cmap=plt.cm.Paired plt.title("DTC") plt.show() #将iris_data分为70%的训练,30%的进行预测 然后进行优化 输出准确率、召回率等,优化后的完整代码如下: from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn import metrics x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target, test_size=0.3) clf = DecisionTreeClassifier() clf.fit(x_train,y_train) predict_target = clf.predict(x_test) print(sum(predict_target == y_test)) #预测结果与真实结果比对 print(metrics.classification_report(y_test,predict_target)) print(metrics.confusion_matrix(y_test,predict_target)) L1 = [n[0] for n in x_test] L2 = [n[1] for n in x_test] plt.scatter(L1,L2, c=predict_target,marker='x') plt.title('决策树分类器') plt.show() #*****************************KMeans聚类分析*******************************# from sklearn.cluster import KMeans from sklearn.datasets import load_iris iris = load_iris() clf = KMeans() clf.fit(iris.data,iris.target) predicted = clf.predict(iris.data) pos = pd.DataFrame(dataset) L1 = pos['花萼-length'].values L2 = pos['花萼-width'].values plt.scatter(L1, L2, c=predicted, marker='s',s=100,cmap=plt.cm.Paired) plt.title("KMeans聚类分析") plt.show() #******************************************* from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 plot_colors = "ryb" plot_step = 0.02 # Load data iris = load_iris() for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]): # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Train clf = DecisionTreeClassifier().fit(X, y) # Plot the decision boundary plt.subplot(2, 3, pairidx + 1) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu) plt.xlabel(iris.feature_names[pair[0]]) plt.ylabel(iris.feature_names[pair[1]]) # Plot the training points for i, color in zip(range(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.RdYlBu, edgecolor='black', s=15) plt.suptitle("Decision surface of a decision tree using paired features") plt.legend(loc='lower right', borderpad=0, handletextpad=0) plt.axis("tight") plt.show()

我使用的软件是visual studio code,请用python编写如下代码:在我以前代码的基础上,在后面直接接着写,为我的数据集制作“决策树”和“随机森林”,要求输出决策树和随机森林的准确率,并且决策树可视化(决策树混淆矩阵),而且随机森林可视化(随机森林混淆矩阵,特征重要性图)。我以前的代码:import pandas as pd import missingno as msno import matplotlib.pyplot as plt #(一)数据探 #读取数据集 file_path = r"C:/Users/33584/Desktop/st/studata.csv" df = pd.read_csv(file_path, encoding='latin1') print(df.head(20)) #(二)数据清洗 # ---------- 缺失值检测 ---------- # 方法1:统计每列缺失值数量 missing_count = df.isnull().sum() print("各列缺失值统计:\n", missing_count) # 方法2:计算整体缺失率 missing_percent = df.isnull().sum().sum() / df.size * 100 print(f"\n总缺失率:{missing_percent:.2f}%") # ---------- 缺失值可视化 ---------- # 矩阵图:白色表示缺失 msno.matrix(df, figsize=(10, 6), fontsize=12) plt.title("缺失值分布矩阵图", fontsize=14) plt.show() # 条形图:显示每列非空数据量 msno.bar(df, figsize=(10, 6), color="dodgerblue", fontsize=12) plt.title("数据完整性条形图", fontsize=14) plt.show() #结果:无缺失值 # (三)特征工程 # 处理二进制变量 (原始编码1/2转换为0/1) binary_cols = ['sex'] df[binary_cols] = df[binary_cols].replace({1:0, 2:1}) # 设置目标变量(假设预测毕业预期成绩Ecgpoint_aver) target = 'Ecgpoint_aver' X = df.drop(columns=[target]) y = df[target] # 对分类特征进行独热编码(排除二进制列) categorical_cols = X.columns.difference(binary_cols).tolist() X_encoded = pd.get_dummies(X, columns=categorical_cols) # (四)数据集划分 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(     X_encoded, y, test_size=0.2, random_state=42, stratify=y ) # (五)逻辑回归建模 from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, classification_report lr = LogisticRegression(max_iter=1000, penalty='l2', solver='liblinear') lr.fit(X_train, y_train) y_pred_lr = lr.predict(X_test) print("\n逻辑回归结果:") print("准确率:", accuracy_score(y_test, y_pred_lr)) print(classification_report(y_test, y_pred_lr))

决策树实验目的: 1. 通过鸢尾花数据集分类实例,熟悉决策树的基本使用方法。(有余力的同学,了解决策 树的分类边界形状,掌握决策树树形结构的绘制)。 实验内容: (1)任选鸢尾花数据集的两个及以上特征,使用决策树进行分类; (2)将鸢尾花数据集划分为训练集和测试集,训练的决策树模型,计算预测的精度,绘 制混淆矩阵等; 数据集介绍 1. 鸢尾花数据集(Iris Dataset) • 来源:UCI Machine Learning Repository(经典机器学习数据集) • 样本量:150 个样本,分为 3 类(每类 50 个样本)。 • 特征维度:4 个数值型特征(均为花的物理测量值): ◼ sepal length (cm):花萼长度(单位:厘米) ◼ sepal width (cm):花萼宽度(单位:厘米) ◼ petal length (cm):花瓣长度(单位:厘米) ◼ petal width (cm):花瓣宽度(单位:厘米) • 类别标签: ◼ setosa(山鸢尾) ◼ versicolor(变色鸢尾) ◼ virginica(维吉尼亚鸢尾) 2. 数据集划分 ◼ 训练集:70% 样本(105 个),用于模型训练。 ◼ 测试集:30% 样本(45 个),用于评估模型泛化性能。 ◼ 随机种子:random_state=42,确保结果可重复。 代码实现 # 可能需要用到的库 import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.tree import DecisionTreeClassifier DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort=False) #中文乱码问题 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False对鸢尾花分类实验代码

修改和补充下列代码得到十折交叉验证的平均每一折auc值和平均每一折aoc曲线,平均每一折分类报告以及平均每一折混淆矩阵 min_max_scaler = MinMaxScaler() X_train1, X_test1 = x[train_id], x[test_id] y_train1, y_test1 = y[train_id], y[test_id] # apply the same scaler to both sets of data X_train1 = min_max_scaler.fit_transform(X_train1) X_test1 = min_max_scaler.transform(X_test1) X_train1 = np.array(X_train1) X_test1 = np.array(X_test1) config = get_config() tree = gcForest(config) tree.fit(X_train1, y_train1) y_pred11 = tree.predict(X_test1) y_pred1.append(y_pred11 X_train.append(X_train1) X_test.append(X_test1) y_test.append(y_test1) y_train.append(y_train1) X_train_fuzzy1, X_test_fuzzy1 = X_fuzzy[train_id], X_fuzzy[test_id] y_train_fuzzy1, y_test_fuzzy1 = y_sampled[train_id], y_sampled[test_id] X_train_fuzzy1 = min_max_scaler.fit_transform(X_train_fuzzy1) X_test_fuzzy1 = min_max_scaler.transform(X_test_fuzzy1) X_train_fuzzy1 = np.array(X_train_fuzzy1) X_test_fuzzy1 = np.array(X_test_fuzzy1) config = get_config() tree = gcForest(config) tree.fit(X_train_fuzzy1, y_train_fuzzy1) y_predd = tree.predict(X_test_fuzzy1) y_pred.append(y_predd) X_test_fuzzy.append(X_test_fuzzy1) y_test_fuzzy.append(y_test_fuzzy1)y_pred = to_categorical(np.concatenate(y_pred), num_classes=3) y_pred1 = to_categorical(np.concatenate(y_pred1), num_classes=3) y_test = to_categorical(np.concatenate(y_test), num_classes=3) y_test_fuzzy = to_categorical(np.concatenate(y_test_fuzzy), num_classes=3) print(y_pred.shape) print(y_pred1.shape) print(y_test.shape) print(y_test_fuzzy.shape) # 深度森林 report1 = classification_report(y_test, y_prprint("DF",report1) report = classification_report(y_test_fuzzy, y_pred) print("DF-F",report) mse = mean_squared_error(y_test, y_pred1) rmse = math.sqrt(mse) print('深度森林RMSE:', rmse) print('深度森林Accuracy:', accuracy_score(y_test, y_pred1)) mse = mean_squared_error(y_test_fuzzy, y_pred) rmse = math.sqrt(mse) print('F深度森林RMSE:', rmse) print('F深度森林Accuracy:', accuracy_score(y_test_fuzzy, y_pred)) mse = mean_squared_error(y_test, y_pred) rmse = math.sqrt(mse)

最新推荐

recommend-type

构建基于ajax, jsp, Hibernate的博客网站源码解析

根据提供的文件信息,本篇内容将专注于解释和阐述ajax、jsp、Hibernate以及构建博客网站的相关知识点。 ### AJAX AJAX(Asynchronous JavaScript and XML)是一种用于创建快速动态网页的技术,它允许网页在不重新加载整个页面的情况下,与服务器交换数据并更新部分网页内容。AJAX的核心是JavaScript中的XMLHttpRequest对象,通过这个对象,JavaScript可以异步地向服务器请求数据。此外,现代AJAX开发中,常常用到jQuery中的$.ajax()方法,因为其简化了AJAX请求的处理过程。 AJAX的特点主要包括: - 异步性:用户操作与数据传输是异步进行的,不会影响用户体验。 - 局部更新:只更新需要更新的内容,而不是整个页面,提高了数据交互效率。 - 前后端分离:AJAX技术允许前后端分离开发,让前端开发者专注于界面和用户体验,后端开发者专注于业务逻辑和数据处理。 ### JSP JSP(Java Server Pages)是一种动态网页技术标准,它允许开发者将Java代码嵌入到HTML页面中,从而实现动态内容的生成。JSP页面在服务器端执行,并将生成的HTML发送到客户端浏览器。JSP是Java EE(Java Platform, Enterprise Edition)的一部分。 JSP的基本工作原理: - 当客户端首次请求JSP页面时,服务器会将JSP文件转换为Servlet。 - 服务器上的JSP容器(如Apache Tomcat)负责编译并执行转换后的Servlet。 - Servlet生成HTML内容,并发送给客户端浏览器。 JSP页面中常见的元素包括: - 指令(Directives):如page、include、taglib等。 - 脚本元素:脚本声明(Script declarations)、脚本表达式(Scriptlet)和脚本片段(Expression)。 - 标准动作:如jsp:useBean、jsp:setProperty、jsp:getProperty等。 - 注释:在客户端浏览器中不可见的注释。 ### Hibernate Hibernate是一个开源的对象关系映射(ORM)框架,它提供了从Java对象到数据库表的映射,简化了数据库编程。通过Hibernate,开发者可以将Java对象持久化到数据库中,并从数据库中检索它们,而无需直接编写SQL语句或掌握复杂的JDBC编程。 Hibernate的主要优点包括: - ORM映射:将对象模型映射到关系型数据库的表结构。 - 缓存机制:提供了二级缓存,优化数据访问性能。 - 数据查询:提供HQL(Hibernate Query Language)和Criteria API等查询方式。 - 延迟加载:可以配置对象或对象集合的延迟加载,以提高性能。 ### 博客网站开发 构建一个博客网站涉及到前端页面设计、后端逻辑处理、数据库设计等多个方面。使用ajax、jsp、Hibernate技术栈,开发者可以更高效地构建功能完备的博客系统。 #### 前端页面设计 前端主要通过HTML、CSS和JavaScript来实现,其中ajax技术可以用来异步获取文章内容、用户评论等,无需刷新页面即可更新内容。 #### 后端逻辑处理 JSP可以在服务器端动态生成HTML内容,根据用户请求和数据库中的数据渲染页面。Hibernate作为ORM框架,可以处理Java对象与数据库表之间的映射,并提供数据库的CRUD(创建、读取、更新、删除)操作。 #### 数据库设计 博客网站的数据库设计通常包含多个表,如用户表(存储用户信息)、文章表(存储文章信息)、评论表(存储用户评论信息)等。使用Hibernate框架可以简化数据库操作,同时确保数据的一致性和安全性。 #### 安全性和性能优化 安全性是构建网站时需要考虑的重要方面,包括但不限于SQL注入防护、XSS攻击防护、会话管理等。性能优化方面,可以利用Hibernate的缓存机制,以及对JSP页面和ajax请求进行适当的缓存处理。 ### 结论 ajax、jsp、Hibernate技术结合可以构建出高效、动态、易于维护的博客网站。在开发过程中,应当关注前后端分离、用户体验优化、系统性能和安全性等关键要素,确保博客网站的稳定和长期可用性。通过本篇文章,读者应该已经对这些技术有了初步了解,并能够结合文件提供的源码开始进行相关开发实践。
recommend-type

【Unity Sunny Land关卡设计高级指南】:打造完美关卡的8大技巧

# 1. Unity关卡设计概述 ## 1.1 关卡设计的核心要素 关卡设计作为游戏开发中不可或缺的一环,承担着构建游戏世界、呈现故事背景、引导玩家体验和激发玩家兴趣的责任。一个优秀的关卡不仅需要有吸引人的视觉效果和有趣的挑战,还需平衡玩家体验,提供连贯的游戏故事。 ## 1.2 关卡设计师的角色 在Unity引擎的环境下,关卡设计师需要具备对场景布局、角色互动、剧情
recommend-type

C++ 模版

<think>我们正在讨论C++模板的使用和常见问题。根据用户要求,所有行内数学表达式使用$...$,独立公式使用$$...$$,用中文回答,并生成相关问题。同时,回答要结构清晰,帮助用户逐步解决问题。 首先,回顾用户的问题:用户想了解C++模板的使用和常见问题。我们将从以下几个方面展开: 1. 模板的基本概念和用途 2. 函数模板和类模板 3. 模板特化和偏特化 4. 模板元编程简介 5. 常见问题及解决方案 注意:在回答中,我们会引用站内提供的引用内容(引用[1]和引用[2])作为参考,但主要围绕模板展开。 ### 1. 模板的基本概念和用途 C++模板是一种支持泛型编程的特性,允许
recommend-type

C#随机数摇奖系统功能及隐藏开关揭秘

### C#摇奖系统知识点梳理 #### 1. C#语言基础 C#(发音为“看井”)是由微软开发的一种面向对象的、类型安全的编程语言。它是.NET框架的核心语言之一,广泛用于开发Windows应用程序、ASP.NET网站、Web服务等。C#提供丰富的数据类型、控制结构和异常处理机制,这使得它在构建复杂应用程序时具有很强的表达能力。 #### 2. 随机数的生成 在编程中,随机数生成是常见的需求之一,尤其在需要模拟抽奖、游戏等场景时。C#提供了System.Random类来生成随机数。Random类的实例可以生成一个伪随机数序列,这些数在统计学上被认为是随机的,但它们是由确定的算法生成,因此每次运行程序时产生的随机数序列相同,除非改变种子值。 ```csharp using System; class Program { static void Main() { Random rand = new Random(); for(int i = 0; i < 10; i++) { Console.WriteLine(rand.Next(1, 101)); // 生成1到100之间的随机数 } } } ``` #### 3. 摇奖系统设计 摇奖系统通常需要以下功能: - 用户界面:显示摇奖结果的界面。 - 随机数生成:用于确定摇奖结果的随机数。 - 动画效果:模拟摇奖的视觉效果。 - 奖项管理:定义摇奖中可能获得的奖品。 - 规则设置:定义摇奖规则,比如中奖概率等。 在C#中,可以使用Windows Forms或WPF技术构建用户界面,并集成上述功能以创建一个完整的摇奖系统。 #### 4. 暗藏的开关(隐藏控制) 标题中提到的“暗藏的开关”通常是指在程序中实现的一个不易被察觉的控制逻辑,用于在特定条件下改变程序的行为。在摇奖系统中,这样的开关可能用于控制中奖的概率、启动或停止摇奖、强制显示特定的结果等。 #### 5. 测试 对于摇奖系统来说,测试是一个非常重要的环节。测试可以确保程序按照预期工作,随机数生成器的随机性符合要求,用户界面友好,以及隐藏的控制逻辑不会被轻易发现或利用。测试可能包括单元测试、集成测试、压力测试等多个方面。 #### 6. System.Random类的局限性 System.Random虽然方便使用,但也有其局限性。其生成的随机数序列具有一定的周期性,并且如果使用不当(例如使用相同的种子创建多个实例),可能会导致生成相同的随机数序列。在安全性要求较高的场合,如密码学应用,推荐使用更加安全的随机数生成方式,比如RNGCryptoServiceProvider。 #### 7. Windows Forms技术 Windows Forms是.NET框架中用于创建图形用户界面应用程序的库。它提供了一套丰富的控件,如按钮、文本框、标签等,以及它们的事件处理机制,允许开发者设计出视觉效果良好且功能丰富的桌面应用程序。 #### 8. WPF技术 WPF(Windows Presentation Foundation)是.NET框架中用于构建桌面应用程序用户界面的另一种技术。与Windows Forms相比,WPF提供了更现代化的控件集,支持更复杂的布局和样式,以及3D图形和动画效果。WPF的XAML标记语言允许开发者以声明性的方式设计用户界面,与C#代码分离,易于维护和更新。 #### 9. 压缩包子文件TransBallDemo分析 从文件名“TransBallDemo”可以推测,这可能是一个C#的示例程序或者演示程序,其中“TransBall”可能表示旋转的球体,暗示该程序包含了动画效果,可能是用来模拟转动的球体(如转盘或摇奖球)。该文件可能是用来展示如何实现一个带有视觉动画效果的摇奖系统的C#程序。 总结以上内容,我们可以得出构建一个C#摇奖系统需要深入理解C#语言及其随机数生成机制,设计用户界面,集成动画效果,确保隐藏控制逻辑的安全性,以及全面测试系统以保证其正确性和公平性。通过掌握Windows Forms或WPF技术,可以进一步增强系统的视觉和交互体验。
recommend-type

【数据驱动的力量】:管道缺陷判别方法论与实践经验

# 摘要 数据驱动技术在管道缺陷检测领域展现出强大的力量,本文首先概述了数据驱动的力量和管道缺陷判别的基础理论。接着,重点探讨了管道缺陷的类型与特征、数据采集与预处理、数据驱动模型的选择与构建。在实践技巧章节,本文详述了实战数据集的准备与处理、缺陷识别算法的应用、以及性能评估与模型优化。此外,高级应用章节深入讨论了实时数据处理分析、多模态数据融合技术、以及深度学习在缺
recommend-type

FatalError: `Segmentation fault` is detected by the operating system. [TimeInfo: *** Aborted at 1752568501 (unix time) try "date -d @1752568501" if you are using GNU date ***] [SignalInfo: *** SIGSEGV (@0x0) received by PID 3203 (TID 0x7f8a04143340) from PID 0 ***],训练模型中出现上述错误,怎么解决

<think>我们面对的是一个模型训练过程中出现的Segmentation fault错误。根据引用[1],Segmentation Fault通常是由非法内存访问引起的,常见原因包括空指针解引用、数组越界、使用未初始化指针等。在深度学习训练场景中,还可能涉及显存溢出、CUDA内核错误等。 引用[2]展示了一个具体案例:在PaddlePaddle框架中遇到Segmentation fault,并提示了C++ Traceback。这通常表明底层C++代码出现了问题。而引用[3]则提到Python环境下的Segmentation fault,可能涉及Python扩展模块的错误。 解决步骤: 1
recommend-type

EditPlus中实现COBOL语言语法高亮的设置

标题中的“editplus”指的是一个轻量级的代码编辑器,特别受到程序员和软件开发者的欢迎,因为它支持多种编程语言。标题中的“mfcobol”指的是一种特定的编程语言,即“Micro Focus COBOL”。COBOL语言全称为“Common Business-Oriented Language”,是一种高级编程语言,主要用于商业、金融和行政管理领域的数据处理。它最初开发于1959年,是历史上最早的高级编程语言之一。 描述中的“cobol语言颜色显示”指的是在EditPlus这款编辑器中为COBOL代码提供语法高亮功能。语法高亮是一种编辑器功能,它可以将代码中的不同部分(如关键字、变量、字符串、注释等)用不同的颜色和样式显示,以便于编程者阅读和理解代码结构,提高代码的可读性和编辑的效率。在EditPlus中,要实现这一功能通常需要用户安装相应的语言语法文件。 标签“cobol”是与描述中提到的COBOL语言直接相关的一个词汇,它是对描述中提到的功能或者内容的分类或者指代。标签在互联网内容管理系统中用来帮助组织内容和便于检索。 在提供的“压缩包子文件的文件名称列表”中只有一个文件名:“Java.stx”。这个文件名可能是指一个语法高亮的模板文件(Syntax Template eXtension),通常以“.stx”为文件扩展名。这样的文件包含了特定语言语法高亮的规则定义,可用于EditPlus等支持自定义语法高亮的编辑器中。不过,Java.stx文件是为Java语言设计的语法高亮文件,与COBOL语言颜色显示并不直接相关。这可能意味着在文件列表中实际上缺少了为COBOL语言定义的相应.stx文件。对于EditPlus编辑器,要实现COBOL语言的颜色显示,需要的是一个COBOL.stx文件,或者需要在EditPlus中进行相应的语法高亮设置以支持COBOL。 为了在EditPlus中使用COBOL语法高亮,用户通常需要做以下几步操作: 1. 确保已经安装了支持COBOL的EditPlus版本。 2. 从Micro Focus或者第三方资源下载COBOL的语法高亮文件(COBOL.stx)。 3. 打开EditPlus,进入到“工具”菜单中的“配置用户工具”选项。 4. 在用户工具配置中,选择“语法高亮”选项卡,然后选择“添加”来载入下载的COBOL.stx文件。 5. 根据需要选择其他语法高亮的选项,比如是否开启自动完成、代码折叠等。 6. 确认并保存设置。 完成上述步骤后,在EditPlus中打开COBOL代码文件时,应该就能看到语法高亮显示了。语法高亮不仅仅是颜色的区分,它还可以包括字体加粗、斜体、下划线等样式,以及在某些情况下,语法错误的高亮显示。这对于提高编码效率和准确性有着重要意义。
recommend-type

影子系统(windows)问题排查:常见故障诊断与修复

# 摘要 本文旨在深入探讨影子系统的概念、工作原理以及故障诊断基础。首先,介绍影子系统的定义及其运作机制,并分析其故障诊断的理论基础,包括系统故障的分类和特征。接着,详细探讨各种故障诊断工具和方法,并提供实际操作中的故障排查步骤。文中还深入分析了影子系统常见故障案例,涵盖系统启动问题、软件兼容性和网络连通性问题,并提供相应的诊断与解决方案。高级故障诊断与修复
recommend-type

nt!DbgBreakPointWithStatus: fffff805`7affd0b0 cc int 3 kd> g KDTARGET: Refreshing KD connection *** Fatal System Error: 0x0000001a (0x0000000000061941,0xFFFFF8057B20E1C0,0x0000000000000019,0xFFFFFC89CACA7190) Break instruction exception - code 80000003 (first chance) A fatal system error has occurred. Debugger entered on first try; Bugcheck callbacks have not been invoked. A fatal system error has occurred. For analysis of this file, run !analyze -v nt!DbgBreakPointWithStatus: fffff805`7affd0b0 cc int 3 kd> !analyze -v Connected to Windows 10 19041 x64 target at (Tue Jul 15 23:02:04.588 2025 (UTC + 8:00)), ptr64 TRUE Loading Kernel Symbols ............. Press ctrl-c (cdb, kd, ntsd) or ctrl-break (windbg) to abort symbol loads that take too long. Run !sym noisy before .reload to track down problems loading symbols. .................................................. ................................................................ ..................................................... Loading User Symbols Loading unloaded module list ...... ERROR: FindPlugIns 8007007b ******************************************************************************* * * * Bugcheck Analysis * * * ******************************************************************************* MEMORY_MANAGEMENT (1a) # Any other values for parameter 1 must be individually examined. Arguments: Arg1: 0000000000061941, The subtype of the BugCheck. Arg2: fffff8057b20e1c0 Arg3: 0000000000000019 Arg4: fffffc89caca7190 Debugging Details: ------------------ Press ctrl-c (cdb, kd, ntsd) or ctrl-break (windbg) to abort symbol loads that take too long. Run !sym noisy before .reload to track down problems loading symbols. 蓝屏了,但原帖子代码能正常执行,帖子作者说:我win10是专门针对2mb大页,win7是专门针对4kb小页的,蓝屏的原因我只能想到是因为没有做大页和小页的处理了。你做了2mb和4kb之类的处理吗,还有2mb的大页的物理地址要2mb对齐,不然电脑会卡死,我win10蓝屏的原因就是因为没有物理地址2mb对齐,我这代码是专门针对我那个虚拟机的环境,其他环境蓝屏你要是懂分页的话自己就会处理了。最重要的细节就是物理地址要对齐,2mb就2mb的对齐,1gb就1gb的对齐。

<think>我们之前讨论的代码中已经包含了对大页(2MB)和小页(4KB)的处理。但是,根据蓝屏信息(MEMORY_MANAGEMENT, 0x1a)和参数,问题可能出在内存对齐或页表项设置上。 原帖作者提到:2MB大页的物理地址必须2MB对齐,否则会导致系统不稳定甚至蓝屏。在之前的代码中,我们确实处理了大页的情况,但在分配2MB内存时,我们使用了`MmAllocateContiguousMemorySpecifyCache`,这个函数分配的内存不一定满足2MB对齐(尽管它分配的是连续内存)。因此,我们需要确保分配的内存地址是2MB对齐的。 解决方案: 1. 在分配2MB内存时,要
recommend-type

ASP+CSS+DIV制作仿手机QQ请求状态条教程

根据给定文件信息,我们可以提取以下知识点: 1. 文件格式与技术栈理解: - .RAR文件扩展名代表这是一个压缩文件,通常包含了一个或多个文件的打包。在这个情境中,压缩文件的标题表明它包含了一个使用ASP、CSS和Div技术开发的进度条效果的示例代码。 - ASP(Active Server Pages)是一种服务器端脚本环境,可以用来创建动态交互式网页,是一种早期的网页编程技术。 - CSS(Cascading Style Sheets)是一门用于描述HTML或XML文档样式的计算机语言,用于控制网页的布局和设计。 - Div是HTML中的一个标签元素,它常用来创建文档中的分区或框,可以通过CSS对其进行样式定义和布局控制。 2. 功能说明与实现原理: - 描述提到的是仿手机QQ请求状态时的一个进度条,这意味着该进度条是模仿流行的即时通讯应用“手机QQ”中的功能,用于向用户提供正在加载或请求资源的可视化反馈。 - 进度条的基本原理是通过不断更新进度显示元素的CSS样式属性(如宽度或背景位置),以反映操作的完成百分比。这种效果可以通过JavaScript定时器或异步请求来动态改变进度条的样式,从而实现动态效果。 3. 开发实践: - 要创建一个进度条,开发者会首先在HTML中定义一个Div元素,并为其赋予一个特定的id或class,以便于通过CSS和JavaScript进行操作。 - 在CSS中,会定义进度条的初始样式,比如背景颜色、高度、宽度等,以及进度条的填充部分的样式,如渐变色效果或过渡动画效果。 - 通过ASP代码,开发者可以处理后端逻辑,如发送请求到服务器、接收数据等。但在这个进度条的实现中,ASP的作用可能相对较小,更多的是提供数据或触发加载事件。 - 实际控制进度条外观和行为的JavaScript代码,通常会在页面加载完成后执行,通过调用CSS3的动画或定时器函数(如setTimeout或setInterval)来周期性地更新进度条的宽度或背景位置,从而模拟加载进度。 - 进度条的最终效果可能还会包括各种交互细节,比如当进度达到100%时,进度条可能需要有某种效果(如停止动画、显示完成消息等)。 4. 文件内容与结构预览: - 根据文件名称列表,文件“状态提示条.htm”很可能是这个进度条效果的展示载体,其中可能包含了HTML结构、内嵌CSS样式以及JavaScript脚本。 - 该文件可能首先定义了包含进度条的HTML结构,随后通过内嵌的style标签或外部引入的CSS文件设置了进度条的基本样式。 - JavaScript脚本部分则可能包含在页面加载完成后初始化进度条的函数、控制进度条动态效果的函数,以及任何必要的事件处理逻辑。 5. 实际应用与优化: - 在实际应用中,此类进度条不仅用于提升用户体验,还需注意其性能优化。例如,进度条的动画和效果不应该显著影响到页面的加载时间。 - 优化措施可能包括减少不必要的DOM操作、使用CSS3动画代替JavaScript动画、限制JavaScript定时器的调用频率等。 - 进度条的设计还应考虑可访问性(Accessibility)问题,确保视觉效果对色盲用户等群体友好,并提供必要的键盘可操作性。 总结来说,该压缩文件是一个很好的实例,展示了如何将ASP、CSS和Div结合起来,创建一个视觉效果良好的进度条,用于提升网站或应用的交互体验。开发者可以通过观察和分析文件中的代码,了解进度条的具体实现原理和方法,并在自己的项目中进行实践和改进。