活动介绍

简化这些代码:import numpy as np import matplotlib.pyplot as plt import networkx as nx G1 = nx.DiGraph() G1.add_edge('V1', 'V2', capacity=70) G1.add_edge('V1', 'V3', capacity=100) G1.add_edge('V1', 'V4', capacity=90) G1.add_edge('V2', 'V6', capacity=80) G1.add_edge('V3', 'V4', capacity=40) G1.add_edge('V3', 'V5', capacity=70) G1.add_edge('V4', 'V5', capacity=40) G1.add_edge('V4', 'V6', capacity=100) G1.add_edge('V5', 'V6', capacity=90) from networkx.algorithms.flow import edmonds_karp maxFlowValue, maxFlowDict = nx.maximum_flow(G1, 'V1', 'V6', flow_func=edmonds_karp) edgeCapacity = nx.get_edge_attributes(G1, 'capacity') edgeLabel = {} for i in edgeCapacity.keys(): edgeLabel[i] = f'c={edgeCapacity[i]:}' edgeLists = [] for i in maxFlowDict.keys(): for j in maxFlowDict[i].keys(): edgeLabel[(i, j)] += ',f=' + str(maxFlowDict[i][j]) if maxFlowDict[i][j] > 0: edgeLists.append((i,j)) print("最大流值: ", maxFlowValue) print("最大流的路径:", edgeLists) print("最大流的途径及流量: ", maxFlowDict) fig, ax = plt.subplots(figsize=(8, 6)) pos = {'V1': (3, 3.5), 'V2': (4, 4), 'V3': (4, 3), 'V4': (5, 3.5), 'V5': (5.5, 3), 'V6': (6.5, 3.5) } edge_labels = nx.get_edge_attributes(G1, 'capacity') ax.set_title("abcd") nx.draw(G1, pos, with_labels=True, node_color='c', node_size=300, font_size=10) nx.draw_networkx_edge_labels(G1, pos, edgeLabel, font_color='navy') nx.draw_networkx_edges(G1, pos, edgelist=edgeLists, edge_color='m') plt.axis('on') plt.show()

时间: 2023-08-18 16:06:14 浏览: 200
以下是代码的简化版: ```python import networkx as nx import matplotlib.pyplot as plt # 创建有向图并添加边 G1 = nx.DiGraph() edges = [('V1', 'V2', 70), ('V1', 'V3', 100), ('V1', 'V4', 90), ('V2', 'V6', 80), ('V3', 'V4', 40), ('V3', 'V5', 70), ('V4', 'V5', 40), ('V4', 'V6', 100), ('V5', 'V6', 90)] G1.add_weighted_edges_from(edges, weight='capacity') # 计算最大流 max_flow_value, max_flow_dict = nx.maximum_flow(G1, 'V1', 'V6') # 获取每条边的容量和流量信息 edge_labels = {(u, v): f'c={d["capacity"]},f={max_flow_dict[u][v]}' for u, v, d in G1.edges(data=True)} # 获取最大流的路径和边列表 edge_lists = [(u, v) for u in max_flow_dict for v in max_flow_dict[u] if max_flow_dict[u][v] > 0] # 输出结果 print("最大流值: ", max_flow_value) print("最大流的路径:", edge_lists) print("最大流的途径及流量: ", max_flow_dict) # 绘制有向图 fig, ax = plt.subplots(figsize=(8, 6)) pos = {'V1': (3, 3.5), 'V2': (4, 4), 'V3': (4, 3), 'V4': (5, 3.5), 'V5': (5.5, 3), 'V6': (6.5, 3.5)} nx.draw(G1, pos, with_labels=True, node_color='c', node_size=300, font_size=10) nx.draw_networkx_edge_labels(G1, pos, edge_labels, font_color='navy') nx.draw_networkx_edges(G1, pos, edgelist=edge_lists, edge_color='m') plt.axis('on') plt.title("abcd") plt.show() ```
阅读全文

相关推荐

import pandas as pd import numpy as np import networkx as nx import matplotlib.pyplot as plt # 读取Excel文件中的邻接矩阵 adjacency_matrix = pd.read_excel('output.xlsx', index_col=0) # 将邻接矩阵转换为numpy数组 adjacency_matrix = adjacency_matrix.to_numpy() # 创建有向图对象 G = nx.DiGraph(adjacency_matrix) def preprocess(G): p = 0 directedGraph = nx.DiGraph() for u in G.nodes(): for v in G.neighbors(u): if (v != u): propProb = G.number_of_edges(u, v) / G.degree(v) directedGraph.add_edge(u, v, pp=propProb) return directedGraph def simulate(G, seedNode, propProbability): newActive = True currentActiveNodes = seedNode.copy() newActiveNodes = set() activatedNodes = seedNode.copy() influenceSpread = len(seedNode) while newActive: for node in currentActiveNodes: for neighbor in G.neighbors(node): if neighbor not in activatedNodes: if G[node][neighbor]['pp'] > propProbability: newActiveNodes.add(neighbor) activatedNodes.append(neighbor) influenceSpread += len(newActiveNodes) if newActiveNodes: currentActiveNodes = list(newActiveNodes) newActiveNodes = set() else: newActive = False return influenceSpread def flipCoin(probability): return np.random.random() < probability # 可视化传播过程 def visualizePropagation(G, seedNode, propProbability): pos = nx.spring_layout(G) # 选择布局算法 labels = {node: node for node in G.nodes()} # 节点标签为节点名 colors = ['r' if node in seedNode else 'b' for node in G.nodes()] # 种子节点为红色,其他节点为蓝色 plt.figure(figsize=(10,6)) nx.draw_networkx_nodes(G, pos, node_color=colors) nx.draw_networkx_edges(G, pos) nx.draw_networkx_labels(G, pos, labels) plt.title('Propagation Visualization') plt.show() # 示例用法 seedNode = [7,36,17] propProbability = 0.7 directedGraph = preprocess(G) influenceSpread = simulate(directedGraph, seedNode, propProbability) print("Influence Spread:", influenceSpread) visualizePropagation(directedGraph, seedNode, propProbability)修改这个代码使得输出图形节点之间间隔合理能够看清

import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.stats import pointbiserialr import networkx as nx import pingouin as pg from statsmodels.stats.outliers_influence import variance_inflation_factor import statsmodels.api as sm # 设置中文支持和图像清晰度 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False plt.rcParams['figure.dpi'] = 300 # 固定随机种子 np.random.seed(123) # %% 1. 模拟符合因素效应特征的数据 np_samples = 1500 # 样本量 # 初始化数据字典 data = {} # T0阶段:转运前基础状态 data['GCS'] = np.round(np.random.uniform(3, 15, np_samples)).astype(int) # GCS评分 data['APACHE'] = np.round(np.random.uniform(0, 30, np_samples)).astype(int) # APACHE II评分 data['age'] = np.round(np.random.normal(60, 15, np_samples)).astype(int) # 年龄 data['hypertension'] = np.random.randint(0, 2, np_samples) # 高血压史 # T1阶段:转运中过程变量 data['transport_time'] = np.round(np.random.normal(18, 8, np_samples)).astype(int) # 转运时长 data['spo2_mean'] = np.round(np.random.normal(94, 6, np_samples)).astype(int) # 平均血氧 data['sedative'] = np.random.randint(0, 2, np_samples) # 镇静剂使用 data['respiratory_rate'] = np.round(np.random.normal(18, 5, np_samples)).astype(int) # 呼吸频率 data['transport_distance'] = np.round(np.random.normal(10, 5, np_samples)).astype(int) # 距离 data['transport_personnel'] = np.random.randint(1, 4, np_samples) # 人员 data['temperature'] = np.random.normal(36.5, 0.8, np_samples) # 体温 # T2阶段:转运后状态 data['spo2_final'] = (data['spo2_mean'] + np.random.normal(0, 2, np_samples)).round().astype(int) data['heart_rate'] = np.round(np.random.normal(85, 20, np_samples)).astype(int) data['resp_support'] = np.random.randint(0, 3, np_samples) # 呼吸支持 # %% 构建结局变量:转运后不良事件 gcs_effect = np.zeros(np_samples) for i in range(np_samples): if data['GCS'][i] < 8: gcs_effect[i] = -0.223 * (8 - data['GCS'][i]) else: gcs_effect[i] = -0.087 * (15 - data['GCS'][i]) ht_effect = 0.185 * data['hypertension'] time_effect = np.zeros(np_samples) for i in range(np_samples): if data['transport_time'][i] > 20: time_effect[i] = 0.032 * (data['transport_time'][i] - 20) else: time_effect[i] = 0.015 * data['transport_time'][i] age_effect = np.zeros(np_samples) for i in range(np_samples): if data['age'][i] > 65: age_effect[i] = 0.037 * (data['age'][i] - 65) / 5 else: age_effect[i] = 0.016 * data['age'][i] / 5 resp_support_effect = 0.096 * data['resp_support'] spo2_effect = np.zeros(np_samples) for i in range(np_samples): if data['spo2_final'][i] < 90: spo2_effect[i] = -0.123 * (90 - data['spo2_final'][i]) else: spo2_effect[i] = -0.021 * (data['spo2_final'][i] - 90) hr_effect = np.zeros(np_samples) for i in range(np_samples): if data['heart_rate'][i] < 50: hr_effect[i] = 0.42 * (50 - data['heart_rate'][i]) / 10 elif data['heart_rate'][i] > 120: hr_effect[i] = 0.38 * (data['heart_rate'][i] - 120) / 10 sedative_effect = -0.1839 * data['sedative'] rr_effect = np.zeros(np_samples) for i in range(np_samples): if data['respiratory_rate'][i] < 10: rr_effect[i] = 0.35 elif data['respiratory_rate'][i] > 24: rr_effect[i] = 0.31 temp_effect = np.zeros(np_samples) for i in range(np_samples): if data['temperature'][i] < 36: temp_effect[i] = 0.28 elif data['temperature'][i] > 38.5: temp_effect[i] = 0.25 distance_effect = -0.028 * data['transport_distance'] / 5 personnel_effect = -0.025 * (data['transport_personnel'] - 1) apache_effect = 0.011 * data['APACHE'] / 10 # 总logit计算 logit = (0.2 + 0.257 * gcs_effect + 0.185 * ht_effect + 0.172 * time_effect + 0.153 * age_effect + 0.096 * resp_support_effect + 0.078 * sedative_effect + 0.062 * spo2_effect + 0.058 * hr_effect + 0.049 * rr_effect + 0.045 * temp_effect + 0.028 * distance_effect + 0.025 * personnel_effect + 0.011 * apache_effect) # 计算概率和结局 prob = 1 / (1 + np.exp(-logit)) data['adverse_event'] = np.random.binomial(1, prob) # %% 2. 核心因素筛选(不剔除任何变量,不显示 0.00) factors = { '心率': data['heart_rate'], '血氧饱和度': data['spo2_final'], 'GCS评分': data['GCS'], '转运时长': data['transport_time'], '镇静剂使用': data['sedative'], '呼吸支持': data['resp_support'], '年龄': data['age'], 'APACHE II评分': data['APACHE'] } rpb = [] p_values = [] for name, values in factors.items(): r, p = pointbiserialr(values, data['adverse_event']) rpb.append(r) p_values.append(p) # 不进行变量剔除,直接保留所有变量 filtered_factors = factors.copy() print("=== 因素筛选结果(不显示 0.00) ===") for i, (name, values) in enumerate(factors.items()): if abs(rpb[i]) > 0.001 or p_values[i] > 0.001: print(f"{name}: rpb={rpb[i]:.2f}, P={p_values[i]:.2f}") # %% 3. 共线性处理(VIF) X = pd.DataFrame(filtered_factors) vif_data = pd.DataFrame() vif_data["特征"] = X.columns vif_data["VIF值"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])] print("\n=== VIF共线性分析 ===") print(vif_data) # %% 4. 偏相关分析 df = pd.DataFrame(filtered_factors) df['adverse_event'] = data['adverse_event'] # 自定义偏相关矩阵函数 def partial_corr_matrix(df): cols = df.columns pcorr = pd.DataFrame(np.zeros((len(cols), len(cols))), columns=cols, index=cols) for i, col1 in enumerate(cols): for j, col2 in enumerate(cols): if i == j: pcorr.loc[col1, col2] = 1.0 elif j > i: controls = list(set(cols) - {col1, col2}) r = pg.partial_corr(data=df, x=col1, y=col2, covar=controls).r[0] pcorr.loc[col1, col2] = r pcorr.loc[col2, col1] = r return pcorr # 计算偏相关矩阵 partial_corr = partial_corr_matrix(df) print("\n=== 显著直接关联(偏相关|r|>0.001) ===") for col in df.columns: if col != 'adverse_event': corr = partial_corr.loc[col, 'adverse_event'] if abs(corr) > 0.001: print(f"{col} 与 转运后不良事件: r={corr:.3f}") # %% 5. 动态网络模型构建 T0_nodes = ['GCS评分', 'APACHE II评分', '年龄'] T1_nodes = ['转运时长', '血氧饱和度', '镇静剂使用'] T2_nodes = ['心率', '呼吸支持', 'adverse_event'] G = nx.DiGraph() G.add_nodes_from(df.columns) # 添加边(显著偏相关) for i in df.columns: for j in df.columns: if i != j: pc = partial_corr.loc[i, j] if abs(pc) > 0.2: G.add_edge(i, j, weight=pc) # %% 6. 动态特征量化分析 # 节点核心度 node_core = {} for node in G.nodes: core = sum(abs(G[u][v]['weight']) for u, v in G.edges if u == node or v == node) node_core[node] = core print("\n=== 节点核心度排序 ===") for node, score in sorted(node_core.items(), key=lambda x: x[1], reverse=True): print(f"{node}: {score:.3f}") # %% 7. 网络可视化 pos = nx.spring_layout(G, seed=42) plt.figure(figsize=(12, 8)) # 节点颜色 color_map = [] for node in G.nodes: if node in T0_nodes: color_map.append((0.8, 0.9, 1)) elif node in T1_nodes: color_map.append((0.9, 0.8, 1)) elif node in T2_nodes: color_map.append((1, 0.8, 0.8)) # 边颜色 edge_colors = ['red' if G[u][v]['weight'] > 0 else 'blue' for u, v in G.edges] # 绘图 nx.draw(G, pos, with_labels=True, node_color=color_map, edge_color=edge_colors, width=[abs(G[u][v]['weight']) * 5 for u, v in G.edges], node_size=[core * 100 for core in node_core.values()], font_size=10, font_weight='bold', alpha=0.8) plt.title('转运后不良事件动态关联网络', fontsize=16) plt.legend(handles=[ plt.Line2D([0], [0], color='red', lw=2, label='正相关'), plt.Line2D([0], [0], color='blue', lw=2, label='负相关') ]) plt.show() 此代码的结果 C:\python\py\.venv\Scripts\python.exe C:\python\py\7.22.py === 因素筛选结果(不显示 0.00) === 心率: rpb=-0.01, P=0.58 血氧饱和度: rpb=0.01, P=0.69 GCS评分: rpb=0.02, P=0.40 转运时长: rpb=-0.02, P=0.36 镇静剂使用: rpb=0.00, P=0.92 呼吸支持: rpb=0.00, P=0.88 年龄: rpb=0.02, P=0.34 APACHE II评分: rpb=0.00, P=0.94 === VIF共线性分析 === 特征 VIF值 0 心率 17.976832 1 血氧饱和度 42.486776 2 GCS评分 7.331784 3 转运时长 6.108660 4 镇静剂使用 2.009300 5 呼吸支持 2.615991 6 年龄 16.590947 7 APACHE II评分 3.918573 C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] C:\python\py\7.22.py:161: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use ser.iloc[pos] === 显著直接关联(偏相关|r|>0.001) === 心率 与 转运后不良事件: r=-0.015 血氧饱和度 与 转运后不良事件: r=0.010 GCS评分 与 转运后不良事件: r=0.022 转运时长 与 转运后不良事件: r=-0.023 镇静剂使用 与 转运后不良事件: r=0.002 呼吸支持 与 转运后不良事件: r=0.004 年龄 与 转运后不良事件: r=0.024 APACHE II评分 与 转运后不良事件: r=0.004 === 节点核心度排序 === 心率: 0.000 血氧饱和度: 0.000 GCS评分: 0.000 转运时长: 0.000 镇静剂使用: 0.000 呼吸支持: 0.000 年龄: 0.000 APACHE II评分: 0.000 adverse_event: 0.000 进程已结束,退出代码为 0 显著直接关联生成的值要使偏相关|r|>0.3 节点核心度排序的值不要0.000 你可以适当调整(数据也行)

import numpy as np import pandas as pd import matplotlib.pyplot as plt import networkx as nx from pgmpy.models import BayesianNetwork from pgmpy.factors.discrete import TabularCPD from pgmpy.estimators import MaximumLikelihoodEstimator from pgmpy.inference import VariableElimination # 网络结构定义 model_structure = [ ('Pollution', 'Cancer'), ('Smoker', 'Cancer'), ('Cancer', 'Xray'), ('Cancer', 'Dyspnoea') ] # 节点状态定义 states = { 'Pollution': ['low', 'high'], 'Smoker': ['yes', 'no'], 'Cancer': ['yes', 'no'], 'Xray': ['yes', 'no'], 'Dyspnoea': ['yes', 'no'] } # 专家条件概率表(修复行顺序) expert_cpds = { 'Pollution': TabularCPD( variable='Pollution', variable_card=2, values=[[0.9], [0.1]] ), 'Smoker': TabularCPD( variable='Smoker', variable_card=2, values=[[0.3], [0.7]] ), 'Cancer': TabularCPD( variable='Cancer', variable_card=2, # 行顺序修正:第一行对应 Cancer=yes values=[ [0.97, 0.95, 0.999, 0.98], # Cancer=yes [0.03, 0.05, 0.001, 0.02] # Cancer=no ], evidence=['Smoker', 'Pollution'], evidence_card=[2, 2] ), 'Xray': TabularCPD( variable='Xray', variable_card=2, # 行顺序修正:第一行对应 Xray=yes values=[ [0.1, 0.8], # Xray=yes | Cancer=no, Xray=yes | Cancer=yes [0.9, 0.2] # Xray=no ], evidence=['Cancer'], evidence_card=[2] ), 'Dyspnoea': TabularCPD( variable='Dyspnoea', variable_card=2, # 行顺序修正:第一行对应 Dyspnoea=yes values=[ [0.35, 0.7], # Dyspnoea=yes | Cancer=no, Dyspnoea=yes | Cancer=yes [0.65, 0.3] # Dyspnoea=no ], evidence=['Cancer'], evidence_card=[2] ) } # 数据生成函数(修复索引类型) def generate_random_data(model, n_samples=1000): np.random.seed(42) data = pd.DataFrame() G = nx.DiGraph(model.edges()) sorted_nodes = list(nx.topological_sort(G)) # 预生成状态到索引的映射 state_to_index = {node: {state: idx for idx, state in enumerate(states[node])} for node in states} for node in sorted_nodes: cpd = model.get_cpds(node) if len(cpd.variables) == 1: # 根节点 values = cpd.values.flatten() data[node] = np.random.choice(states[node], p=values, size=n_samples) else: # 非根节点 evidence = cpd.variables[1:] # 父节点列表 evidence_card = [len(states[ev]) for ev in evidence] parent_data = data[evidence] # 检查父节点数据完整性 if parent_data.isnull().any().any(): missing = parent_data.columns[parent_data.isnull().any()].tolist() raise ValueError(f"父节点 {missing} 数据未生成") # 批量计算父节点索引 evidence_indices = np.array([ [state_to_index[ev][val] for ev, val in zip(evidence, parent_data.iloc[i])] for i in range(n_samples) ], dtype=int) # 强制类型转换为整数 # 计算 CPD 列索引 try: cpd_indices = np.ravel_multi_index(evidence_indices.T, evidence_card) cpd_indices = cpd_indices.astype(int) # 强制转换为整数 except ValueError as e: raise ValueError(f"节点 {node} 的索引计算错误: {e}") # 检查索引范围 if cpd_indices.max() >= cpd.values.shape[1]: raise IndexError( f"CPD索引越界: 最大索引 {cpd_indices.max()}, " f"允许最大索引 {cpd.values.shape[1] - 1}" ) # 生成当前节点数据(确保索引为整数) data[node] = [ np.random.choice(states[node], p=cpd.values[:, int(idx)].flatten()) for idx in cpd_indices ] return data这是相关代码片段请帮我解决上述问题

import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.stats import pointbiserialr from sklearn.linear_model import LinearRegression import networkx as nx import pingouin as pg from statsmodels.stats.outliers_influence import variance_inflation_factor # 设置中文支持和图像清晰度 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False plt.rcParams['figure.dpi'] = 300 # 固定随机种子 np.random.seed(123) # %% 1. 模拟符合因素效应特征的数据 np_samples = 1500 # 样本量 # 初始化数据字典 data = {} # T0阶段:转运前基础状态 data['GCS'] = np.round(np.random.uniform(3, 15, np_samples)).astype(int) # GCS评分 data['APACHE'] = np.round(np.random.uniform(0, 30, np_samples)).astype(int) # APACHE II评分 data['age'] = np.round(np.random.normal(60, 15, np_samples)).astype(int) # 年龄 data['hypertension'] = np.random.randint(0, 2, np_samples) # 高血压史 # T1阶段:转运中过程变量 data['transport_time'] = np.round(np.random.normal(18, 8, np_samples)).astype(int) # 转运时长 data['spo2_mean'] = np.round(np.random.normal(94, 6, np_samples)).astype(int) # 平均血氧 data['sedative'] = np.random.randint(0, 2, np_samples) # 镇静剂使用 data['respiratory_rate'] = np.round(np.random.normal(18, 5, np_samples)).astype(int) # 呼吸频率 data['transport_distance'] = np.round(np.random.normal(10, 5, np_samples)).astype(int) # 距离 data['transport_personnel'] = np.random.randint(1, 4, np_samples) # 人员 data['temperature'] = np.random.normal(36.5, 0.8, np_samples) # 体温 # T2阶段:转运后状态 data['spo2_final'] = (data['spo2_mean'] + np.random.normal(0, 2, np_samples)).round().astype(int) data['heart_rate'] = np.round(np.random.normal(85, 20, np_samples)).astype(int) data['resp_support'] = np.random.randint(0, 3, np_samples) # 呼吸支持 # %% 构建结局变量:转运后不良事件(增强效应) gcs_effect = np.zeros(np_samples) for i in range(np_samples): if data['GCS'][i] < 8: gcs_effect[i] = -0.4 * (8 - data['GCS'][i]) else: gcs_effect[i] = -0.2 * (15 - data['GCS'][i]) ht_effect = 0.3 * data['hypertension'] time_effect = np.zeros(np_samples) for i in range(np_samples): if data['transport_time'][i] > 20: time_effect[i] = 0.05 * (data['transport_time'][i] - 20) else: time_effect[i] = 0.03 * data['transport_time'][i] age_effect = np.zeros(np_samples) for i in range(np_samples): if data['age'][i] > 65: age_effect[i] = 0.06 * (data['age'][i] - 65) / 5 else: age_effect[i] = 0.03 * data['age'][i] / 5 resp_support_effect = 0.15 * data['resp_support'] spo2_effect = np.zeros(np_samples) for i in range(np_samples): if data['spo2_final'][i] < 90: spo2_effect[i] = -0.2 * (90 - data['spo2_final'][i]) else: spo2_effect[i] = -0.05 * (data['spo2_final'][i] - 90) hr_effect = np.zeros(np_samples) for i in range(np_samples): if data['heart_rate'][i] < 50: hr_effect[i] = 0.6 * (50 - data['heart_rate'][i]) / 10 elif data['heart_rate'][i] > 120: hr_effect[i] = 0.5 * (data['heart_rate'][i] - 120) / 10 sedative_effect = -0.3 * data['sedative'] rr_effect = np.zeros(np_samples) for i in range(np_samples): if data['respiratory_rate'][i] < 10: rr_effect[i] = 0.5 elif data['respiratory_rate'][i] > 24: rr_effect[i] = 0.4 temp_effect = np.zeros(np_samples) for i in range(np_samples): if data['temperature'][i] < 36: temp_effect[i] = 0.4 elif data['temperature'][i] > 38.5: temp_effect[i] = 0.35 distance_effect = -0.05 * data['transport_distance'] / 5 personnel_effect = -0.05 * (data['transport_personnel'] - 1) apache_effect = 0.03 * data['APACHE'] / 10 # 总logit计算(增强影响) logit = (0.5 + 0.3 * gcs_effect + 0.25 * ht_effect + 0.2 * time_effect + 0.18 * age_effect + 0.15 * resp_support_effect + 0.12 * sedative_effect + 0.1 * spo2_effect + 0.09 * hr_effect + 0.08 * rr_effect + 0.07 * temp_effect + 0.05 * distance_effect + 0.04 * personnel_effect + 0.03 * apache_effect) # 计算概率和结局 prob = 1 / (1 + np.exp(-logit)) data['adverse_event'] = np.random.binomial(1, prob) # %% 2. 核心因素筛选(不剔除任何变量,不显示 0.00) factors = { '心率': data['heart_rate'], '血氧饱和度': data['spo2_final'], 'GCS评分': data['GCS'], '转运时长': data['transport_time'], '镇静剂使用': data['sedative'], '呼吸支持': data['resp_support'], '年龄': data['age'], 'APACHE II评分': data['APACHE'] } rpb = [] p_values = [] for name, values in factors.items(): r, p = pointbiserialr(values, data['adverse_event']) rpb.append(r) p_values.append(p) # 不进行变量剔除,直接保留所有变量 filtered_factors = factors.copy() print("=== 因素筛选结果(不显示 0.00) ===") for i, (name, values) in enumerate(factors.items()): if abs(rpb[i]) > 0.001 or p_values[i] > 0.001: print(f"{name}: rpb={rpb[i]:.2f}, P={p_values[i]:.2f}") # %% 3. 共线性处理(VIF) X = pd.DataFrame(filtered_factors) vif_data = pd.DataFrame() vif_data["特征"] = X.columns vif_data["VIF值"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])] print("\n=== VIF共线性分析 ===") print(vif_data) # %% 4. 偏相关分析 df = pd.DataFrame(filtered_factors) df['adverse_event'] = data['adverse_event'] def partial_corr_matrix(df): cols = df.columns pcorr = pd.DataFrame(np.zeros((len(cols), len(cols))), columns=cols, index=cols) for i, col1 in enumerate(cols): for j, col2 in enumerate(cols): if i == j: pcorr.loc[col1, col2] = 1.0 elif j > i: controls = list(set(cols) - {col1, col2}) r = pg.partial_corr(data=df, x=col1, y=col2, covar=controls).r[0] pcorr.loc[col1, col2] = r pcorr.loc[col2, col1] = r return pcorr partial_corr = partial_corr_matrix(df) print("\n=== 显著直接关联(偏相关|r|>0.001) ===") for col in df.columns: if col != 'adverse_event': corr = partial_corr.loc[col, 'adverse_event'] if abs(corr) > 0.001: print(f"{col} 与 转运后不良事件: r={corr:.3f}") # %% 5. 动态网络模型构建 T0_nodes = ['GCS评分', 'APACHE II评分', '年龄'] T1_nodes = ['转运时长', '血氧饱和度', '镇静剂使用'] T2_nodes = ['心率', '呼吸支持', 'adverse_event'] G = nx.DiGraph() G.add_nodes_from(df.columns) # 添加边(显著偏相关) for i in df.columns: for j in df.columns: if i != j: pc = partial_corr.loc[i, j] if abs(pc) > 0.02: G.add_edge(i, j, weight=pc) # %% 6. 动态特征量化分析 # 节点核心度 node_core = {} for node in G.nodes: core = sum(abs(G[u][v]['weight']) for u, v in G.edges if u == node or v == node) node_core[node] = core print("\n=== 节点核心度排序 ===") for node, score in sorted(node_core.items(), key=lambda x: x[1], reverse=True): if score > 0.001: print(f"{node}: {score:.3f}") # %% 7. 网络可视化 pos = nx.spring_layout(G, seed=42) plt.figure(figsize=(12, 8)) # 节点颜色 color_map = [] for node in G.nodes: if node in T0_nodes: color_map.append((0.8, 0.9, 1)) elif node in T1_nodes: color_map.append((0.9, 0.8, 1)) elif node in T2_nodes: color_map.append((1, 0.8, 0.8)) # 边颜色 edge_colors = ['red' if G[u][v]['weight'] > 0 else 'blue' for u, v in G.edges] # 绘图 nx.draw(G, pos, with_labels=True, node_color=color_map, edge_color=edge_colors, width=[abs(G[u][v]['weight']) * 5 for u, v in G.edges], node_size=[core * 100 for core in node_core.values()], font_size=10, font_weight='bold', alpha=0.8) plt.title('转运后不良事件动态关联网络', fontsize=16) plt.legend(handles=[ plt.Line2D([0], [0], color='red', lw=2, label='正相关'), plt.Line2D([0], [0], color='blue', lw=2, label='负相关') ]) plt.show() 这个代码生成的图不太清晰,线太细了,字太小了,字上还有线 修改一下

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler import statsmodels.api as sm # 用于计算P值 # ---------------------- # 1. 生成模拟数据(贴合转运场景) # ---------------------- np.random.seed(42) # 固定随机数,保证结果可复现 n = 500 # 样本量 data = pd.DataFrame({ # 自变量:候选影响因素 'GCS评分': np.random.randint(3, 16, size=n), # GCS评分3-15分,越低病情越重 '管道数量': np.random.randint(0, 6, size=n), # 0-5根管道 '转运时长': np.random.randint(5, 60, size=n), # 5-60分钟 '镇静程度': np.random.randint(0, 3, size=n), # 0=未镇静,1=浅镇静,2=深镇静 '生命体征波动': np.random.randint(0, 3, size=n), # 0=稳定,1=轻度,2=显著 # 因变量:病情变化(问题1核心) # 模拟逻辑:GCS低、管道多、转运久、镇静不足、生命体征波动大→更易病情变化 '病情变化': np.where( (np.random.rand(n) < 0.1) + # 基础概率 (data['GCS评分'] < 9) * 0.3 + # GCS<9(昏迷)增加30%概率 (data['管道数量'] > 2) * 0.2 + # 管道>2根增加20%概率 (data['转运时长'] > 30) * 0.15 + # 转运>30分钟增加15%概率 (data['镇静程度'] == 0) * 0.25 + # 未镇静增加25%概率 (data['生命体征波动'] == 2) * 0.3 # 显著波动增加30%概率 > 0.5, 1, 0 ) }) # ---------------------- # 2. 逻辑回归筛选变量(计算P值,保留P<0.05) # ---------------------- # 提取自变量和因变量 X = data[['GCS评分', '管道数量', '转运时长', '镇静程度', '生命体征波动']] y = data['病情变化'] # 用statsmodels计算P值(更适合筛选变量) X_sm = sm.add_constant(X) # 添加常数项(截距) logit_model = sm.Logit(y, X_sm) result = logit_model.fit() # 输出变量系数和P值 var_pvalues = result.pvalues.drop('const') # 排除常数项 significant_vars = var_pvalues[var_pvalues < 0.05].index.tolist() # 显著变量列表 print("步骤1:逻辑回归筛选的显著影响因素(P<0.05):") print(significant_vars) print("\n各变量P值:") print(var_pvalues.round(4)) # ---------------------- # 3. 可视化:变量重要性(系数绝对值) # ---------------------- plt.figure(figsize=(8, 5)) coef = result.params.drop('const').abs() # 系数绝对值(代表影响强度) sns.barplot(x=coef.index, y=coef.values) plt.title('逻辑回归筛选的变量重要性(系数绝对值)', fontsize=12) plt.ylabel('系数绝对值(越大影响越显著)') plt.xticks(rotation=30) plt.tight_layout() plt.show() from pgmpy.models import BayesianNetwork from pgmpy.estimators import HillClimbSearch, BicScore from pgmpy.inference import VariableElimination import networkx as nx # ---------------------- # 1. 准备数据(仅保留显著变量+新增不良事件因变量) # ---------------------- # 新增“不良事件”因变量(模拟:由病情变化、管道数量、镇静程度共同影响) data['不良事件'] = np.where( (data['病情变化'] == 1) * 0.4 + # 病情变化增加40%概率 (data['管道数量'] > 2) * 0.3 + # 管道多增加30%概率 (data['镇静程度'] == 0) * 0.25 # 未镇静增加25%概率 > 0.5, 1, 0 ) # 仅保留步骤1筛选的显著变量+结局变量 bn_data = data[significant_vars + ['病情变化', '不良事件']] # ---------------------- # 2. 构建贝叶斯网络(学习结构和参数) # ---------------------- # 用Hill-Climb算法学习网络结构(基于数据关联) hc = HillClimbSearch(bn_data) model = hc.estimate(scoring_method=BicScore(bn_data)) # 用BIC评分优化结构 # 学习条件概率表(CPT) from pgmpy.estimators import MaximumLikelihoodEstimator model.fit(bn_data, estimator=MaximumLikelihoodEstimator) # ---------------------- # 3. 可视化:网络关联路径 # ---------------------- plt.figure(figsize=(10, 6)) pos = nx.spring_layout(model) # 布局 nx.draw(model, pos, with_labels=True, node_size=3000, node_color='lightblue', font_size=10, arrowsize=20) # 标注关键路径(示例:手动标注临床关注的路径) critical_edges = [('GCS评分', '生命体征波动'), ('生命体征波动', '病情变化'), ('管道数量', '不良事件'), ('病情变化', '不良事件')] nx.draw_networkx_edges(model, pos, edgelist=critical_edges, edge_color='red', width=2) plt.title('贝叶斯网络:转运相关因素关联路径(红色为关键路径)', fontsize=12) plt.tight_layout() plt.show() # ---------------------- # 4. 推理:关键路径概率验证 # ---------------------- infer = VariableElimination(model) # 例:计算“GCS评分低(<9)”时,“不良事件”的发生概率 prob_bad = infer.query(variables=['不良事件'], evidence={'GCS评分': 6}) # GCS=6(低) print("\n步骤2:贝叶斯网络推理结果:") print(f"GCS评分低(6分)时,不良事件发生概率:{prob_bad.values[1]:.2f}") from scipy.stats import spearmanr # ---------------------- # 1. 提取贝叶斯网络中的核心变量对 # ---------------------- # 基于贝叶斯网络的关键路径,选择待分析的变量对 core_pairs = [ ('GCS评分', '生命体征波动'), # GCS低是否与生命体征波动相关 ('生命体征波动', '病情变化'), # 波动是否与病情变化相关 ('管道数量', '不良事件') # 管道数量是否与不良事件相关 ] # ---------------------- # 2. 斯皮尔曼相关分析 # ---------------------- corr_results = [] for var1, var2 in core_pairs: rho, p = spearmanr(data[var1], data[var2]) corr_results.append({ '变量对': f"{var1}-{var2}", '相关系数ρ': round(rho, 2), 'P值': round(p, 4), '关联强度': '强' if abs(rho) > 0.5 else '中' if abs(rho) > 0.3 else '弱' }) # 输出结果 corr_df = pd.DataFrame(corr_results) print("\n步骤3:斯皮尔曼相关分析结果(核心变量对):") print(corr_df) # ---------------------- # 3. 可视化:相关系数热力图 # ---------------------- plt.figure(figsize=(6, 4)) corr_matrix = data[significant_vars + ['病情变化', '不良事件']].corr(method='spearman') sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', vmin=-1, vmax=1) plt.title('斯皮尔曼相关系数热力图(核心变量)', fontsize=12) plt.tight_layout() plt.show()怎么改,不能运行

最新推荐

recommend-type

工业自动化领域中步科触摸屏与台达VFD-M变频器通讯实现电机控制功能 - 电机控制

内容概要:本文档详细介绍了使用步科触摸屏和台达VFD-M变频器实现电机控制功能的技术细节。主要内容涵盖所需的硬件配置(如步科T070触摸屏和支持485功能的USB转485转换头),以及具体的功能实现方法,包括正反转控制、点动停止、频率设定、运行频率读取、电流电压和运行状态的监控。此外,还强调了通讯协议的重要性及其具体实施步骤。 适用人群:从事工业自动化领域的工程师和技术人员,特别是那些负责电机控制系统设计和维护的专业人士。 使用场景及目标:适用于需要集成步科触摸屏与台达VFD-M变频器进行电机控制的应用场合,旨在帮助技术人员掌握正确的硬件选型、安装配置及编程技巧,从而确保系统的稳定性和可靠性。 其他说明:文中提到的操作流程和注意事项有助于避免常见的错误并提高工作效率。同时,提供了详细的通讯说明,确保不同设备之间的兼容性和数据传输的准确性。
recommend-type

langchain4j-community-core-1.0.0-beta4.jar中文-英文对照文档.zip

1、压缩文件中包含: 中文-英文对照文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文-英文对照文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

介电弹性体PID DEA模型的参数配置、控制策略与MatlabSimulink建模研究 实战版

内容概要:本文详细探讨了介电弹性体(DEA)PID控制模型的参数配置、控制策略及其在Matlab/Simulink环境中的建模方法。首先介绍了DEA的基本特性如迟滞和非线性响应,并给出了具体的机械系统参数(如刚度、质量和阻尼)。接着讨论了PID控制器的设计,包括基础的位置式PID实现以及针对实际应用需要加入的抗饱和和滤波措施。对于存在输入延迟的情况,提出了使用Smith预估器的方法,并指出其对模型精度的要求。面对突加负载等扰动,推荐采用串级控制提高系统的稳定性。最后强调了利用Automated PID Tuning工具进行参数调整时应注意的问题。 适合人群:从事智能材料控制系统研究的科研人员和技术开发者。 使用场景及目标:适用于希望深入了解并优化介电弹性体驱动器性能的研究者,在理论学习的基础上掌握具体的操作技能,从而更好地应对实际工程中的挑战。 其他说明:文中提供了详细的MATLAB代码片段用于指导读者构建自己的DEA控制模型,同时分享了许多实践经验,帮助避免常见的错误。
recommend-type

pso_uav.zip

1.版本:matlab2014a/2019b/2024b 2.附赠案例数据可直接运行。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

计算机网络试卷(最终).doc

计算机网络试卷(最终).doc
recommend-type

Webdiy.net新闻系统v1.0企业版发布:功能强大、易操作

标题中提到的"Webdiy.net新闻系统 v1.0 企业版"是一个针对企业级应用开发的新闻内容管理系统,是基于.NET框架构建的。从描述中我们可以提炼出以下知识点: 1. **系统特性**: - **易用性**:系统设计简单,方便企业用户快速上手和操作。 - **可定制性**:用户可以轻松修改网站的外观和基本信息,例如网页标题、页面颜色、页眉和页脚等,以符合企业的品牌形象。 2. **数据库支持**: - **Access数据库**:作为轻量级数据库,Access对于小型项目和需要快速部署的场景非常合适。 - **Sql Server数据库**:适用于需要强大数据处理能力和高并发支持的企业级应用。 3. **性能优化**: - 系统针对Access和Sql Server数据库进行了特定的性能优化,意味着它能够提供更为流畅的用户体验和更快的数据响应速度。 4. **编辑器功能**: - **所见即所得编辑器**:类似于Microsoft Word,允许用户进行图文混排编辑,这样的功能对于非技术人员来说非常友好,因为他们可以直观地编辑内容而无需深入了解HTML或CSS代码。 5. **图片管理**: - 新闻系统中包含在线图片上传、浏览和删除的功能,这对于新闻编辑来说是非常必要的,可以快速地为新闻内容添加相关图片,并且方便地进行管理和更新。 6. **内容发布流程**: - **审核机制**:后台发布新闻后,需经过审核才能显示到网站上,这样可以保证发布的内容质量,减少错误和不当信息的传播。 7. **内容排序与类别管理**: - 用户可以按照不同的显示字段对新闻内容进行排序,这样可以突出显示最新或最受欢迎的内容。 - 新闻类别的动态管理及自定义显示顺序,可以灵活地对新闻内容进行分类,方便用户浏览和查找。 8. **前端展示**: - 系统支持Javascript前端页面调用,这允许开发者将系统内容嵌入到其他网页或系统中。 - 支持iframe调用,通过这种HTML元素可以将系统内容嵌入到网页中,实现了内容的跨域展示。 9. **安全性**: - 提供了默认的管理账号和密码(webdiy / webdiy.net),对于企业应用来说,这些默认的凭证需要被替换,以保证系统的安全性。 10. **文件结构**: - 压缩包文件名称为"webdiynetnews",这可能是系统的根目录名称或主要安装文件。 11. **技术栈**: - 系统基于ASP.NET技术构建,这表明它使用.NET框架开发,并且可以利用.NET生态中的各种库和工具来实现功能的扩展和维护。 在实施和部署这样的系统时,企业可能还需要考虑以下方面: - **可扩展性**:随着业务的增长,系统应该能容易地扩展,以支持更多的用户和内容。 - **安全性**:除了更改为安全的管理员凭证外,还需考虑防止SQL注入、XSS攻击等网络安全问题。 - **备份和恢复**:定期备份数据库和内容是很重要的,以防数据丢失或需要恢复到先前的状态。 - **多用户和权限管理**:企业环境可能需要多级用户权限设置,以适应不同的团队和角色。 - **SEO优化**:系统应支持良好的搜索引擎优化实践,以便于内容在搜索引擎中的排名和发现。 - **移动适应性**:由于移动设备的广泛使用,系统应具备良好的响应式设计,以提供良好的移动用户体验。 根据描述,该系统似乎是一个成熟的解决方案,适用于需要快速搭建新闻网站的企业用户,但同时也应该注意定期的维护和更新,以确保系统的稳定性和安全性。
recommend-type

【Windows 11用户的福音】:一步到位解决GX Works2安装问题,让兼容性不再是问题!

# 1. GX Works2简介与Windows 11兼容性问题 ## 简介GX Works2 GX Works2是由三菱电机开发的一款针对其PLC(可编程逻辑控制器)产品的编程和调试软件。该软件以其直观的用户界面和强大的编程功能闻名于工业自动化领域,支持从简单的逻辑控制到复杂的系统集成项目。随着Windows操作系统的迭代升级,尤其是新推
recommend-type

电磁加热双边谐振和单边谐振的区别

<think>我们正在处理关于电磁加热技术中双边谐振与单边谐振的工作原理及区别的问题。 首先,需要明确用户意图是了解这两种谐振方式的区别以及它们的工作原理。 我们将通过以下步骤进行: 1. 调用网络搜索工具,检索关于电磁加热中双边谐振和单边谐振的信息。 2. 整合检索到的内容,按照要求生成回答,包括工作原理和区别,并组织成多个方法或步骤(但避免使用步骤词汇,用换行分隔)。 3. 在回答中,如果有公式或代码,按照指定格式处理。 4. 最后,添加相关问题部分。 注意:避免使用第一人称,避免步骤词汇,引用内容不集中末尾,而是融入回答中。 根据搜索,电磁加热中的谐振通常指的是感应加
recommend-type

EnvMan源代码压缩包内容及功能解析

根据给定文件信息,我们需要生成关于“EnvMan-source.zip”这一压缩包的知识点。首先,由于提供的信息有限,我们无法直接得知EnvMan-source.zip的具体内容和功能,但可以通过标题、描述和标签中的信息进行推断。文件名称列表只有一个“EnvMan”,这暗示了压缩包可能包含一个名为EnvMan的软件或项目源代码。以下是一些可能的知识点: ### EnvMan软件/项目概览 EnvMan可能是一个用于环境管理的工具或框架,其源代码被打包并以“EnvMan-source.zip”的形式进行分发。通常,环境管理相关的软件用于构建、配置、管理和维护应用程序的运行时环境,这可能包括各种操作系统、服务器、中间件、数据库等组件的安装、配置和版本控制。 ### 源代码文件说明 由于只有一个名称“EnvMan”出现在文件列表中,我们可以推测这个压缩包可能只包含一个与EnvMan相关的源代码文件夹。源代码文件夹可能包含以下几个部分: - **项目结构**:展示EnvMan项目的基本目录结构,通常包括源代码文件(.c, .cpp, .java等)、头文件(.h, .hpp等)、资源文件(图片、配置文件等)、文档(说明文件、开发者指南等)、构建脚本(Makefile, build.gradle等)。 - **开发文档**:可能包含README文件、开发者指南或者项目wiki,用于说明EnvMan的功能、安装、配置、使用方法以及可能的API说明或开发者贡献指南。 - **版本信息**:在描述中提到了版本号“-1101”,这表明我们所见的源代码包是EnvMan的1101版本。通常版本信息会详细记录在版本控制文件(如ChangeLog或RELEASE_NOTES)中,说明了本次更新包含的新特性、修复的问题、已知的问题等。 ### 压缩包的特点 - **命名规范**:标题、描述和标签中的一致性表明这是一个正式发布的软件包。通常,源代码包的命名会遵循一定的规范,如“项目名称-版本号-类型”,在这里类型是“source”。 - **分发形式**:以.zip格式的压缩包进行分发,是一种常见的软件源代码分发方式。虽然较现代的版本控制系统(如Git、Mercurial)通常支持直接从仓库克隆源代码,但打包成zip文件依然是一种便于存储和传输的手段。 ### 可能的应用场景 - **开发环境配置**:EnvMan可能是用于创建、配置和管理开发环境的工具,这种工具在开发人员设置新的开发机或新的项目环境时非常有用。 - **自动化部署**:EnvMan可能包含自动化部署环境的脚本或命令,使得部署流程变得快捷且高效。 - **监控与维护**:作为环境管理工具,EnvMan可能还支持对环境的监控功能,包括系统资源监控、服务状态检查等,以保证生产环境的稳定性。 ### 总结 尽管以上知识点是基于有限的信息进行的假设性推论,但EnvMan-source.zip包可能是一个用于环境管理的软件或项目的源代码包。该软件或项目可能包含构建和部署自动化环境的能力,以及对运行时环境的监控和维护。文件命名的一致性暗示这是一个正式的版本发布。如果要深入了解EnvMan的功能与用法,建议直接查看压缩包中的文档或源代码注释。同时,考虑到源代码的开发,我们还应该探究该项目所使用的技术栈、编程语言以及版本控制工具等,这将有助于进一步了解EnvMan的技术细节。
recommend-type

【Windows 11终极解决方案】:彻底攻克GX Works2安装中难缠的.Net Framework 3.5障碍!

# 1. Windows 11与GX Works2简介 ## 1.1 Windows 11操作系统概览 Windows 11,作为微软最新的操作系统,不仅仅提供了一种现代的用户体验,而且加强了在企业环境中的安全性与生产力工具。其引入了全新的界面设计、改进的多任务处理以及对Android应用的支持,使它成为IT专业人