typedef unsigned char *byte_pointer;代码解释
时间: 2024-03-21 22:40:39 浏览: 132
这行代码定义了一个名为byte_pointer的typedef类型别名,它表示一个指向unsigned char类型的指针。这意味着可以使用byte_pointer来声明或定义指向unsigned char类型的指针变量,使代码更加简洁和易于阅读。例如,以下代码将定义两个指向unsigned char类型的指针变量x和y:
```
byte_pointer x, y;
```
这里需要注意的是,由于unsigned char类型占用1个字节,因此byte_pointer类型的指针变量在使用时往往会涉及到字节级别的操作,比如内存中数据的读取和写入。
相关问题
/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * <h2><center>© Copyright (c) 2025 STMicroelectronics. * All rights reserved.</center></h2> * * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "tim.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "stdio.h" #include "string.h" #include "stdint.h" #include "stdlib.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ uint16_t Duty=100; uint16_t Step=20; uint8_t Mode = 0; uint8_t key1Pressed = 0; uint8_t RecBuf[100]; uint8_t RecBuf2[100]; uint8_t flag=0; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ void LED_contorl(unsigned char led_num,unsigned char led_on); void Breath_led(void); void Flow_led(void); void Manual_led(void); void Uart_led(void); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_TIM3_Init(); MX_TIM4_Init(); MX_USART1_UART_Init(); /* USER CODE BEGIN 2 */ HAL_TIM_PWM_Start(&htim3,TIM_CHANNEL_3); // HAL_UART_Receive_IT(&huart1, RecBuf2, 5); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ switch(Mode){ case 1:Breath_led(); break; case 2:Flow_led(); if(flag==1) { __HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_3, 200); for(int i=1;i<=8;i++) { HAL_GPIO_WritePin(GPIOC,GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15,GPIO_PIN_SET); LED_contorl(i,1); HAL_Delay(500); } } break; case 3:Manual_led(); break; case 4:Uart_led(); break; } } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Configure the main internal regulator output voltage */ HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1_BOOST); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV6; RCC_OscInitStruct.PLL.PLLN = 85; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) { Error_Handler(); } /** Initializes the peripherals clocks */ PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1; PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ void LED_contorl(unsigned char led_num,unsigned char led_on) { if(led_on){ HAL_GPIO_WritePin(GPIOC,GPIO_PIN_8 << (led_num-1),GPIO_PIN_RESET); } else { HAL_GPIO_WritePin(GPIOC,GPIO_PIN_8 << (led_num-1),GPIO_PIN_SET); } HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_RESET); } void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { if(GPIO_Pin==GPIO_PIN_0) { Mode=(Mode %4 )+1; } else if(GPIO_Pin==GPIO_PIN_1 &&Mode==3) { if(Duty > 0) { Duty -= Step; __HAL_TIM_SET_COMPARE(&htim3,TIM_CHANNEL_3,Duty); } } else if(GPIO_Pin==GPIO_PIN_2 &&Mode==3) { if(Duty < 200) { Duty += Step; __HAL_TIM_SET_COMPARE(&htim3,TIM_CHANNEL_3,Duty); } } } void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { if (htim->Instance == TIM4) { flag=1; } } void Breath_led(void) { for(Duty=0;Duty<=200;Duty=Duty+Step) { __HAL_TIM_SET_COMPARE(&htim3,TIM_CHANNEL_3,Duty); HAL_Delay(200); } for (Duty = 200; Duty > 0; Duty -= Step) { __HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_3, Duty); HAL_Delay(100); } } void Flow_led(void) { __HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_3, 200); HAL_Delay(1000); HAL_GPIO_WritePin(GPIOC,GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15,GPIO_PIN_RESET); HAL_TIM_Base_Start_IT(&htim4); } void Manual_led(void) { HAL_TIM_Base_Stop_IT(&htim4); for(int i=2; i<=8; i++) { LED_contorl(i, 0); } HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_3); HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2,GPIO_PIN_SET); __HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_3, Duty); } void Uart_led(void) { __HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_3, 200); HAL_UART_Receive_IT(&huart1,RecBuf2,5); } void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { if(huart->Instance==USART1 && Mode==4) { if(RecBuf2[4]=='1') { // LED_contorl(2,1); for(Duty=0;Duty<=200;Duty=Duty+Step) { __HAL_TIM_SET_COMPARE(&htim3,TIM_CHANNEL_3,Duty); HAL_Delay(200); } for (Duty = 200; Duty > 0; Duty -= Step) { __HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_3, Duty); HAL_Delay(100); } } if(RecBuf2[4]=='2') { for(int i=1;i<=8;i++) { HAL_GPIO_WritePin(GPIOC,GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15,GPIO_PIN_SET); LED_contorl(i,1); HAL_Delay(500); } } } } int fputc(int ch,FILE *f) { HAL_UART_Transmit(&huart1,(uint8_t *)&ch,1,HAL_MAX_DELAY); return ch; } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ 为什么当我在串口输入mode2时里面的for循环没有执行
### STM32串口接收Mode2后Flow_led函数中for循环未执行的原因分析
在STM32的串口通信中,Mode2通常指的是UART模式下的特定配置,可能涉及中断、DMA或其他非阻塞方式的接收[^1]。如果`Flow_led`函数中的`for`循环未执行,可以从以下几个方面进行分析:
#### 1. 中断优先级设置问题
在STM32中,如果`Flow_led`函数依赖于串口中断触发,而中断优先级设置不当可能导致中断未被正确响应。例如,NVIC配置中的抢占优先级和子优先级设置不合理,可能会导致高优先级中断屏蔽低优先级中断[^3]。检查以下代码片段是否正确:
```c
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3; // 抢占优先级
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; // 子优先级
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; // IRQ通道使能
NVIC_Init(&NVIC_InitStructure); // 初始化VIC寄存器
```
#### 2. UART初始化配置错误
Mode2可能涉及特定的波特率、字长、停止位或校验位配置。如果这些参数与实际需求不符,可能导致数据接收异常。检查`USART_InitTypeDef`结构体的初始化是否正确[^2]:
```c
USART_InitTypeDef USART_InitStruct;
USART_InitStruct.BaudRate = 9600; // 波特率
USART_InitStruct.WordLength = USART_WordLength_8b; // 字长
USART_InitStruct.StopBits = USART_StopBits_1; // 停止位
USART_InitStruct.Parity = USART_Parity_No; // 校验位
USART_InitStruct.Mode = USART_Mode_Rx | USART_Mode_Tx; // 接收和发送模式
USART_InitStruct.HwFlowCtl = USART_HardwareFlowControl_None; // 硬件流控制
USART_InitStruct.OverSampling = USART_OverSampling_16; // 过采样模式
USART_Init(USART1, &USART_InitStruct);
```
#### 3. GPIO引脚配置问题
确保UART的TX和RX引脚配置正确。如果引脚配置错误,可能导致数据无法正确传输或接收。以下为GPIO初始化示例:
```c
GPIO_InitTypeDef GPIO_InitStruct;
// 配置USART1_TX (PA9)为复用推挽输出
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStruct);
// 配置USART1_RX (PA10)为浮空输入
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStruct);
```
#### 4. 中断处理程序逻辑问题
如果`Flow_led`函数依赖于串口中断,但中断服务程序(ISR)中未正确处理接收到的数据,可能导致`for`循环条件不满足。检查中断服务程序是否正确实现[^4]:
```c
void USART1_IRQHandler(void) {
if (USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) { // 接收中断
uint8_t data = USART_ReceiveData(USART1); // 读取数据
// 将数据存储到缓冲区或触发特定逻辑
ProcessReceivedData(data);
USART_ClearITPendingBit(USART1, USART_IT_RXNE); // 清除中断标志
}
}
```
#### 5. DMA配置问题
如果使用DMA方式进行数据接收,且`Flow_led`函数依赖于DMA传输完成事件,但DMA配置错误可能导致`for`循环条件未满足。检查DMA初始化和传输完成回调函数是否正确实现[^4]:
```c
DMA_InitTypeDef DMA_InitStruct;
DMA_InitStruct.DMA_Channel = DMA_Channel_4;
DMA_InitStruct.DMA_PeripheralBaseAddr = (uint32_t)&USART1->DR;
DMA_InitStruct.DMA_Memory0BaseAddr = (uint32_t)RxBuffer;
DMA_InitStruct.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMA_InitStruct.DMA_BufferSize = RX_BUFFER_SIZE;
DMA_InitStruct.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStruct.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStruct.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStruct.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStruct.DMA_Mode = DMA_Mode_Normal;
DMA_InitStruct.DMA_Priority = DMA_Priority_High;
DMA_InitStruct.DMA_FIFOMode = DMA_FIFOMode_Disable;
DMA_InitStruct.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull;
DMA_InitStruct.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMA_InitStruct.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(DMA1_Channel5, &DMA_InitStruct);
```
#### 6. `Flow_led`函数逻辑问题
最后,检查`Flow_led`函数本身的逻辑是否存在错误。例如,`for`循环的条件变量可能未被正确初始化或更新。以下为一个简单的`for`循环示例:
```c
void Flow_led(void) {
for (int i = 0; i < buffer_length; i++) { // 确保buffer_length已正确赋值
ProcessBufferElement(buffer[i]);
}
}
```
---
###
/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention »ùÓÚSTM32µÄÍòÄêÀú Ч¹ûÑÝʾÊÓÆµÁ´½Ó£ºhttps://www.bilibili.com/video/BV11w4m1a74J/ ÓÎϷЧ¹û¿ÉÒÔ ¹Ø×¢ ΢ÐŹ«Öںš¢BÕ¾¡¢¶¶ÒôºÍ¿ìÊÖµÈÆ½Ì¨£¨Õ˺ÅÃû³Æ£ºJLµ¥Æ¬»ú£©£¬ÓÐÂ¼ÖÆµÄÊÓÆµµÄЧ¹û¡£ Ò²·ÖÏíÁËÆäËûºÃÍæÓÐȤµÄ´úÂ룬¶¼¿ÉÒÔȥ΢ÐŹ«ÖÚºÅÏÂÔØ¡£¸ÐÐËȤµÄ¿ÉÒÔ¿´Ï¡£ ²ÄÁÏ£º STM32F103C8T6×îСϵͳ°å SSD1306 OLED128*64ÏÔʾÆÁ 6¸ö°´¼ü IO½ÓÏß˵Ã÷£º Ïòϰ´¼ü£ºPA4 ÏòÓÒ°´¼ü£ºPA5 ÏòÉϰ´¼ü£ºPB11 Ïò×ó°´¼ü£ºPB10 F1°´¼ü£ºPA6 OLED SCK£ºPA11 OLED SDA£ºPA12 * Copyright (c) 2024 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "OLED.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ #define LEFT_BUTTON 1 #define RIGHT_BUTTON 2 #define UP_BUTTON 3 #define DOWN_BUTTON 4 #define A_BUTTON 5 #define B_BUTTON 6 /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ uint32_t yr = 2024; uint8_t mo = 7; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ unsigned char isLeapYear(uint32_t yr) { if (yr % 100) return (yr % 400) == 0; else return (yr % 4) == 0; } uint8_t getDaysOfMonth(uint32_t yr, uint8_t mo) { return (mo == 2) ? (28 + isLeapYear(yr)) : 31 - (mo - 1) % 7 % 2; } uint8_t getDayOfWeek(uint32_t yr, uint8_t mo, uint8_t d) { return (d += mo < 3 ? yr-- : yr - 2, 23 * mo / 9 + d + 4 + yr / 4 - yr / 100 + yr / 400) % 7; } int get_key_input() { if(HAL_GPIO_ReadPin(left_key_GPIO_Port, left_key_Pin)==0){ HAL_Delay(100); if(HAL_GPIO_ReadPin(left_key_GPIO_Port, left_key_Pin)==0) return LEFT_BUTTON; } if(HAL_GPIO_ReadPin(right_key_GPIO_Port, right_key_Pin)==0) { HAL_Delay(100); if(HAL_GPIO_ReadPin(right_key_GPIO_Port, right_key_Pin)==0) return RIGHT_BUTTON; } if(HAL_GPIO_ReadPin(up_key_GPIO_Port, up_key_Pin)==0) { HAL_Delay(100); if(HAL_GPIO_ReadPin(up_key_GPIO_Port, up_key_Pin)==0) return UP_BUTTON; } if(HAL_GPIO_ReadPin(down_key_GPIO_Port, down_key_Pin)==0) { HAL_Delay(100); if(HAL_GPIO_ReadPin(down_key_GPIO_Port, down_key_Pin)==0) return DOWN_BUTTON; } if(HAL_GPIO_ReadPin(f1_key_GPIO_Port, f1_key_Pin)==0) { HAL_Delay(100); if(HAL_GPIO_ReadPin(f1_key_GPIO_Port, f1_key_Pin)==0) return A_BUTTON; } if(HAL_GPIO_ReadPin(f2_key_GPIO_Port, f2_key_Pin)==0) { HAL_Delay(100); if(HAL_GPIO_ReadPin(f2_key_GPIO_Port, f2_key_Pin)==0) return B_BUTTON; } return 0; } void update() { switch (get_key_input()) { case LEFT_BUTTON: if (--yr < 1970) yr = 1970; break; case RIGHT_BUTTON: if (++yr > 2199) yr = 2199; break; case UP_BUTTON: if (++mo > 12) { if (++yr > 2199) { yr = 2199; mo = 12; } else { mo = 1; } } break; case DOWN_BUTTON: if (--mo < 1) { if (--yr < 1970) { yr = 1970; mo = 1; } else { mo = 12; } } break; case A_BUTTON: yr = 2024; mo = 7; break; case B_BUTTON: break; } } void draw() { uint8_t days = getDaysOfMonth(yr, mo); uint8_t day = getDayOfWeek(yr, mo, 1); OLED_ShowNum(40, 0, yr, 4, OLED_6X8); OLED_ShowNum(70, 0, mo, 2, OLED_6X8); OLED_ShowString(4, 8, "SU MO TU WE TH FR SA", OLED_6X8); uint8_t x = day; uint8_t y = 0; for (uint8_t i = 1; i <= days; ++i) { if (i < 10) { OLED_ShowNum(x * 18 + 4 + 6, y * 8 + 16, i, 1, OLED_6X8); } else { OLED_ShowNum(x * 18 + 4, y * 8 + 16, i, 2, OLED_6X8); } if (++x == 7) { x = 0; ++y; } } } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); /* USER CODE BEGIN 2 */ OLED_Init(); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while(get_key_input()==0); while (1) { OLED_Clear(); update(); draw(); OLED_Update(); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, scl_Pin|sda_Pin, GPIO_PIN_SET); /*Configure GPIO pins : down_key_Pin right_key_Pin f1_key_Pin f2_key_Pin */ GPIO_InitStruct.Pin = down_key_Pin|right_key_Pin|f1_key_Pin|f2_key_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pins : left_key_Pin up_key_Pin */ GPIO_InitStruct.Pin = left_key_Pin|up_key_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pins : scl_Pin sda_Pin */ GPIO_InitStruct.Pin = scl_Pin|sda_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ 讲解代码
### STM32F103C8T6 使用SSD1306 OLED和按键实现日历功能的代码解析
在STM32F103C8T6微控制器中,通过SSD1306 OLED显示屏和按键实现日历功能需要完成以下几个关键部分:硬件配置、按键输入处理以及OLED显示逻辑。以下是对这些部分的详细解析。
---
#### 硬件配置
硬件配置包括GPIO引脚的初始化和I2C总线的设置。SSD1306 OLED显示屏通常通过I2C协议与STM32通信。以下是相关代码示例及其解析:
```c
// 初始化I2C外设
void I2C_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
I2C_InitTypeDef I2C_InitStruct = {0};
// 使能GPIO时钟和I2C时钟
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_I2C1_CLK_ENABLE();
// 配置I2C引脚为复用模式
GPIO_InitStruct.Pin = GPIO_PIN_6 | GPIO_PIN_7; // SCL 和 SDA 引脚
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
// 配置I2C参数
I2C_InitStruct.ClockSpeed = 100000; // 设置I2C时钟频率为100kHz
I2C_InitStruct.DutyCycle = I2C_DUTYCYCLE_2;
I2C_InitStruct.OwnAddress1 = 0x00;
I2C_InitStruct.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
I2C_InitStruct.DualAddressMode = I2C_DUALADDRESS_DISABLE;
I2C_InitStruct.GeneralCallMode = I2C_GENERALCALL_DISABLE;
I2C_InitStruct.NoStretchMode = I2C_NOSTRETCH_DISABLE;
HAL_I2C_Init(I2C1, &I2C_InitStruct);
}
```
**解析**:
- GPIO引脚被配置为开漏输出模式(`GPIO_MODE_AF_OD`),以支持I2C协议的电平兼容性[^3]。
- I2C时钟速度设置为100kHz,这是标准模式下的常见值。
- `HAL_I2C_Init`函数用于初始化I2C外设,并设置其工作参数。
---
#### 按键输入处理
按键输入处理涉及检测用户按键的动作,并根据按键状态更新日历信息。以下是一个简单的按键扫描函数:
```c
// 定义按键引脚
#define KEY_PIN GPIO_PIN_0
#define KEY_PORT GPIOA
// 按键扫描函数
uint8_t Key_Scan(void) {
static uint8_t key_state = 0;
uint8_t current_state = HAL_GPIO_ReadPin(KEY_PORT, KEY_PIN);
if (current_state == GPIO_PIN_RESET && key_state == 0) {
key_state = 1; // 按键按下
HAL_Delay(20); // 去抖动
if (HAL_GPIO_ReadPin(KEY_PORT, KEY_PIN) == GPIO_PIN_RESET) {
return 1; // 返回按键按下信号
}
} else if (current_state == GPIO_PIN_SET) {
key_state = 0; // 按键释放
}
return 0; // 无按键动作
}
```
**解析**:
- 按键状态通过`HAL_GPIO_ReadPin`函数读取,判断是否按下或释放。
- 添加了去抖动延迟(`HAL_Delay(20)`),以避免因机械按键的不稳定状态导致误判。
- 静态变量`key_state`用于跟踪按键的状态变化。
---
#### OLED显示逻辑
OLED显示逻辑包括初始化显示屏、清屏操作以及显示日历数据。以下是相关代码示例:
```c
// 初始化OLED显示屏
void OLED_Init(void) {
OLED_WR_Byte(0xAE, OLED_CMD); // 关闭显示
OLED_WR_Byte(0x40, OLED_CMD); // 设置显示地址到RAM
OLED_WR_Byte(0xB0, OLED_CMD); // 设置页地址
OLED_WR_Byte(0xC8, OLED_CMD); // 设置COM输出扫描方向
OLED_WR_Byte(0x00, OLED_CMD); // 设置低列地址
OLED_WR_Byte(0x10, OLED_CMD); // 设置高列地址
OLED_WR_Byte(0x81, OLED_CMD); // 设置对比度控制寄存器
OLED_WR_Byte(0xFF, OLED_CMD); // 设置对比度值
OLED_WR_Byte(0xA1, OLED_CMD); // 设置段重新映射
OLED_WR_Byte(0xA6, OLED_CMD); // 设置正常显示
OLED_WR_Byte(0xA8, OLED_CMD); // 设置多路复用比率
OLED_WR_Byte(0x3F, OLED_CMD); // 设置多路复用值
OLED_WR_Byte(0xD3, OLED_CMD); // 设置显示偏移
OLED_WR_Byte(0x00, OLED_CMD); // 不偏移
OLED_WR_Byte(0xD5, OLED_CMD); // 设置时钟分频因子/振荡器频率
OLED_WR_Byte(0x80, OLED_CMD); // 设置时钟分频因子
OLED_WR_Byte(0xD9, OLED_CMD); // 设置预充电周期
OLED_WR_Byte(0xF1, OLED_CMD); // 设置预充电周期值
OLED_WR_Byte(0xDA, OLED_CMD); // 设置COM引脚硬件配置
OLED_WR_Byte(0x12, OLED_CMD); // 设置COM引脚配置
OLED_WR_Byte(0xDB, OLED_CMD); // 设置VCOMH去耦电平
OLED_WR_Byte(0x40, OLED_CMD); // 设置VCOMH去耦电平值
OLED_WR_Byte(0x20, OLED_CMD); // 设置内存模式
OLED_WR_Byte(0x02, OLED_CMD); // 设置水平地址模式
OLED_WR_Byte(0xAF, OLED_CMD); // 开启显示
}
// 清屏函数
void OLED_Clear(void) {
uint8_t i, n;
for (i = 0; i < 8; i++) { // SSD1306有8页
OLED_WR_Byte(0xB0 + i, OLED_CMD); // 设置页地址
OLED_WR_Byte(0x00, OLED_CMD); // 设置低列地址
OLED_WR_Byte(0x10, OLED_CMD); // 设置高列地址
for (n = 0; n < 128; n++) { // SSD1306宽度为128像素
OLED_WR_Byte(0x00, OLED_DATA); // 写入空数据
}
}
}
// 显示文本函数
void OLED_ShowString(uint8_t x, uint8_t y, const char *str) {
while (*str) {
OLED_Set_Pos(x, y); // 设置光标位置
OLED_WR_Byte(*str++, OLED_DATA); // 写入字符数据
x += 8; // 移动光标到下一个字符位置
}
}
```
**解析**:
- `OLED_Init`函数通过一系列命令初始化SSD1306 OLED显示屏,包括设置对比度、显示模式等参数[^2]。
- `OLED_Clear`函数通过向每一页写入空数据来清屏。
- `OLED_ShowString`函数将字符串逐字符显示在指定位置。
---
#### 日历功能实现
日历功能可以通过一个结构体存储当前日期信息,并通过按键输入更新日期。以下是示例代码:
```c
typedef struct {
uint8_t year;
uint8_t month;
uint8_t day;
} Date;
Date current_date = {2023, 10, 1};
void Update_Date(void) {
if (Key_Scan()) {
current_date.day++;
if (current_date.day > Days_In_Month(current_date.month, current_date.year)) {
current_date.day = 1;
current_date.month++;
if (current_date.month > 12) {
current_date.month = 1;
current_date.year++;
}
}
}
}
void Show_Date(void) {
OLED_Clear();
char buffer[20];
sprintf(buffer, "Date: %04d-%02d-%02d", current_date.year, current_date.month, current_date.day);
OLED_ShowString(0, 0, buffer);
}
```
**解析**:
- `Update_Date`函数根据按键输入更新日期信息,同时检查月份和年份的边界条件。
- `Show_Date`函数将当前日期格式化为字符串,并通过OLED显示。
---
###
阅读全文
相关推荐










