import torch from transformers import BertTokenizer, BertModel # 加载Bert预训练模型和tokenizer model = BertModel.from_pretrained('bert-base-chinese') tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') # 微博文本和种子词 text = '今天天气真好,心情非常愉快!' seeds = ['天气', '心情', '愉快'] # 将微博文本和种子词转换为Bert输入格式 inputs = tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt') seed_inputs = tokenizer.encode_plus(seeds, add_special_tokens=True, return_tensors='pt', padding=True) # 使用Bert模型获取微博文本和种子词的词向量 with torch.no_grad(): text_embeddings = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])[0] # [1, seq_len, hidden_size] seed_embeddings = model(seed_inputs['input_ids'], attention_mask=seed_inputs['attention_mask'])[0] # [batch_size, seq_len, hidden_size] # 计算种子词和微博文本中所有词语的余弦相似度 text_embeddings = text_embeddings.squeeze(0) # [seq_len, hidden_size] seed_embeddings = seed_embeddings.mean(dim=1) # [batch_size, hidden_size] -> [batch_size, 1, hidden_size] -> [batch_size, hidden_size] cosine_similarities = torch.matmul(text_embeddings, seed_embeddings.transpose(0, 1)) # [seq_len, batch_size] # 获取相似度最高的词语 similar_words = [] for i in range(len(seeds)): seed_similarities = cosine_similarities[:, i].tolist() max_sim_idx = seed_similarities.index(max(seed_similarities)) similar_word = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][max_sim_idx].item()) similar_words.append(similar_word) print(similar_words) 能不能详细讲解一下上述这段代码的每行代码的意思,为什么这样用,比如用到的函数是什么意思,生成的变量是什么类型,能列举吗?而且这段代码中后面的这行代码seed_similarities = cosine_similarities[:, i].tolist()报错了,报错显示Traceback (most recent call last): File "E:/PyCharm Community Edition 2020.2.2/Project/WordDict/cos_similarity.py", line 35, in <module> seed_similarities = cosine_similarities[:, i].tolist() IndexError: index 1 is out of bounds for dimension 1 with size 1 能不能帮我解释一下为什么错,解释一下该怎么修改,并给出修改后的代码呢?

时间: 2023-06-26 11:10:22 浏览: 1038
代码解释如下: ``` import torch from transformers import BertTokenizer, BertModel # 加载Bert预训练模型和tokenizer model = BertModel.from_pretrained('bert-base-chinese') tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') # 微博文本和种子词 text = '今天天气真好,心情非常愉快!' seeds = ['天气', '心情', '愉快'] # 将微博文本和种子词转换为Bert输入格式 inputs = tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt') seed_inputs = tokenizer.encode_plus(seeds, add_special_tokens=True, return_tensors='pt', padding=True) # 使用Bert模型获取微博文本和种子词的词向量 with torch.no_grad(): text_embeddings = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])[0] # [1, seq_len, hidden_size] seed_embeddings = model(seed_inputs['input_ids'], attention_mask=seed_inputs['attention_mask'])[0] # [batch_size, seq_len, hidden_size] # 计算种子词和微博文本中所有词语的余弦相似度 text_embeddings = text_embeddings.squeeze(0) # [seq_len, hidden_size] seed_embeddings = seed_embeddings.mean(dim=1) # [batch_size, hidden_size] -> [batch_size, 1, hidden_size] -> [batch_size, hidden_size] cosine_similarities = torch.matmul(text_embeddings, seed_embeddings.transpose(0, 1)) # [seq_len, batch_size] # 获取相似度最高的词语 similar_words = [] for i in range(len(seeds)): seed_similarities = cosine_similarities[:, i].tolist() max_sim_idx = seed_similarities.index(max(seed_similarities)) similar_word = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][max_sim_idx].item()) similar_words.append(similar_word) print(similar_words) ``` 代码中用到的函数及变量解释如下: - `torch`: PyTorch框架的核心包。 - `BertTokenizer`: 用于将文本转换为Bert模型的输入格式。 - `BertModel`: 预训练的Bert模型。 - `text`: 输入的微博文本。 - `seeds`: 种子词列表。 - `inputs`: 将微博文本转换为Bert模型的输入格式。 - `seed_inputs`: 将种子词列表转换为Bert模型的输入格式。 - `text_embeddings`: 微博文本的词向量。 - `seed_embeddings`: 种子词列表的词向量。 - `cosine_similarities`: 种子词和微博文本中所有词语的余弦相似度矩阵。 - `similar_words`: 相似度最高的词语列表。 出现错误的代码是: ``` seed_similarities = cosine_similarities[:, i].tolist() ``` 这段代码报错是因为`cosine_similarities`矩阵的第二个维度只有一个元素,而在`for`循环中`i`的取值范围是`0`到`2`,所以当`i`等于`1`时会出现`IndexError`。为了解决这个问题,我们需要将`cosine_similarities`矩阵的维度调整为`[batch_size, seq_len]`,然后再进行循环。修改后的代码如下: ``` import torch from transformers import BertTokenizer, BertModel # 加载Bert预训练模型和tokenizer model = BertModel.from_pretrained('bert-base-chinese') tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') # 微博文本和种子词 text = '今天天气真好,心情非常愉快!' seeds = ['天气', '心情', '愉快'] # 将微博文本和种子词转换为Bert输入格式 inputs = tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt') seed_inputs = tokenizer.encode_plus(seeds, add_special_tokens=True, return_tensors='pt', padding=True) # 使用Bert模型获取微博文本和种子词的词向量 with torch.no_grad(): text_embeddings = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])[0] # [1, seq_len, hidden_size] seed_embeddings = model(seed_inputs['input_ids'], attention_mask=seed_inputs['attention_mask'])[0] # [batch_size, seq_len, hidden_size] # 计算种子词和微博文本中所有词语的余弦相似度 text_embeddings = text_embeddings.squeeze(0) # [seq_len, hidden_size] seed_embeddings = seed_embeddings.mean(dim=1) # [batch_size, seq_len, hidden_size] -> [batch_size, hidden_size] cosine_similarities = torch.matmul(text_embeddings, seed_embeddings.transpose(0, 1)) # [seq_len, batch_size] # 获取相似度最高的词语 similar_words = [] for i in range(len(seeds)): seed_similarities = cosine_similarities[i, :].tolist() max_sim_idx = seed_similarities.index(max(seed_similarities)) similar_word = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][max_sim_idx].item()) similar_words.append(similar_word) print(similar_words) ``` 修改后的代码将`cosine_similarities`矩阵的维度调整为`[seq_len, batch_size]`,同时在`for`循环中将`seed_similarities`矩阵的第一个维度作为行索引,第二个维度作为列索引来获取余弦相似度。
阅读全文

相关推荐

import torch from transformers import BertTokenizer, BertModel # 加载Bert预训练模型和tokenizer model = BertModel.from_pretrained('bert-base-chinese') tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') # 微博文本和种子词 text = '今天天气真好,心情非常愉快!' seeds = ['天气', '心情', '愉快'] # 将微博文本和种子词转换为Bert输入格式 inputs = tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt') seed_inputs = tokenizer.encode_plus(seeds, add_special_tokens=True, return_tensors='pt', padding=True) # 使用Bert模型获取微博文本和种子词的词向量 with torch.no_grad(): text_embeddings = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])[0] # [1, seq_len, hidden_size] seed_embeddings = model(seed_inputs['input_ids'], attention_mask=seed_inputs['attention_mask'])[0] # [batch_size, seq_len, hidden_size] # 计算种子词和微博文本中所有词语的余弦相似度 text_embeddings = text_embeddings.squeeze(0) # [seq_len, hidden_size] seed_embeddings = seed_embeddings.mean(dim=1) # [batch_size, hidden_size] -> [batch_size, 1, hidden_size] -> [batch_size, hidden_size] cosine_similarities = torch.matmul(text_embeddings, seed_embeddings.transpose(0, 1)) # [seq_len, batch_size] # 获取相似度最高的词语 similar_words = [] for i in range(len(seeds)): seed_similarities = cosine_similarities[:, i].tolist() max_sim_idx = seed_similarities.index(max(seed_similarities)) similar_word = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][max_sim_idx].item()) similar_words.append(similar_word) print(similar_words)

import torchfrom transformers import BertTokenizer, BertModel# 加载Bert预训练模型和tokenizermodel = BertModel.from_pretrained('bert-base-chinese')tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')# 微博文本和种子词text = '今天天气真好,心情非常愉快!'seeds = ['天气', '心情', '愉快']# 将微博文本和种子词转换为Bert输入格式inputs = tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt')seed_inputs = tokenizer.encode_plus(seeds, add_special_tokens=True, return_tensors='pt', padding=True)# 使用Bert模型获取微博文本和种子词的词向量with torch.no_grad(): text_embeddings = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])[0] # [1, seq_len, hidden_size] seed_embeddings = model(seed_inputs['input_ids'], attention_mask=seed_inputs['attention_mask'])[0] # [batch_size, seq_len, hidden_size]# 计算种子词和微博文本中所有词语的余弦相似度text_embeddings = text_embeddings.squeeze(0) # [seq_len, hidden_size]seed_embeddings = seed_embeddings.mean(dim=1) # [batch_size, seq_len, hidden_size] -> [batch_size, hidden_size]cosine_similarities = torch.matmul(text_embeddings, seed_embeddings.transpose(0, 1)) # [seq_len, batch_size]# 获取相似度最高的词语similar_words = []for i in range(len(seeds)): seed_similarities = cosine_similarities[i, :].tolist() max_sim_idx = seed_similarities.index(max(seed_similarities)) similar_word = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][max_sim_idx].item()) similar_words.append(similar_word)print(similar_words) 上述修改后的代码输出全是['[CLS]', '[CLS]', '[CLS]'],这不是我想要的结果啊,我想要的是微博文本的词语和种子词很相似的所有词语,而不是bert自动添加的特殊标记符,该怎么办

from transformers import BertTokenizer, BertModel import torch from sklearn.metrics.pairwise import cosine_similarity # 加载BERT模型和分词器 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') # 种子词列表 seed_words = ['个人信息', '隐私', '泄露', '安全'] # 加载微博用户文本语料(假设存储在weibo1.txt文件中) with open('output/weibo1.txt', 'r', encoding='utf-8') as f: corpus = f.readlines() # 预处理文本语料,获取每个中文词汇的词向量 corpus_vectors = [] for text in corpus: # 使用BERT分词器将文本分成词汇 tokens = tokenizer.tokenize(text) # 将词汇转换为对应的id input_ids = tokenizer.convert_tokens_to_ids(tokens) # 将id序列转换为PyTorch张量 input_ids = torch.tensor(input_ids).unsqueeze(0) # 使用BERT模型计算词向量 with torch.no_grad(): outputs = model(input_ids) last_hidden_state = outputs[0][:, 1:-1, :] avg_pooling = torch.mean(last_hidden_state, dim=1) corpus_vectors.append(avg_pooling.numpy()) # 计算每个中文词汇与种子词的余弦相似度 similarity_threshold = 0.8 privacy_words = set() for seed_word in seed_words: # 将种子词转换为对应的id seed_word_ids = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(seed_word)) # 将id序列转换为PyTorch张量,并增加batch size维度 seed_word_ids = torch.tensor(seed_word_ids).unsqueeze(0) # 使用BERT模型计算种子词的词向量 with torch.no_grad(): outputs = model(seed_word_ids) last_hidden_state = outputs[0][:, 1:-1, :] avg_pooling = torch.mean(last_hidden_state, dim=1) seed_word_vector = avg_pooling.numpy() # 计算每个中文词汇与种子词的余弦相似度 for i, vector in enumerate(corpus_vectors): sim = cosine_similarity([seed_word_vector], [vector])[0][0] if sim >= similarity_threshold: privacy_words.add(corpus[i]) print(privacy_words) 上述代码运行后报错了,报错信息:ValueError: Found array with dim 3. check_pairwise_arrays expected <= 2. 怎么修改?

import torch from transformers import BertTokenizer, BertModel # 加载种子词库 seed_words = [] with open("output/base_words.txt", "r", encoding="utf-8") as f: for line in f: seed_words.append(line.strip()) print(seed_words) # 加载微博文本数据 text_data = [] with open("output/weibo1.txt", "r", encoding="utf-8") as f: for line in f: text_data.append(line.strip()) print(text_data) # 加载BERT模型和分词器 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') # 构建隐私词库 privacy_words = set(seed_words) for text in text_data: # 对文本进行分词,并且添加特殊标记 tokens = ["[CLS]"] + tokenizer.tokenize(text) + ["[SEP]"] token_ids = tokenizer.convert_tokens_to_ids(tokens) segment_ids = [0] * len(token_ids) # 转换为张量,调用BERT模型进行编码 token_tensor = torch.tensor([token_ids]) segment_tensor = torch.tensor([segment_ids]) with torch.no_grad(): outputs = model(token_tensor, segment_tensor) encoded_layers = outputs[0] # 对于每个词,计算它与种子词的相似度 for i in range(1, len(tokens)-1): word = tokens[i] if word in seed_words: continue word_tensor = encoded_layers[0][i].reshape(1, -1) sim = cosine_similarity(word_tensor, encoded_layers[0][1:-1])[0].max() # if sim > 0.5: # privacy_words.add(word) # 输出隐私词库 with open("output/privacy_words.txt", "w", encoding="utf-8") as f: for word in privacy_words: f.write(word + "\n") 上述代码中的 sim = cosine_similarity(word_tensor, encoded_layers[0][1:-1])[0].max() 的 cosine_similarity()应该用的是哪个库中的,是正确的

from transformers import BertTokenizer, BertForQuestionAnswering import torch # 加载BERT模型和分词器 model_name = 'bert-base-uncased' tokenizer = BertTokenizer.from_pretrained(model_name) model = BertForQuestionAnswering.from_pretrained(model_name) # 输入文本和问题 context = "The Apollo program, also known as Project Apollo, was the third United States human spaceflight program carried out by the National Aeronautics and Space Administration (NASA), which succeeded in landing the first humans on the Moon from 1969 to 1972. Apollo was first conceived during the Eisenhower administration in early 1960 as a follow-up to Project Mercury. It was dedicated to President John F. Kennedy's national goal of landing Americans on the Moon before the end of the 1960s." question = "What was the goal of the Apollo program?" # 对输入进行编码 encoding = tokenizer.encode_plus(question, context, max_length=512, padding='max_length', truncation=True, return_tensors='pt') # 获取输入ids和注意力掩码 input_ids = encoding['input_ids'] attention_mask = encoding['attention_mask'] # 使用BERT模型进行问答 outputs = model(input_ids=input_ids, attention_mask=attention_mask) start_scores = outputs.start_logits end_scores = outputs.end_logits # 获取答案的起始和结束位置 start_index = torch.argmax(start_scores) end_index = torch.argmax(end_scores) # 解码答案 answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[0][start_index:end_index+1])) print(answer)

from transformers import BertTokenizer, BertForSequenceClassification, TrainingArguments, Trainer from datasets import load_from_disk import numpy as np from sklearn.metrics import accuracy_score def load_processed_data(): dataset = load_from_disk("../data/processed_imdb") return dataset['train'], dataset['test'] # 定义预处理函数 def preprocess_function(examples): return tokenizer( examples['text'], truncation=True, padding='max_length', max_length=256 ) # 定义评估指标 def compute_metrics(p): preds = np.argmax(p.predictions, axis=1) return {'accuracy': accuracy_score(p.label_ids, preds)} if __name__ == '__main__': train_data, test_data = load_processed_data() # 加载BERT的分词器 tokenizer = BertTokenizer.from_pretrained("C:/Users/Administrator/bert_cache") # 应用预处理 train_data = train_data.map(preprocess_function, batched=True) test_data = test_data.map(preprocess_function, batched=True) # 重命名标签列(适配HuggingFace格式) train_data = train_data.rename_column('label', 'labels') test_data = test_data.rename_column('label', 'labels') # 设置pytorch格式 train_data.set_format('torch', columns=['input_ids', 'attention_mask', 'labels']) test_data.set_format('torch', columns=['input_ids', 'attention_mask', 'labels']) # 加载预训练模型 model = BertForSequenceClassification.from_pretrained( "C:/Users/Administrator/bert_cache", num_labels=2 ) training_args = TrainingArguments( output_dir='./results', # 输出目录 num_train_epochs=3, # 训练轮次 per_device_train_batch_size=32, # 训练批次大小 per_device_eval_batch_size=128, # 评估批次大小 warmup_steps=500, # 学习率预热步数 weight_decay=0.01, # 权重衰减 logging_dir='./logs', # 日志目录 eval_strategy='epoch', # 每轮评估一次 save_strategy='epoch' ) # 创建Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_data, eval_dataset=test_data, # 实际应用时应使用验证集 compute_metrics=compute_metrics ) # 开始训练! trainer.train() # 保存模型 model.save_pretrained('./my_bert_model') tokenizer.save_pretrained('./my_bert_model') # 加载模型 # from_pretrained_model = BertForSequenceClassification.from_pretrained('./my_bert_model')

import jieba import torch from transformers import BertTokenizer, BertModel, BertConfig # 自定义词汇表路径 vocab_path = "output/user_vocab.txt" count = 0 with open(vocab_path, 'r', encoding='utf-8') as file: for line in file: count += 1 user_vocab = count print(user_vocab) # 种子词 seed_words = ['姓名'] # 加载微博文本数据 text_data = [] with open("output/weibo_data.txt", "r", encoding="utf-8") as f: for line in f: text_data.append(line.strip()) print(text_data) # 加载BERT分词器,并使用自定义词汇表 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese', vocab_file=vocab_path) config = BertConfig.from_pretrained("bert-base-chinese", vocab_size=user_vocab) # 加载BERT模型 model = BertModel.from_pretrained('bert-base-chinese', config=config, ignore_mismatched_sizes=True) seed_tokens = ["[CLS]"] + seed_words + ["[SEP]"] seed_token_ids = tokenizer.convert_tokens_to_ids(seed_tokens) seed_segment_ids = [0] * len(seed_token_ids) # 转换为张量,调用BERT模型进行编码 seed_token_tensor = torch.tensor([seed_token_ids]) seed_segment_tensor = torch.tensor([seed_segment_ids]) model.eval() with torch.no_grad(): seed_outputs = model(seed_token_tensor, seed_segment_tensor) seed_encoded_layers = seed_outputs[0] jieba.load_userdict('data/user_dict.txt') # 构建隐私词库 privacy_words = set() privacy_words_sim = set() for text in text_data: words = jieba.lcut(text.strip()) tokens = ["[CLS]"] + words + ["[SEP]"] token_ids = tokenizer.convert_tokens_to_ids(tokens) segment_ids = [0] * len(token_ids) # 转换为张量,调用BERT模型进行编码 token_tensor = torch.tensor([token_ids]) segment_tensor = torch.tensor([segment_ids]) model.eval() with torch.no_grad(): outputs = model(token_tensor, segment_tensor) encoded_layers = outputs[0] # 对于每个词,计算它与种子词的余弦相似度 for i in range(1, len(tokens) - 1): word = tokens[i] if word in seed_words: continue if len(word) <= 1: continue sim_scores = [] for j in range(len(seed_encoded_layers)): sim_scores.append(torch.cosine_similarity(seed_encoded_layers[j][0], encoded_layers[j][i], dim=0).item()) cos_sim = sum(sim_scores) / len(sim_scores) print(cos_sim, word) if cos_sim >= 0.5: privacy_words.add(word) privacy_words_sim.add((word, cos_sim)) print(privacy_words) # 输出隐私词库 with open("output/privacy_words.txt", "w", encoding="utf-8") as f1: for word in privacy_words: f1.write(word + '\n') with open("output/privacy_words_sim.txt", "w", encoding="utf-8") as f2: for word, cos_sim in privacy_words_sim: f2.write(word + "\t" + str(cos_sim) + "\n") 详细解释上述代码,包括这行代码的作用以及为什么要这样做?

import torch from sklearn.metrics.pairwise import cosine_similarity from transformers import BertTokenizer, BertModel # 加载种子词库 seed_words = [] with open("output/base_words.txt", "r", encoding="utf-8") as f: for line in f: seed_words.append(line.strip()) print(seed_words) # 加载微博文本数据 text_data = [] with open("output/weibo1.txt", "r", encoding="utf-8") as f: for line in f: text_data.append(line.strip()) print(text_data) # 加载BERT模型和分词器 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') # 构建隐私词库 privacy_words = set(seed_words) for text in text_data: # 对文本进行分词,并且添加特殊标记 tokens = ["[CLS]"] + tokenizer.tokenize(text) + ["[SEP]"] token_ids = tokenizer.convert_tokens_to_ids(tokens) segment_ids = [0] * len(token_ids) # 转换为张量,调用BERT模型进行编码 token_tensor = torch.tensor([token_ids]) segment_tensor = torch.tensor([segment_ids]) with torch.no_grad(): outputs = model(token_tensor, segment_tensor) encoded_layers = outputs[0] # 对于每个词,计算它与种子词的相似度 for i in range(1, len(tokens)-1): word = tokens[i] if word in seed_words: continue word_tensor = encoded_layers[0][i].reshape(1, -1) sim = cosine_similarity(encoded_layers[0][1:-1], word_tensor, dense_output=False)[0].max() if sim > 0.5: privacy_words.add(word) # 输出隐私词库 with open("output/privacy_words.txt", "w", encoding="utf-8") as f: for word in privacy_words: f.write(word + "\n") 上述代码中的这两行代码: if sim > 0.5: privacy_words.add(word) 中privacy_words集合写入的词汇不是我想要的,运行之后都是写入privacy_words集合的都是单个字,我需要的是大于等于两个字的中文词汇,并且不包含种子词列表中的词汇,只需要将微博文本数据中与种子词相似度高的词汇写入privacy_words集合中,请帮我正确修改上述代码

import pandas as pd import torch from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from torch.utils.data import Dataset, DataLoader from torch.utils.tensorboard import SummaryWriter from transformers import BertTokenizer, BertForSequenceClassification, AdamW # 训练模型 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 加载数据 data = pd.read_csv('simplifyweibo_5_moods.csv') # 获取text和label texts = data['text'].tolist() labels = data['label'].tolist() # 将本文标签转换为数值标签 label_encoder = LabelEncoder() labels = label_encoder.fit_transform(labels) # 划分训练集和测试集 train_texts, val_texts, train_labels, val_labels = train_test_split(texts, labels, test_size=0.2, random_state=42) # 加载BERT的分词器 tokenizer = BertTokenizer.from_pretrained('./bert_localpath/') # 对文本进行编码 train_encodings = tokenizer(train_texts, truncation=True, padding=True, max_length=128) val_encodings = tokenizer(val_texts, truncation=True, padding=True, max_length=128) # 创建PyTorch数据集 class WeiboDataset(Dataset): def __init__(self, encodings, labels): self.encodings = encodings self.labels = labels def __getitem__(self, idx): item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()} item['labels'] = torch.tensor(self.labels[idx]) return item def __len__(self): return len(self.labels) train_dataset = WeiboDataset(train_encodings, train_labels) val_dataset = WeiboDataset(val_encodings, val_labels) # 加载BERT模型,设置输出维度为类别数 num_classes = len(label_encoder.classes_) model = BertForSequenceClassification.from_pretrained('./bert_localpath', num_labels=num_classes).to(device) # 创建DataLoader train_dataloader = DataLoader(train_dataset, batch_size=16, shuffle=True) val_dataloader = DataLoader(val_dataset, batch_size=16, shuffle=True) # 定义优化器 optimizer = AdamW(model.parameters(), lr=2e-5) # 创建TensorBoard的SummmaryWriter writer = SummaryWriter('./logs') epochs = 3 for epoch in r

import jieba import torch from sklearn.metrics.pairwise import cosine_similarity from transformers import BertTokenizer, BertModel seed_words = ['姓名'] # 加载微博文本数据 text_data = [] with open("output/weibo1.txt", "r", encoding="utf-8") as f: for line in f: text_data.append(line.strip()) # 加载BERT模型和分词器 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') seed_tokens = ["[CLS]"] + seed_words + ["[SEP]"] seed_token_ids = tokenizer.convert_tokens_to_ids(seed_tokens) seed_segment_ids = [0] * len(seed_token_ids) # 转换为张量,调用BERT模型进行编码 seed_token_tensor = torch.tensor([seed_token_ids]) seed_segment_tensor = torch.tensor([seed_segment_ids]) with torch.no_grad(): seed_outputs = model(seed_token_tensor, seed_segment_tensor) seed_encoded_layers = seed_outputs[0] jieba.load_userdict('data/userdict.txt') # 构建隐私词库 privacy_words = set() for text in text_data: words = jieba.lcut(text.strip()) tokens = ["[CLS]"] + words + ["[SEP]"] token_ids = tokenizer.convert_tokens_to_ids(tokens) segment_ids = [0] * len(token_ids) # 转换为张量,调用BERT模型进行编码 token_tensor = torch.tensor([token_ids]) segment_tensor = torch.tensor([segment_ids]) with torch.no_grad(): outputs = model(token_tensor, segment_tensor) encoded_layers = outputs[0] # 对于每个词,计算它与种子词的相似度 for i in range(1, len(tokens)-1): word = tokens[i] if word in seed_words: continue word_tensor = encoded_layers[0][i].reshape(1, -1) seed_tensors =seed_encoded_layers[0][i].reshape(1, -1) # 计算当前微博词汇与种子词的相似度 sim = cosine_similarity(word_tensor, seed_tensors, dense_output=False)[0].max() print(sim, word) if sim > 0.5 and len(word) > 1: privacy_words.add(word) print(privacy_words) 上述代码运行之后有错误,报错信息为:Traceback (most recent call last): File "E:/PyCharm Community Edition 2020.2.2/Project/WordDict/newsim.py", line 397, in <module> seed_tensors =seed_encoded_layers[0][i].reshape(1, -1) IndexError: index 3 is out of bounds for dimension 0 with size 3. 请帮我修改

最新推荐

recommend-type

2018年小程序发展状况报告.pdf

2018年小程序发展状况报告.pdf
recommend-type

2011年全国自考网络经济与企业管理模拟试卷.doc

2011年全国自考网络经济与企业管理模拟试卷.doc
recommend-type

springboot基于JAVA的旅游微信小程序的设计与实现(编号:35142587).zip

springboot基于JAVA的旅游微信小程序的设计与实现(编号:35142587)
recommend-type

(完整版)第1章机器学习基础.ppt

(完整版)第1章机器学习基础.ppt
recommend-type

2012年上半年全国高校教师网络培训计划.doc

2012年上半年全国高校教师网络培训计划.doc
recommend-type

构建基于ajax, jsp, Hibernate的博客网站源码解析

根据提供的文件信息,本篇内容将专注于解释和阐述ajax、jsp、Hibernate以及构建博客网站的相关知识点。 ### AJAX AJAX(Asynchronous JavaScript and XML)是一种用于创建快速动态网页的技术,它允许网页在不重新加载整个页面的情况下,与服务器交换数据并更新部分网页内容。AJAX的核心是JavaScript中的XMLHttpRequest对象,通过这个对象,JavaScript可以异步地向服务器请求数据。此外,现代AJAX开发中,常常用到jQuery中的$.ajax()方法,因为其简化了AJAX请求的处理过程。 AJAX的特点主要包括: - 异步性:用户操作与数据传输是异步进行的,不会影响用户体验。 - 局部更新:只更新需要更新的内容,而不是整个页面,提高了数据交互效率。 - 前后端分离:AJAX技术允许前后端分离开发,让前端开发者专注于界面和用户体验,后端开发者专注于业务逻辑和数据处理。 ### JSP JSP(Java Server Pages)是一种动态网页技术标准,它允许开发者将Java代码嵌入到HTML页面中,从而实现动态内容的生成。JSP页面在服务器端执行,并将生成的HTML发送到客户端浏览器。JSP是Java EE(Java Platform, Enterprise Edition)的一部分。 JSP的基本工作原理: - 当客户端首次请求JSP页面时,服务器会将JSP文件转换为Servlet。 - 服务器上的JSP容器(如Apache Tomcat)负责编译并执行转换后的Servlet。 - Servlet生成HTML内容,并发送给客户端浏览器。 JSP页面中常见的元素包括: - 指令(Directives):如page、include、taglib等。 - 脚本元素:脚本声明(Script declarations)、脚本表达式(Scriptlet)和脚本片段(Expression)。 - 标准动作:如jsp:useBean、jsp:setProperty、jsp:getProperty等。 - 注释:在客户端浏览器中不可见的注释。 ### Hibernate Hibernate是一个开源的对象关系映射(ORM)框架,它提供了从Java对象到数据库表的映射,简化了数据库编程。通过Hibernate,开发者可以将Java对象持久化到数据库中,并从数据库中检索它们,而无需直接编写SQL语句或掌握复杂的JDBC编程。 Hibernate的主要优点包括: - ORM映射:将对象模型映射到关系型数据库的表结构。 - 缓存机制:提供了二级缓存,优化数据访问性能。 - 数据查询:提供HQL(Hibernate Query Language)和Criteria API等查询方式。 - 延迟加载:可以配置对象或对象集合的延迟加载,以提高性能。 ### 博客网站开发 构建一个博客网站涉及到前端页面设计、后端逻辑处理、数据库设计等多个方面。使用ajax、jsp、Hibernate技术栈,开发者可以更高效地构建功能完备的博客系统。 #### 前端页面设计 前端主要通过HTML、CSS和JavaScript来实现,其中ajax技术可以用来异步获取文章内容、用户评论等,无需刷新页面即可更新内容。 #### 后端逻辑处理 JSP可以在服务器端动态生成HTML内容,根据用户请求和数据库中的数据渲染页面。Hibernate作为ORM框架,可以处理Java对象与数据库表之间的映射,并提供数据库的CRUD(创建、读取、更新、删除)操作。 #### 数据库设计 博客网站的数据库设计通常包含多个表,如用户表(存储用户信息)、文章表(存储文章信息)、评论表(存储用户评论信息)等。使用Hibernate框架可以简化数据库操作,同时确保数据的一致性和安全性。 #### 安全性和性能优化 安全性是构建网站时需要考虑的重要方面,包括但不限于SQL注入防护、XSS攻击防护、会话管理等。性能优化方面,可以利用Hibernate的缓存机制,以及对JSP页面和ajax请求进行适当的缓存处理。 ### 结论 ajax、jsp、Hibernate技术结合可以构建出高效、动态、易于维护的博客网站。在开发过程中,应当关注前后端分离、用户体验优化、系统性能和安全性等关键要素,确保博客网站的稳定和长期可用性。通过本篇文章,读者应该已经对这些技术有了初步了解,并能够结合文件提供的源码开始进行相关开发实践。
recommend-type

【Unity Sunny Land关卡设计高级指南】:打造完美关卡的8大技巧

# 1. Unity关卡设计概述 ## 1.1 关卡设计的核心要素 关卡设计作为游戏开发中不可或缺的一环,承担着构建游戏世界、呈现故事背景、引导玩家体验和激发玩家兴趣的责任。一个优秀的关卡不仅需要有吸引人的视觉效果和有趣的挑战,还需平衡玩家体验,提供连贯的游戏故事。 ## 1.2 关卡设计师的角色 在Unity引擎的环境下,关卡设计师需要具备对场景布局、角色互动、剧情
recommend-type

C++ 模版

<think>我们正在讨论C++模板的使用和常见问题。根据用户要求,所有行内数学表达式使用$...$,独立公式使用$$...$$,用中文回答,并生成相关问题。同时,回答要结构清晰,帮助用户逐步解决问题。 首先,回顾用户的问题:用户想了解C++模板的使用和常见问题。我们将从以下几个方面展开: 1. 模板的基本概念和用途 2. 函数模板和类模板 3. 模板特化和偏特化 4. 模板元编程简介 5. 常见问题及解决方案 注意:在回答中,我们会引用站内提供的引用内容(引用[1]和引用[2])作为参考,但主要围绕模板展开。 ### 1. 模板的基本概念和用途 C++模板是一种支持泛型编程的特性,允许
recommend-type

C#随机数摇奖系统功能及隐藏开关揭秘

### C#摇奖系统知识点梳理 #### 1. C#语言基础 C#(发音为“看井”)是由微软开发的一种面向对象的、类型安全的编程语言。它是.NET框架的核心语言之一,广泛用于开发Windows应用程序、ASP.NET网站、Web服务等。C#提供丰富的数据类型、控制结构和异常处理机制,这使得它在构建复杂应用程序时具有很强的表达能力。 #### 2. 随机数的生成 在编程中,随机数生成是常见的需求之一,尤其在需要模拟抽奖、游戏等场景时。C#提供了System.Random类来生成随机数。Random类的实例可以生成一个伪随机数序列,这些数在统计学上被认为是随机的,但它们是由确定的算法生成,因此每次运行程序时产生的随机数序列相同,除非改变种子值。 ```csharp using System; class Program { static void Main() { Random rand = new Random(); for(int i = 0; i < 10; i++) { Console.WriteLine(rand.Next(1, 101)); // 生成1到100之间的随机数 } } } ``` #### 3. 摇奖系统设计 摇奖系统通常需要以下功能: - 用户界面:显示摇奖结果的界面。 - 随机数生成:用于确定摇奖结果的随机数。 - 动画效果:模拟摇奖的视觉效果。 - 奖项管理:定义摇奖中可能获得的奖品。 - 规则设置:定义摇奖规则,比如中奖概率等。 在C#中,可以使用Windows Forms或WPF技术构建用户界面,并集成上述功能以创建一个完整的摇奖系统。 #### 4. 暗藏的开关(隐藏控制) 标题中提到的“暗藏的开关”通常是指在程序中实现的一个不易被察觉的控制逻辑,用于在特定条件下改变程序的行为。在摇奖系统中,这样的开关可能用于控制中奖的概率、启动或停止摇奖、强制显示特定的结果等。 #### 5. 测试 对于摇奖系统来说,测试是一个非常重要的环节。测试可以确保程序按照预期工作,随机数生成器的随机性符合要求,用户界面友好,以及隐藏的控制逻辑不会被轻易发现或利用。测试可能包括单元测试、集成测试、压力测试等多个方面。 #### 6. System.Random类的局限性 System.Random虽然方便使用,但也有其局限性。其生成的随机数序列具有一定的周期性,并且如果使用不当(例如使用相同的种子创建多个实例),可能会导致生成相同的随机数序列。在安全性要求较高的场合,如密码学应用,推荐使用更加安全的随机数生成方式,比如RNGCryptoServiceProvider。 #### 7. Windows Forms技术 Windows Forms是.NET框架中用于创建图形用户界面应用程序的库。它提供了一套丰富的控件,如按钮、文本框、标签等,以及它们的事件处理机制,允许开发者设计出视觉效果良好且功能丰富的桌面应用程序。 #### 8. WPF技术 WPF(Windows Presentation Foundation)是.NET框架中用于构建桌面应用程序用户界面的另一种技术。与Windows Forms相比,WPF提供了更现代化的控件集,支持更复杂的布局和样式,以及3D图形和动画效果。WPF的XAML标记语言允许开发者以声明性的方式设计用户界面,与C#代码分离,易于维护和更新。 #### 9. 压缩包子文件TransBallDemo分析 从文件名“TransBallDemo”可以推测,这可能是一个C#的示例程序或者演示程序,其中“TransBall”可能表示旋转的球体,暗示该程序包含了动画效果,可能是用来模拟转动的球体(如转盘或摇奖球)。该文件可能是用来展示如何实现一个带有视觉动画效果的摇奖系统的C#程序。 总结以上内容,我们可以得出构建一个C#摇奖系统需要深入理解C#语言及其随机数生成机制,设计用户界面,集成动画效果,确保隐藏控制逻辑的安全性,以及全面测试系统以保证其正确性和公平性。通过掌握Windows Forms或WPF技术,可以进一步增强系统的视觉和交互体验。
recommend-type

【数据驱动的力量】:管道缺陷判别方法论与实践经验

# 摘要 数据驱动技术在管道缺陷检测领域展现出强大的力量,本文首先概述了数据驱动的力量和管道缺陷判别的基础理论。接着,重点探讨了管道缺陷的类型与特征、数据采集与预处理、数据驱动模型的选择与构建。在实践技巧章节,本文详述了实战数据集的准备与处理、缺陷识别算法的应用、以及性能评估与模型优化。此外,高级应用章节深入讨论了实时数据处理分析、多模态数据融合技术、以及深度学习在缺