import torch from torch import nn class BaseColor(nn.Module): def __init__(self): super(BaseColor, self).__init__() self.l_cent = 50. self.l_norm = 100. self.ab_norm = 110. def normalize_l(self, in_l): return (in_l-self.l_cent)/self.l_norm def unnormalize_l(self, in_l): return in_l*self.l_norm + self.l_cent def normalize_ab(self, in_ab): return in_ab/self.ab_norm def unnormalize_ab(self, in_ab): return in_ab*self.ab_norm
时间: 2024-02-01 18:12:08 浏览: 186
这是一个定义了BaseColor类的代码片段,该类继承自nn.Module。在初始化函数__init__()中,定义了三个成员变量:l_cent、l_norm、ab_norm。normalize_l()和unnormalize_l()分别是将输入的亮度值进行归一化和反归一化的函数;normalize_ab()和unnormalize_ab()分别是将输入的色度值进行归一化和反归一化的函数。这些函数都是为了方便对图像进行处理而设计的。
相关问题
import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset class LSTM(nn.Module): def __init__(self, inputDim, hiddenDim, layerNum, batchSize): super(LSTM, self).__init__()
你在这段代码中定义了一个名为LSTM的类,继承自torch.nn.Module。这个类用于构建一个LSTM模型。在初始化方法中,你传入了inputDim(输入维度)、hiddenDim(隐藏层维度)、layerNum(LSTM层数)和batchSize(批次大小)等参数。super()函数用于调用父类的初始化方法。接下来的代码缺失了,请提供完整的代码。
import torch from torch import nn class MLP(nn.Module): def __init__(self, input_dim, num_class, hidden_dim) -> None: super().__init__() self.hidden_dim = hidden_dim self.mlp = nn.Sequential(*[ nn.Linear(input_dim, self.hidden_dim), nn.ReLU(), nn.Linear(self.hidden_dim, self.hidden_dim), nn.ReLU(), nn.Linear(self.hidden_dim, self.hidden_dim), nn.ReLU(), nn.Linear(self.hidden_dim, num_class) ]) def forward(self, x): return self.mlp(x)
这是一个使用 PyTorch 实现的多层感知器 (MLP) 的模型定义代码。该 MLP 模型包括一个输入层、若干个隐藏层和一个输出层。其输入特征维度为 input_dim,输出类别数为 num_class,隐藏层维度为 hidden_dim。其中,nn.Linear 表示全连接层,nn.ReLU 表示激活函数 ReLU。forward() 方法定义了模型的前向传播过程,即输入特征经过多个全连接层和激活函数后得到输出。在模型训练时,可以通过调用 forward() 方法来计算模型的输出,并根据输出与真实标签之间的差别来更新模型参数。
阅读全文
相关推荐
















