self.embedding怎么定义
时间: 2024-03-21 19:43:09 浏览: 190
在PyTorch中,一个Embedding Layer可以通过`torch.nn.Embedding`类来定义。在ChitGPT中,self.embedding的定义如下:
```
self.embedding = nn.Embedding(vocab_size, hidden_size)
```
这里,`vocab_size`表示词汇表的大小,即模型可以接受的最大token数量;`hidden_size`表示每个token被映射到的向量表示的维度。
在模型的前向传播过程中,输入的token_ids会被传入self.embedding中进行embedding,代码如下:
```
input_embeds = self.embedding(token_ids)
```
这里,`token_ids`表示输入的token序列,`input_embeds`表示通过Embedding Layer映射后得到的向量表示。
相关问题
class RotatE_AutoNeg(nn.Module): def __init__(self, nentity, nrelation, hidden_dim, gamma): super(RotatE_AutoNeg, self).__init__() self.nentity = nentity self.nrelation = nrelation self.hidden_dim = hidden_dim self.gamma = gamma self.embedding_range = nn.Parameter( torch.Tensor([(self.gamma + 2.0) / (self.hidden_dim * 2)]), requires_grad=False) # 计算初始化范围 self.entity_emb = nn.Embedding(self.nentity, self.hidden_dim) # 设置维度 self.relation_emb = nn.Parameter(torch.Tensor(self.nrelation, self.hidden_dim)) # 实体初始化,服从(a,b)的均匀分布 nn.init.uniform_( tensor=self.entity_emb.weight.data, a=-self.embedding_range.item(), b=self.embedding_range.item() ) # 关系初始化,服从(a,b)的均匀分布 nn.init.uniform_( tensor=self.relation_emb.data, a=-self.embedding_range.item(), b=self.embedding_range.item() )解释
这是一个基于PyTorch的RotatE_AutoNeg模型的定义。具体来说,这个模型包含以下几个部分:
- nentity:知识图谱中实体的数量
- nrelation:知识图谱中关系的数量
- hidden_dim:实体和关系向量的维度
- gamma:损失函数中的超参数
- embedding_range:初始化向量的范围
- entity_emb:实体嵌入矩阵,用于将实体映射到向量空间
- relation_emb:关系嵌入矩阵,用于将关系映射到向量空间
具体地,这个模型使用了PyTorch中的Embedding层来初始化实体向量,使用了Tensor对象来初始化关系向量。在初始化时,实体向量服从(a,b)的均匀分布,其中a和b分别为负的embedding_range.item()和正的embedding_range.item()。关系向量同理。通过这种初始化方式,可以将实体和关系向量随机初始化在一个较小的范围内,从而可以更容易地收敛到最优解。
class Model(nn.Module): def init(self, config): super(Model, self).init() if config.embedding_pretrained is not None: self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False) else: self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1) self.lstm = nn.LSTM(config.embed, config.hidden_size, config.num_layers, bidirectional=True, batch_first=True, dropout=config.dropout) self.fc = nn.Linear(config.hidden_size * 2, config.num_classes) def forward(self, x): x, _ = x out = self.embedding(x) # [batch_size, seq_len, embeding]=[128, 32, 300] out, _ = self.lstm(out) out = self.fc(out[:, -1, :]) # 句子最后时刻的 hidden state return out
这段代码是一个PyTorch的模型定义,其中包括embedding层、LSTM层和全连接层。模型的输入是x,输出是out。其中,输入x的形状为[batch_size, seq_len],表示一批输入数据中每个序列的长度为seq_len,总共有batch_size个序列。模型会将输入的每个词转换为向量形式,然后通过LSTM层对整个序列进行编码,最后使用全连接层将编码结果映射到目标类别的概率分布上。
阅读全文
相关推荐

















