部分urdf代码如下<visual> <origin xyz="0 0 0" rpy="0 0 0"/> <geometry> <mesh filename="package://yahboomcar_description/meshes/sensor/visual/camera_link.STL"/> </geometry> <material name=""> <color rgba="1 0 0 1"/> </material> </visual>,用gazebo打开模型后,没有显示颜色,是为什么

时间: 2024-04-04 09:29:17 浏览: 76
根据您提供的代码片段,您的<material>标签中指定的名称为空,这可能导致您在Gazebo中看不到颜色。请您在<material>标签中指定一个名称,例如:<material name="red">,然后将这个名称用于<visual>标签中的<material>标签,例如:<visual> <material name="red">...</material> </visual>。这样做后,您应该能够在Gazebo中看到正确的颜色了。如果您仍然无法看到颜色,请检查您的Gazebo和模型文件是否正确配置,并确保您的机器上存在正确的材料库。
相关问题

<?xml version="1.0" encoding="utf-8"?> <robot name="ec66"> <link name="world" /> <joint name="world_joint" type="fixed"> <origin xyz="0 0 0" rpy="0 0 0" /> <parent link="world" /> <child link="base_link" /> </joint> <link name="base_link"> <inertial> <origin xyz="0.00039768 8.0247E-10 0.012605" rpy="0 0 0" /> <mass value="0.41542" /> <inertia ixx="0.00054632" ixy="-4.5067E-09" ixz="5.9528E-07" iyy="0.00053741" iyz="-3.5275E-10" izz="0.0010336" /> </inertial> <visual> <origin xyz="0 0 0" rpy="0 0 0" /> <geometry> <mesh filename="package://elite_description/meshes/ec66/base_link.STL" /> </geometry> <material name=""> <color rgba="0.89412 0.91373 0.92941 1" /> </material> </visual> <collision> <origin xyz="0 0 0" rpy="0 0 0" /> <geometry> <mesh filename="package://elite_description/meshes/ec66/base_link.STL" /> </geometry> </collision> </link> <link name="link1"> <inertial> <origin xyz="3.9336E-06 -0.0082614 0.0028405" rpy="0 0 0" /> <mass value="1.7827" /> <inertia ixx="0.0031691" ixy="-1.2175E-07" ixz="-2.8349E-08" iyy="0.0029334" iyz="0.00037927" izz="0.0035086" /> </inertial> <visual> <origin xyz="0 0 0" rpy="0 0 0" /> <geometry> <mesh filename="package://elite_description/meshes/ec66/link1.STL" /> </geometry> <material name=""> <color rgba="1 1 1 1" /> </material> </visual> <collision> <origin xyz="0 0 0" rpy="0 0 0" /> <geometry> <mesh filename="package://elite_description/meshes/ec66/link1.STL" /> </geometry> </collision> </link> <joint name="joint1" type="revolute"> <origin xyz="0 0 0.096" rpy="0 0 3.1416" /> <parent link="base_link" /> <child link="link1" /> <axis xyz="0 0 1" /> <limit lower="-6.2832" upper="6.2832" effort="150.0" velocity="2.61993" /> <dynamics damping="0" friction="0" /> </joint> <link name="link2"> <inertial> <origin xyz="-2.17E-06 0.17637 0.13932" rpy="0 0 0" /> <mass value="4.8843" /> <inertia ixx="0.022101" ixy="-1.0832E-07" ixz="-1.2727E-07" iyy="0.0066105" iyz="-0.00021178" izz="0.022526" /> </inertial> <visual> <origin xyz="0 0 0" rpy="0 0 0" /> <geometry> <mesh filename="package://elite_description/meshes/ec66/link2.STL" /> </geometry> <material name=""> <color rgba="1 1 1 1" /> </material> </visual> <collision> <origin xyz="0 0 0" rpy="0 0 0" /> <geometry> <mesh filename="package://elite_description/meshes/ec66/link2.STL" /> </geometry> </collision> </link> <joint name="joint2" type="revolute"> <origin xyz="0 0 0" rpy="1.5708 -1.5708 0" /> <parent link="link1" /> <child link="link2" /> <axis xyz="0 0 1" /> <limit lower="-6.2832" upper="6.2832" effort="150.0" velocity="2.61993" /> <dynamics damping="0" friction="0" /> </joint> <link name="link3"> <inertial> <origin xyz="0.20069 -7.9845E-06 0.028008" rpy="0 0 0" /> <mass value="2.1495" /> <inertia ixx="0.0015747" ixy="-2.8912E-08" ixz="7.3471E-05" iyy="0.0091566" iyz="-1.4815E-07" izz="0.0091573" /> </inertial> <visual> <origin xyz="0 0 0" rpy="0 0 0" /> <geometry> <mesh filename="package://elite_description/meshes/ec66/link3.STL" /> </geometry> <material name=""> <color rgba="1 1 1 1" /> </material> </visual> <collision> <origin xyz="0 0 0" rpy="0 0 0" /> <geometry> <mesh filename="package://elite_description/meshes/ec66/link3.STL" /> </geometry> </collision> </link> <joint name="joint3" type="revolute"> <origin xyz="0 0.418 0" rpy="0 0 1.5708" /> <parent link="link2" /> <child link="link3" /> <axis xyz="0 0 1" /> <limit lower="-2.7925" upper="2.7925" effort="150.0" velocity="3.31613" /> <dynamics damping="0" friction="0" /> </joint> <link name="link4"> <inertial> <origin xyz="-5.2274E-07 -0.00070291 -0.006006" rpy="0 0 0" /> <mass value="0.53436" /> <inertia ixx="0.00041486" ixy="-4.7177E-09" ixz="-1.1841E-09" iyy="0.0004403" iyz="-5.8283E-05" izz="0.00037669" /> </inertial> <visual> <origin xyz="0 0 0" rpy="0 0 0" /> <geometry> <mesh filename="package://elite_description/meshes/ec66/link4.STL" /> </geometry> <material name=""> <color rgba="1 1 1 1" /> </material> </visual> <collision> <origin xyz="0 0 0" rpy="0 0 0" /> <geometry> <mesh filename="package://elite_description/meshes/ec66/link4.STL" /> </geometry> </collision> </link> <joint name="joint4" type="revolute"> <origin xyz="0.398 0 0.122" rpy="0 0 0" /> <parent link="link3" /> <child link="link4" /> <axis xyz="0 0 1" /> <limit lower="-6.2832" upper="6.2832" effort="28.0" velocity="4.53786" /> <dynamics damping="0" friction="0" /> </joint> <link name="link5"> <inertial> <origin xyz="5.2283E-07 0.00070291 -0.006006" rpy="0 0 0" /> <mass value="0.53436" /> <inertia ixx="0.00041486" ixy="-4.6787E-09" ixz="1.1524E-09" iyy="0.0004403" iyz="5.8283E-05" izz="0.00037669" /> </inertial> <visual> <origin xyz="0 0 0" rpy="0 0 0" /> <geometry> <mesh filename="package://elite_description/meshes/ec66/link5.STL" /> </geometry> <material name=""> <color rgba="1 1 1 1" /> </material> </visual> <collision> <origin xyz="0 0 0" rpy="0 0 0" /> <geometry> <mesh filename="package://elite_description/meshes/ec66/link5.STL" /> </geometry> </collision> </link> <joint name="joint5" type="revolute"> <origin xyz="0 0.098 0" rpy="1.5708 0 -3.1416" /> <parent link="link4" /> <child link="link5" /> <axis xyz="0 0 1" /> <limit lower="-6.2832" upper="6.2832" effort="28.0" velocity="4.53786" /> <dynamics damping="0" friction="0" /> </joint> <link name="link6"> <inertial> <origin xyz="-1.7556E-08 -0.00045052 -0.021169" rpy="0 0 0" /> <mass value="0.16488" /> <inertia ixx="7.7869E-05" ixy="-3.3531E-10" ixz="1.915E-10" iyy="7.757E-05" iyz="-7.8331E-08" izz="0.00011744" /> </inertial> <visual> <origin xyz="0 0 0" rpy="0 0 0" /> <geometry> <mesh filename="package://elite_description/meshes/ec66/link6.STL" /> </geometry> <material name=""> <color rgba="0.79216 0.81961 0.93333 1" /> </material> </visual> <collision> <origin xyz="0 0 0" rpy="0 0 0" /> <geometry> <mesh filename="package://elite_description/meshes/ec66/link6.STL" /> </geometry> </collision> </link> <joint name="joint6" type="revolute"> <origin xyz="0 -0.089 0" rpy="-1.5708 0 3.1416" /> <parent link="link5" /> <child link="link6" /> <axis xyz="0 0 1" /> <limit lower="-6.2832" upper="6.2832" effort="28.0" velocity="4.53786" /> <dynamics damping="0" friction="0" /> </joint> <link name="flan" /> <joint name="flan_joint" type="fixed"> <origin xyz="0 0 0" rpy="0 0 0" /> <parent link="link6" /> <child link="flan" /> </joint> </robot>

你提供的XML文件是一个机器人描述文件,通常用于ROS(Robot Operating System)中的URDF(Unified Robot Description Format)。这个文件定义了一个名为“ec66”的机器人模型,包括其各个关节和链接的物理属性、几何形状以及材料信息。 以下是对该文件的一些关键点解释: 1. **`<robot>` 标签**:这是URDF文件的根标签,包含整个机器人的定义。 2. **`<link>` 标签**:定义了机器人的各个部分(如base_link, link1, link2等),每个部分都有惯性、视觉和碰撞属性。 3. **`<joint>` 标签**:定义了连接两个链接的关节,包括关节类型(如revolute)、父链接、子链接、轴向、限制条件(如角度范围、力/扭矩限制)等。 4. **`<inertial>` 标签**:描述链接的质量属性,包括质量、质心位置和转动惯量。 5. **`<visual>` 和 `<collision>` 标签**:分别定义了链接的视觉表现和碰撞检测的几何形状。两者可以使用相同的几何形状,也可以不同。 ### 示例代码解析 以下是一个简单的Python脚本,用于解析并提取URDF文件中的关节信息: ```python import xml.etree.ElementTree as ET # 解析URDF文件 def parse_urdf(file_path): tree = ET.parse(file_path) root = tree.getroot() # 提取关节信息 joints = root.findall('joint') for joint in joints: name = joint.attrib.get('name') joint_type = joint.attrib.get('type') parent = joint.find('parent').attrib.get('link') child = joint.find('child').attrib.get('link') axis = joint.find('axis').attrib.get('xyz') if joint.find('axis') is not None else None limit = joint.find('limit') lower = limit.attrib.get('lower') if limit is not None else None upper = limit.attrib.get('upper') if limit is not None else None print(f"Joint Name: {name}") print(f"Joint Type: {joint_type}") print(f"Parent Link: {parent}") print(f"Child Link: {child}") print(f"Axis: {axis}") print(f"Limit Lower: {lower}, Upper: {upper}") print("-----") # 调用函数 parse_urdf('path_to_your_urdf_file.urdf') ``` 上述代码中: - 使用`xml.etree.ElementTree`模块解析URDF文件。 - 遍历所有`<joint>`标签,提取关节名称、类型、父链接、子链接、轴向以及角度限制等信息。 - 打印每个关节的相关信息。 ### 解释 - **`ET.parse(file_path)`**:加载并解析XML文件。 - **`root.findall('joint')`**:查找所有`<joint>`标签。 - **`joint.attrib.get('name')`**:获取关节的名称属性。 - **`joint.find('parent').attrib.get('link')`**:获取父链接的名称。 - **`joint.find('axis').attrib.get('xyz')`**:获取关节的旋转轴向。 ###

Parameter 'initial' s<?xml version="1.0" ?> <!-- =================================================================================== --> <!-- | This document was autogenerated by xacro from /opt/ros/noetic/share/franka_description/robots/fr3/fr3.urdf.xacro | --> <!-- | EDITING THIS FILE BY HAND IS NOT RECOMMENDED | --> <!-- =================================================================================== --> <robot name="fr3"> <!-- sub-link defining detailed meshes for collision with environment --> <link name="world"> </link> <joint name="dummy_joint" type="fixed"> <parent link="world" /> <child link="fr3_link0" /> </joint> <link name="fr3_link0"> <visual> <geometry> <mesh filename="package://franka_description/meshes/visual/link0.dae" /> </geometry> </visual> <collision> <geometry> <mesh filename="package://franka_description/meshes/collision/link0.stl" /> </geometry> </collision> <inertial> <mass value="0.1" /> <inertia ixx="0.03" iyy="0.03" izz="0.03" ixy="0.0" ixz="0.0" iyz="0.0" /> </inertial> </link> <!-- sub-link defining coarse geometries of real robot's internal self-collision --> <link name="fr3_link0_sc"> <collision> <origin rpy="0 1.5707963267948966 0" xyz="-0.075 0 0.06" /> <geometry> <cylinder length="0.03" radius="0.09" /> </geometry> </collision> <collision> <origin xyz="-0.06 0 0.06" /> <geometry> <sphere radius="0.09" /> </geometry> </collision> <collision> <origin xyz="-0.09 0 0.06" /> <geometry> <sphere radius="0.09" /> </geometry> </collision> <inertial> <mass value="0.1" /> <origin xyz="0 0 0" rpy="0 0 0" /> <inertia ixx="0.03" iyy="0.03" izz="0.03" ixy="0.0" ixz="0.0" iyz="0.0" /> </inertial> </link> <!-- fixed joint between both sub-links --> <joint name="fr3_link0_sc_joint" type="fixed"> <origin rpy="0 0 0" /> <parent link="fr3_link0" /> <child link="fr3_link0_sc" /> </joint> <!-- sub-link defining detailed meshes for collision with environment --> <link name="fr3_link1"> <visual> <geometry> <mesh filename="package://franka_description/meshes/visual/link1.dae" /> </geometry> </visual> <collision> <geometry> <mesh filename="package://franka_description/meshes/collision/link1.stl" /> </geometry> </collision> <inertial> <mass value="0.1" /> <origin xyz="0 0 0" rpy="0 0 0" /> <inertia ixx="0.03" iyy="0.03" izz="0.03" ixy="0.0" ixz="0.0" iyz="0.0" /> </inertial> </link> <!-- sub-link defining coarse geometries of real robot's internal self-collision --> <link name="fr3_link1_sc"> <collision> <origin rpy="0 0 0" xyz="0 0 -0.1915" /> <geometry> <cylinder length="0.283" radius="0.09" /> </geometry> </collision> <collision> <origin xyz="0 0 -0.05000000000000002" /> <geometry> <sphere radius="0.09" /> </geometry> </collision> <collision> <origin xyz="0 0 -0.33299999999999996" /> <geometry> <sphere radius="0.09" /> </geometry> </collision> <inertial> <mass value="0.1" /> <origin xyz="0 0 0" rpy="0 0 0" /> <inertia ixx="0.03" iyy="0.03" izz="0.03" ixy="0.0" ixz="0.0" iyz="0.0" /> </inertial> </link> <!-- fixed joint between both sub-links --> <joint name="fr3_link1_sc_joint" type="fixed"> <origin rpy="0 0 0" /> <parent link="fr3_link1" /> <child link="fr3_link1_sc" /> </joint> <joint name="fr3_joint1" type="revolute"> <origin rpy="0 0 0" xyz="0 0 0.333" /> <parent link="fr3_link0" /> <child link="fr3_link1" /> <axis xyz="0 0 1" /> <limit effort="87.0" lower="-2.3093" upper="2.3093" velocity="2.0" /> <safety_controller k_position="100.0" k_velocity="40.0" soft_lower_limit="-2.3093" soft_upper_limit="2.3093" /> <dynamics D="1" K="7000" damping="0.003" friction="0.0" mu_coulomb="0" mu_viscous="16" /> </joint> <!-- sub-link defining detailed meshes for collision with environment --> <link name="fr3_link2"> <visual> <geometry> <mesh filename="package://franka_description/meshes/visual/link2.dae" /> </geometry> </visual> <collision> <geometry> <mesh filename="package://franka_description/meshes/collision/link2.stl" /> </geometry> </collision> <inertial> <mass value="0.1" /> <origin xyz="0 0 0" rpy="0 0 0" /> <inertia ixx="0.03" iyy="0.03" izz="0.03" ixy="0.0" ixz="0.0" iyz="0.0" /> </inertial> </link> <!-- sub-link defining coarse geometries of real robot's internal self-collision --> <link name="fr3_link2_sc"> <collision> <origin rpy="0 0 0" xyz="0 0 0" /> <geometry> <cylinder length="0.12" radius="0.09" /> </geometry> </collision> <collision> <origin xyz="0 0 0.06" /> <geometry> <sphere radius="0.09" /> </geometry> </collision> <collision> <origin xyz="0 0 -0.06" /> <geometry> <sphere radius="0.09" /> </geometry> </collision> <inertial> <mass value="0.1" /> <origin xyz="0 0 0" rpy="0 0 0" /> <inertia ixx="0.03" iyy="0.03" izz="0.03" ixy="0.0" ixz="0.0" iyz="0.0" /> </inertial> </link> <!-- fixed joint between both sub-links --> <joint name="fr3_link2_sc_joint" type="fixed"> <origin rpy="0 0 0" /> <parent link="fr3_link2" /> <child link="fr3_link2_sc" /> </joint> <joint name="fr3_joint2" type="revolute"> <origin rpy="-1.5707963267948966 0 0" xyz="0 0 0" /> <parent link="fr3_link1" /> <child link="fr3_link2" /> <axis xyz="0 0 1" /> <limit effort="87.0" lower="-1.5133" upper="1.5133" velocity="1.0" /> <safety_controller k_position="100.0" k_velocity="40.0" soft_lower_limit="-1.5133" soft_upper_limit="1.5133" /> <dynamics D="1" K="7000" damping="0.003" friction="0.0" mu_coulomb="0" mu_viscous="16" /> </joint> <!-- sub-link defining detailed meshes for collision with environment --> <link name="fr3_link3"> <visual> <geometry> <mesh filename="package://franka_description/meshes/visual/link3.dae" /> </geometry> </visual> <collision> <geometry> <mesh filename="package://franka_description/meshes/collision/link3.stl" /> </geometry> </collision> <inertial> <mass value="0.1" /> <origin xyz="0 0 0" rpy="0 0 0" /> <inertia ixx="0.03" iyy="0.03" izz="0.03" ixy="0.0" ixz="0.0" iyz="0.0" /> </inertial> </link> <!-- sub-link defining coarse geometries of real robot's internal self-collision --> <link name="fr3_link3_sc"> <collision> <origin rpy="0 0 0" xyz="0 0 -0.145" /> <geometry> <cylinder length="0.15" radius="0.09" /> </geometry> </collision> <collision> <origin xyz="0 0 -0.06999999999999999" /> <geometry> <sphere radius="0.09" /> </geometry> </collision> <collision> <origin xyz="0 0 -0.21999999999999997" /> <geometry> <sphere radius="0.09" /> </geometry> </collision> <inertial> <mass value="0.1" /> <origin xyz="0 0 0" rpy="0 0 0" /> <inertia ixx="0.03" iyy="0.03" izz="0.03" ixy="0.0" ixz="0.0" iyz="0.0" /> </inertial> </link> <!-- fixed joint between both sub-links --> <joint name="fr3_link3_sc_joint" type="fixed"> <origin rpy="0 0 0" /> <parent link="fr3_link3" /> <child link="fr3_link3_sc" /> </joint> <joint name="fr3_joint3" type="revolute"> <origin rpy="1.5707963267948966 0 0" xyz="0 -0.316 0" /> <parent link="fr3_link2" /> <child link="fr3_link3" /> <axis xyz="0 0 1" /> <limit effort="87.0" lower="-2.4937" upper="2.4937" velocity="1.5" /> <safety_controller k_position="100.0" k_velocity="40.0" soft_lower_limit="-2.4937" soft_upper_limit="2.4937" /> <dynamics D="1" K="7000" damping="0.003" friction="0.0" mu_coulomb="0" mu_viscous="16" /> </joint> <!-- sub-link defining detailed meshes for collision with environment --> <link name="fr3_link4"> <visual> <geometry> <mesh filename="package://franka_description/meshes/visual/link4.dae" /> </geometry> </visual> <collision> <geometry> <mesh filename="package://franka_description/meshes/collision/link4.stl" /> </geometry> </collision> <inertial> <mass value="0.1" /> <origin xyz="0 0 0" rpy="0 0 0" /> <inertia ixx="0.03" iyy="0.03" izz="0.03" ixy="0.0" ixz="0.0" iyz="0.0" /> </inertial> </link> <!-- sub-link defining coarse geometries of real robot's internal self-collision --> <link name="fr3_link4_sc"> <collision> <origin rpy="0 0 0" xyz="0 0 0" /> <geometry> <cylinder length="0.12" radius="0.09" /> </geometry> </collision> <collision> <origin xyz="0 0 0.06" /> <geometry> <sphere radius="0.09" /> </geometry> </collision> <collision> <origin xyz="0 0 -0.06" /> <geometry> <sphere radius="0.09" /> </geometry> </collision> <inertial> <mass value="0.1" /> <origin xyz="0 0 0" rpy="0 0 0" /> <inertia ixx="0.03" iyy="0.03" izz="0.03" ixy="0.0" ixz="0.0" iyz="0.0" /> </inertial> </link> <!-- fixed joint between both sub-links --> <joint name="fr3_link4_sc_joint" type="fixed"> <origin rpy="0 0 0" /> <parent link="fr3_link4" /> <child link="fr3_link4_sc" /> </joint> <joint name="fr3_joint4" type="revolute"> <origin rpy="1.5707963267948966 0 0" xyz="0.0825 0 0" /> <parent link="fr3_link3" /> <child link="fr3_link4" /> <axis xyz="0 0 1" /> <limit effort="87.0" lower="-2.7478" upper="-0.4461" velocity="1.25" /> <safety_controller k_position="100.0" k_velocity="40.0" soft_lower_limit="-2.7478" soft_upper_limit="-0.4461" /> <dynamics D="1" K="7000" damping="0.003" friction="0.0" mu_coulomb="0" mu_viscous="16" /> </joint> <!-- sub-link defining detailed meshes for collision with environment --> <link name="fr3_link5"> <visual> <geometry> <mesh filename="package://franka_description/meshes/visual/link5.dae" /> </geometry> </visual> <collision> <geometry> <mesh filename="package://franka_description/meshes/collision/link5.stl" /> </geometry> </collision> <inertial> <mass value="0.1" /> <origin xyz="0 0 0" rpy="0 0 0" /> <inertia ixx="0.03" iyy="0.03" izz="0.03" ixy="0.0" ixz="0.0" iyz="0.0" /> </inertial> </link> <!-- sub-link defining coarse geometries of real robot's internal self-collision --> <link name="fr3_link5_sc"> <collision> <origin rpy="0 0 0" xyz="0 0 -0.26" /> <geometry> <cylinder length="0.1" radius="0.09" /> </geometry> </collision> <collision> <origin xyz="0 0 -0.21000000000000002" /> <geometry> <sphere radius="0.09" /> </geometry> </collision> <collision> <origin xyz="0 0 -0.31" /> <geometry> <sphere radius="0.09" /> </geometry> </collision> <collision> <origin rpy="0 0 0.08" xyz="0 0.08 -0.13" /> <geometry> <cylinder length="0.14" radius="0.055" /> </geometry> </collision> <collision> <origin xyz="0 0.08 -0.06" /> <geometry> <sphere radius="0.055" /> </geometry> </collision> <collision> <origin xyz="0 0.08 -0.2" /> <geometry> <sphere radius="0.055" /> </geometry> </collision> <inertial> <mass value="0.1" /> <origin xyz="0 0 0" rpy="0 0 0" /> <inertia ixx="0.03" iyy="0.03" izz="0.03" ixy="0.0" ixz="0.0" iyz="0.0" /> </inertial> </link> <!-- fixed joint between both sub-links --> <joint name="fr3_link5_sc_joint" type="fixed"> <origin rpy="0 0 0" /> <parent link="fr3_link5" /> <child link="fr3_link5_sc" /> </joint> <joint name="fr3_joint5" type="revolute"> <origin rpy="-1.5707963267948966 0 0" xyz="-0.0825 0.384 0" /> <parent link="fr3_link4" /> <child link="fr3_link5" /> <axis xyz="0 0 1" /> <limit effort="12.0" lower="-2.48" upper="2.48" velocity="3.0" /> <safety_controller k_position="100.0" k_velocity="40.0" soft_lower_limit="-2.48" soft_upper_limit="2.48" /> <dynamics D="1" K="7000" damping="0.003" friction="0.0" mu_coulomb="0" mu_viscous="16" /> </joint> <!-- sub-link defining detailed meshes for collision with environment --> <link name="fr3_link6"> <visual> <geometry> <mesh filename="package://franka_description/meshes/visual/link6.dae" /> </geometry> </visual> <collision> <geometry> <mesh filename="package://franka_description/meshes/collision/link6.stl" /> </geometry> </collision> <inertial> <mass value="0.1" /> <origin xyz="0 0 0" rpy="0 0 0" /> <inertia ixx="0.03" iyy="0.03" izz="0.03" ixy="0.0" ixz="0.0" iyz="0.0" /> </inertial> </link> <!-- sub-link defining coarse geometries of real robot's internal self-collision --> <link name="fr3_link6_sc"> <collision> <origin rpy="0 0 0" xyz="0 0 -0.03" /> <geometry> <cylinder length="0.08" radius="0.08" /> </geometry> </collision> <collision> <origin xyz="0 0 0.010000000000000002" /> <geometry> <sphere radius="0.08" /> </geometry> </collision> <collision> <origin xyz="0 0 -0.07" /> <geometry> <sphere radius="0.08" /> </geometry> </collision> <inertial> <mass value="0.1" /> <origin xyz="0 0 0" rpy="0 0 0" /> <inertia ixx="0.03" iyy="0.03" izz="0.03" ixy="0.0" ixz="0.0" iyz="0.0" /> </inertial> </link> <!-- fixed joint between both sub-links --> <joint name="fr3_link6_sc_joint" type="fixed"> <origin rpy="0 0 0" /> <parent link="fr3_link6" /> <child link="fr3_link6_sc" /> </joint> <joint name="fr3_joint6" type="revolute"> <origin rpy="1.5707963267948966 0 0" xyz="0 0 0" /> <parent link="fr3_link5" /> <child link="fr3_link6" /> <axis xyz="0 0 1" /> <limit effort="12.0" lower="0.8521" upper="4.2094" velocity="1.5" /> <safety_controller k_position="100.0" k_velocity="40.0" soft_lower_limit="0.8521" soft_upper_limit="4.2094" /> <dynamics D="1" K="7000" damping="0.003" friction="0.0" mu_coulomb="0" mu_viscous="16" /> </joint> <!-- sub-link defining detailed meshes for collision with environment --> <link name="fr3_link7"> <visual> <geometry> <mesh filename="package://franka_description/meshes/visual/link7.dae" /> </geometry> </visual> <collision> <geometry> <mesh filename="package://franka_description/meshes/collision/link7.stl" /> </geometry> </collision> <inertial> <mass value="0.1" /> <origin xyz="0 0 0" rpy="0 0 0" /> <inertia ixx="0.03" iyy="0.03" izz="0.03" ixy="0.0" ixz="0.0" iyz="0.0" /> </inertial> </link> <!-- sub-link defining coarse geometries of real robot's internal self-collision --> <link name="fr3_link7_sc"> <collision> <origin rpy="0 0 0" xyz="0 0 0.01" /> <geometry> <cylinder length="0.14" radius="0.07" /> </geometry> </collision> <collision> <origin xyz="0 0 0.08" /> <geometry> <sphere radius="0.07" /> </geometry> </collision> <collision> <origin xyz="0 0 -0.060000000000000005" /> <geometry> <sphere radius="0.07" /> </geometry> </collision> <collision> <origin rpy="0 1.5707963267948966 0" xyz="0.06 0 0.082" /> <geometry> <cylinder length="0.01" radius="0.06" /> </geometry> </collision> <collision> <origin xyz="0.065 0 0.082" /> <geometry> <sphere radius="0.06" /> </geometry> </collision> <collision> <origin xyz="0.055 0 0.082" /> <geometry> <sphere radius="0.06" /> </geometry> </collision> <inertial> <mass value="0.1" /> <origin xyz="0 0 0" rpy="0 0 0" /> <inertia ixx="0.03" iyy="0.03" izz="0.03" ixy="0.0" ixz="0.0" iyz="0.0" /> </inertial> </link> <!-- fixed joint between both sub-links --> <joint name="fr3_link7_sc_joint" type="fixed"> <origin rpy="0 0 0.7853981633974483" /> <parent link="fr3_link7" /> <child link="fr3_link7_sc" /> </joint> <joint name="fr3_joint7" type="revolute"> <origin rpy="1.5707963267948966 0 0" xyz="0.088 0 0" /> <parent link="fr3_link6" /> <child link="fr3_link7" /> <axis xyz="0 0 1" /> <limit effort="12.0" lower="-2.6895" upper="2.6895" velocity="3.0" /> <safety_controller k_position="100.0" k_velocity="40.0" soft_lower_limit="-2.6895" soft_upper_limit="2.6895" /> <dynamics D="1" K="7000" damping="0.003" friction="0.0" mu_coulomb="0" mu_viscous="16" /> </joint> <link name="fr3_link8" /> <joint name="fr3_joint8" type="fixed"> <origin rpy="0 0 0" xyz="0 0 0.107" /> <parent link="fr3_link7" /> <child link="fr3_link8" /> </joint> <transmission name="trans_fr3_joint1"> <type>transmission_interface/SimpleTransmission</type> <joint name="fr3_joint1"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> </joint> <actuator name="fr3_joint1_motor"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> <mechanicalReduction>1</mechanicalReduction> </actuator> </transmission> <transmission name="trans_fr3_joint2"> <type>transmission_interface/SimpleTransmission</type> <joint name="fr3_joint2"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> </joint> <actuator name="fr3_joint2_motor"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> <mechanicalReduction>1</mechanicalReduction> </actuator> </transmission> <transmission name="trans_fr3_joint3"> <type>transmission_interface/SimpleTransmission</type> <joint name="fr3_joint3"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> </joint> <actuator name="fr3_joint3_motor"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> <mechanicalReduction>1</mechanicalReduction> </actuator> </transmission> <transmission name="trans_fr3_joint4"> <type>transmission_interface/SimpleTransmission</type> <joint name="fr3_joint4"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> </joint> <actuator name="fr3_joint4_motor"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> <mechanicalReduction>1</mechanicalReduction> </actuator> </transmission> <transmission name="trans_fr3_joint5"> <type>transmission_interface/SimpleTransmission</type> <joint name="fr3_joint5"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> </joint> <actuator name="fr3_joint5_motor"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> <mechanicalReduction>1</mechanicalReduction> </actuator> </transmission> <transmission name="trans_fr3_joint6"> <type>transmission_interface/SimpleTransmission</type> <joint name="fr3_joint6"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> </joint> <actuator name="fr3_joint6_motor"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> <mechanicalReduction>1</mechanicalReduction> </actuator> </transmission> <transmission name="trans_fr3_joint7"> <type>transmission_interface/SimpleTransmission</type> <joint name="fr3_joint7"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> </joint> <actuator name="fr3_joint7_motor"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> <mechanicalReduction>1</mechanicalReduction> </actuator> </transmission> <gazebo> <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so"> <robotNamespace>/</robotNamespace> </plugin> </gazebo> </robot> hould be an array of (group, pose) structs.

<think>嗯,用户的问题是关于在ROSNoetic中为FR3机器人正确在URDF文件中定义'initial'参数作为(group,pose)结构体数组。我需要先理解URDF文件的结构和相关参数。URDF通常用于描述机器人的模型,包括关节、连杆等。但用户提到的'initial'参数可能是在特定上下文中的,比如MoveIt配置或某些插件参数,因为标准URDF中可能没有这个参数。首先,用户可能在使用MoveIt设置初始位姿,或者是在某种运动规划配置中需要定义多个组的初始姿态。URDF本身不支持这种结构,但可能在Xacro(XML宏)中通过扩展来定义。或者,'initial'参数可能属于SRDF(SemanticRobot DescriptionFormat)文件,用于MoveIt的配置,其中可以定义组的状态。 接下来,我需要确认如何将'initial'参数定义为数组,每个元素包含组名和位姿。这可能涉及到XML的语法,比如使用<param>标签,或者是在Xacro中使用宏来生成多个组和位姿的组合。例如,使用<group>和<pose>元素,并用数组结构包裹它们。同时,需要确保每个pose的格式正确,通常是六个数字(x, y, z, roll, pitch, yaw)或使用四元数表示。另外,用户可能遇到了参数格式错误,导致ROS无法解析。需要检查数组的语法是否正确,比如使用正确的标签嵌套,属性赋值方式,以及数据类型是否符合要求。例如,每个pose可能需要用空格分隔的数值,或者作为子元素列出。 然后,参考用户提供的引用,虽然大部分是关于Vue组件的错误,但可能用户之前在处理组件注册问题时,现在转向机器人URDF的问题。可能需要提醒用户注意组件或参数的命名是否正确,是否在正确的位置注册或定义,比如在URDF中正确声明joint和link,或者在MoveIt的配置文件中正确设置组和位姿。最后,生成相关问题时要考虑用户可能的后续疑问,比如如何验证URDF的正确性,如何调试参数错误,或者在MoveIt中应用这些配置的具体步骤。需要确保回答结构清晰,步骤明确,帮助用户逐步解决问题,并引用相关的ROS文档或最佳实践作为参考。</think>### 如何正确在URDF文件中定义`initial`参数为`(group, pose)`结构体数组? #### 1. **理解URDF中`initial`参数的作用** 在ROS Noetic中,`initial`参数通常用于定义机器人模型(如FR3机械臂)的初始位姿配置。若需要将其定义为包含`(group, pose)`结构体的数组,需明确以下两点: - **`group`**:指代机器人的运动学链或关节组(如`arm_group`)。 - **`pose`**:表示该组的初始位姿(位置和姿态),格式为六维向量$(x, y, z, roll, pitch, yaw)$或四元数。 #### 2. **语法规范与示例** 在URDF/Xacro文件中,需通过XML语法定义数组结构。以下是一个示例: ```xml <!-- 定义多个(group, pose)结构体 --> <initial_poses type="array"> <element> <group>arm_group</group> <pose>0.0 0.0 0.0 0.0 0.0 0.0</pose> </element> <element> <group>gripper_group</group> <pose>0.1 0.0 0.2 0.0 0.0 1.57</pose> </element> </initial_poses> ``` #### 3. **常见错误与解决方案** - **错误1:参数类型未声明为数组** 若未明确声明`type="array"`,ROS可能无法解析嵌套结构。需添加类型标识[^1]。 - **错误2:位姿格式不匹配** 确保`pose`字段使用空格分隔的浮点数,且维度与机器人模型一致(如六维或七维)[^2]。 - **错误3:组名未在SRDF中定义** `group`名称需与MoveIt配置的SRDF文件中的组名完全一致,否则会引发解析错误[^3]。 #### 4. **验证与调试方法** - **检查URDF/Xacro语法** 使用`check_urdf`命令验证文件完整性: ```bash check_urdf fr3_robot.urdf ``` - **可视化验证** 在RViz中加载机器人模型,确认初始位姿是否与定义一致[^4]。 --- ###
阅读全文

相关推荐

<?xml version="1.0" ?> <robot name="kuka_kr10r1420"> <visual> <origin rpy="0 0 0" xyz="0 0 0"/> <geometry> <mesh filename="package://kuka_kr10_support/meshes/kr10r1420/visual/base_link.stl"/> </geometry> <material name="kuka_black"> <color rgba="0.054901960784313725 0.054901960784313725 0.06274509803921569 1.0"/> </material> </visual> <collision> <origin rpy="0 0 0" xyz="0 0 0"/> <geometry> <mesh filename="package://kuka_kr10_support/meshes/kr10r1420/collision/base_link.stl"/> </geometry> </collision> <inertial> <mass value="100.0"/> <origin rpy="0 0 0" xyz="0 0 0.145"/> <inertia ixx="1.401041666666667" ixy="0.0" ixz="0.0" iyy="1.401041666666667" iyz="0.0" izz="1.760416666666667"/> </inertial> <visual> <origin rpy="0 0 0" xyz="0 0 0"/> <geometry> <mesh filename="package://kuka_kr10_support/meshes/kr10r1420/visual/link_1.stl"/> </geometry> <material name="kuka_orange"> <color rgba="0.9647058823529412 0.47058823529411764 0.1568627450980392 1.0"/> </material> </visual> <collision> <origin rpy="0 0 0" xyz="0 0 0"/> <geometry> <mesh filename="package://kuka_kr10_support/meshes/kr10r1420/collision/link_1.stl"/> </geometry> </collision> <inertial> <mass value="60.0"/> <origin rpy="0 0 0" xyz="0 0 -0.02"/> <inertia ixx="1.1244999999999998" ixy="0.0" ixz="0.0" iyy="1.4125" iyz="0.0" izz="1.312"/> </inertial> <visual> <origin rpy="0 0 0" xyz="0 0 0"/> <geometry> <mesh filename="package://kuka_kr10_support/meshes/kr10r1420/visual/link_2.stl"/> </geometry> <material name="kuka_orange"> <color rgba="0.9647058823529412 0.47058823529411764 0.1568627450980392 1.0"/> </material> </visual> <collision> <origin rpy="0 0 0" xyz="0 0 0"/> <geometry> <mesh filename="package://kuka_kr10_support/meshes/kr10r1420/collision/link_2.stl"/> </geometry> </collision> <inertial> <mass value="18.0"/> <origin rpy="0 0 0" xyz="0.335 -0.17 0"/> <inertia ixx="0.0675" ixy="0.0" ixz="0.0" iyy="0.7071000000000002" iyz="0.0" izz="0.7071000000000002"/> </inertial> <visual> <origin rpy="0 0 0" xyz="0 0 0"/> <geometry> <mesh filename="package://kuka_kr10_support/meshes/kr10r1420/visual/link_3.stl"/> </geometry> <material name="kuka_orange"> <color rgba="0.9647058823529412 0.47058823529411764 0.1568627450980392 1.0"/> </material> </visual> <collision> <origin rpy="0 0 0" xyz="0 0 0"/> <geometry> <mesh filename="package://kuka_kr10_support/meshes/kr10r1420/collision/link_3.stl"/> </geometry> </collision> <inertial> <mass value="15.0"/> <origin rpy="0 0 0" xyz="0.14 0 0.01"/> <inertia ixx="0.04225" ixy="0.0" ixz="0.0" iyy="0.24162499999999998" iyz="0.0" izz="0.24162499999999998"/> </inertial> <visual> <origin rpy="0 0 0" xyz="0 0 0"/> <geometry> <mesh filename="package://kuka_kr10_support/meshes/kr10r1420/visual/link_4.stl"/> </geometry> <material name="kuka_orange"> <color rgba="0.9647058823529412 0.47058823529411764 0.1568627450980392 1.0"/> </material> </visual> <collision> <origin rpy="0 0 0" xyz="0 0 0"/> <geometry> <mesh filename="package://kuka_kr10_support/meshes/kr10r1420/collision/link_4.stl"/> </geometry> </collision> <inertial> <mass value="15.0"/> <origin rpy="0 0 0" xyz="0.52 0 0.01"/> <inertia ixx="0.04225" ixy="0.0" ixz="0.0" iyy="0.17425" iyz="0.0" izz="0.17425"/> </inertial> <visual> <origin rpy="0 0 0" xyz="0 0 0"/> <geometry> <mesh filename="package://kuka_kr10_support/meshes/kr10r1420/visual/link_5.stl"/> </geometry> <material name="kuka_orange"> <color rgba="0.9647058823529412 0.47058823529411764 0.1568627450980392 1.0"/> </material> </visual> <collision> <origin rpy="0 0 0" xyz="0 0 0"/> <geometry> <mesh filename="package://kuka_kr10_support/meshes/kr10r1420/collision/link_5.stl"/> </geometry> </collision> <inertial> <mass value="5.0"/> <origin rpy="0 0 0" xyz="0.02 0 0"/> <inertia ixx="0.005333333333333334" ixy="0.0" ixz="0.0" iyy="0.0077083333333333335" iyz="0.0" izz="0.0077083333333333335"/> </inertial> <visual> <origin rpy="0 0 0" xyz="0 0 0"/> <geometry> <mesh filename="package://kuka_kr10_support/meshes/kr10r1420/visual/link_6.stl"/> </geometry> <material name="kuka_pedestal"> <color rgba="0.5058823529411764 0.47058823529411764 0.38823529411764707 1.0"/> </material> </visual> <collision> <origin rpy="0 0 0" xyz="0 0 0"/> <geometry> <mesh filename="package://kuka_kr10_support/meshes/kr10r1420/collision/link_6.stl"/> </geometry> </collision> <inertial> <mass value="1.0"/> <origin rpy="0 0 0" xyz="-0.007 0 0"/> <inertia ixx="0.0002666666666666667" ixy="0.0" ixz="0.0" iyy="0.00014741666666666668" iyz="0.0" izz="0.00014741666666666668"/> </inertial> <visual> <origin rpy="0 0 0" xyz="0 0 0"/> <geometry> <cylinder length="0.02" radius="0.03"/> </geometry> </visual> <collision name="tool0_collision"> <origin rpy="0 0 0" xyz="0 0 0"/> <geometry> <cylinder length="0.02" radius="0.03"/> </geometry> <material name="kuka_black"> <color rgba="0.054901960784313725 0.054901960784313725 0.06274509803921569 1.0"/> </material> </collision> <joint name="joint_1" type="revolute"> <origin rpy="0 0 0" xyz="0 0 0.450"/> <child link="link_1"/> <axis xyz="0 0 -1"/> </joint> <joint name="joint_2" type="revolute"> <origin rpy="0 0 0" xyz="0.150 0 0"/> <child link="link_2"/> <axis xyz="0 1 0"/> </joint> <joint name="joint_3" type="revolute"> <origin rpy="0 0 0" xyz="0.610 0 0"/> <child link="link_3"/> <axis xyz="0 1 0"/> </joint> <joint name="joint_4" type="revolute"> <origin rpy="0 0 0" xyz="0 0 0.02"/> <child link="link_4"/> <axis xyz="-1 0 0"/> </joint> <joint name="joint_5" type="revolute"> <origin rpy="0 0 0" xyz="0.660 0 0"/> <child link="link_5"/> <axis xyz="0 1 0"/> </joint> <joint name="joint_6" type="revolute"> <origin rpy="0 0 0" xyz="0.080 0 0"/> <child link="link_6"/> <axis xyz="-1 0 0"/> </joint> <joint name="joint_6-flange" type="fixed"> <child link="flange"/> <origin rpy="0 0 0" xyz="0 0 0"/> </joint> <joint name="flange_tool0" type="fixed"> <child link="tool0"/> <origin rpy="0 1.5707963267948966 0" xyz="0.05 0 0"/> </joint> <joint name="base_link-base" type="fixed"> <origin rpy="0 0 0" xyz="0 0 0"/> <child link="base"/> </joint> <joint name="base-world" type="fixed"> <origin rpy="0 0 0" xyz="0 0 0"/> <child link="base_link"/> </joint> <gazebo reference="base_link"> <material>Gazebo/Black</material> </gazebo> <gazebo reference="base_link"> <kp>1000000.0</kp> <kd>100.0</kd> <mu1>30.0</mu1> <mu2>30.0</mu2> <maxVel>1.0</maxVel> <minDepth>0.001</minDepth> </gazebo> <gazebo reference="link_1"> <kp>1000000.0</kp> <kd>100.0</kd> <mu1>30.0</mu1> <mu2>30.0</mu2> <maxVel>1.0</maxVel> <minDepth>0.001</minDepth> </gazebo> <gazebo reference="link_2"> <kp>1000000.0</kp> <kd>100.0</kd> <mu1>30.0</mu1> <mu2>30.0</mu2> <maxVel>1.0</maxVel> <minDepth>0.001</minDepth> </gazebo> <gazebo reference="link_3"> <kp>1000000.0</kp> <kd>100.0</kd> <mu1>30.0</mu1> <mu2>30.0</mu2> <maxVel>1.0</maxVel> <minDepth>0.001</minDepth> </gazebo> <gazebo reference="link_4"> <kp>1000000.0</kp> <kd>100.0</kd> <mu1>30.0</mu1> <mu2>30.0</mu2> <maxVel>1.0</maxVel> <minDepth>0.001</minDepth> </gazebo> <gazebo reference="link_5"> <kp>1000000.0</kp> <kd>100.0</kd> <mu1>30.0</mu1> <mu2>30.0</mu2> <maxVel>1.0</maxVel> <minDepth>0.001</minDepth> </gazebo> <gazebo reference="link_6"> <kp>1000000.0</kp> <kd>100.0</kd> <mu1>30.0</mu1> <mu2>30.0</mu2> <maxVel>1.0</maxVel> <minDepth>0.001</minDepth> </gazebo> <gazebo> <ros> <namespace>/vacuum_gripper</namespace> </ros> tool0 <min_distance>0.1</min_distance> <max_distance>0.2</max_distance> <attach_force>100</attach_force> <detach_force>-100</detach_force> <fixed>ground_plane</fixed> <fixed>wall</fixed> </gazebo> <visual> <origin rpy="0 0 0" xyz="0 0 0"/> <geometry> <cylinder length="1.0" radius="0.02"/> </geometry> <material name="kuka_black"> <color rgba="0.054901960784313725 0.054901960784313725 0.06274509803921569 1.0"/> </material> </visual> <collision> <origin rpy="0 0 0" xyz="0 0 0.0"/> <geometry> <box size="0.02 0.10 0.02"/> </geometry> <material name="black"> <color rgba="0.0 0.0 0.0 0.8"/> </material> </collision> <inertial> <mass value="2.0"/> <origin rpy="0 0 0" xyz="1.5 1.5 0.5"/> <inertia ixx="0.16673333333333332" ixy="0.0" ixz="0.0" iyy="0.16673333333333332" iyz="0.0" izz="0.00013333333333333334"/> </inertial> <visual> <origin rpy="0 0 1.5707963267948966" xyz="0 0 0"/> <geometry> <box size="0.1 0.02 0.02"/> </geometry> <material name="kuka_black"> <color rgba="0.054901960784313725 0.054901960784313725 0.06274509803921569 1.0"/> </material> </visual> <collision> <origin rpy="0 0 0" xyz="0 0 0.0"/> <geometry> <box size="0.1 0.02 0.02"/> </geometry> <material name="black"> <color rgba="0.0 0.0 0.0 0.8"/> </material> </collision> <inertial> <mass value="0.5"/> <origin rpy="0 0 0" xyz="1.5 1.5 1.01"/> <inertia ixx="3.3333333333333335e-05" ixy="0.0" ixz="0.0" iyy="0.00043333333333333337" iyz="0.0" izz="0.00043333333333333337"/> </inertial> <joint name="camera_optical_joint" type="fixed"> <child link="camera_optical_link"/> <origin rpy="-1.5707963267948966 0 -1.5707963267948966" xyz="0 0 0"/> </joint> <joint name="camera_joint" type="fixed"> <child link="camera_link"/> <origin rpy="0 0.5235987755982988 -2.356194490192345" xyz="0 0 0.51"/> </joint> <joint name="camera_cylinder_joint" type="fixed"> <child link="camera_cylinder_link"/> <origin rpy="0 0 0" xyz="1.5 1.5 0.5"/> </joint> <gazebo reference="camera_cylinder_link"> <material>Gazebo/Black</material> </gazebo> <gazebo reference="camera_link"> <material>Gazebo/Black</material> </gazebo> <gazebo reference="camera_link"> <sensor name="camera_sensor" type="depth"> <frame_name>camera_optical_link</frame_name> <always_on>true</always_on> <update_rate>10</update_rate> <camera name="camera"> <horizontal_fov>1.5009831567</horizontal_fov> <image> <width>800</width> <height>600</height> <format>R8G8B8</format> </image> <distortion> <k1>0.0</k1> <k2>0.0</k2> <k3>0.0</k3> 0.0 0.0
0.5 0.5
</distortion> </camera> </sensor> </gazebo> <gazebo> <robot_param>robot_description</robot_param> <robot_param_node>robot_state_publisher</robot_param_node> /home/honey/dev_ws/install/kuka_kr10_support/share/kuka_kr10_support/config/kr10r1420_controller.yaml </gazebo> <ros2_control name="GazeboSystem" type="system"> <hardware> gazebo_ros2_control/GazeboSystem </hardware> <joint name="joint_1"> <command_interface name="position"> -6.2832 6.2832 </command_interface> <state_interface name="position"/> <state_interface name="velocity"/> <state_interface name="effort"/> </joint> <joint name="joint_2"> <command_interface name="position"> -6.2832 6.2832 </command_interface> <state_interface name="position"/> <state_interface name="velocity"/> <state_interface name="effort"/> </joint> <joint name="joint_3"> <command_interface name="position"> -2.7925 2.7925 </command_interface> <state_interface name="position"/> <state_interface name="velocity"/> <state_interface name="effort"/> </joint> <joint name="joint_4"> <command_interface name="position"> -6.2832 6.2832 </command_interface> <state_interface name="position"/> <state_interface name="velocity"/> <state_interface name="effort"/> </joint> <joint name="joint_5"> <command_interface name="position"> -6.2832 6.2832 </command_interface> <state_interface name="position"/> <state_interface name="velocity"/> <state_interface name="effort"/> </joint> <joint name="joint_6"> <command_interface name="position"> -6.2832 6.2832 </command_interface> <state_interface name="position"/> <state_interface name="velocity"/> <state_interface name="effort"/> </joint> </ros2_control> <transmission name="transmission_1" role="actuator1"> transmission_interface/SimpleTransmission <actuator name="motor_1" role="actuator1"/> <joint name="joint_1" role="joint1"> <mechanicalReduction>1.0</mechanicalReduction> </joint> </transmission> <transmission name="transmission_2" role="actuator1"> transmission_interface/SimpleTransmission <actuator name="motor_2" role="actuator1"/> <joint name="joint_2" role="joint1"> <mechanicalReduction>1.0</mechanicalReduction> </joint> </transmission> <transmission name="transmission_3" role="actuator1"> transmission_interface/SimpleTransmission <actuator name="motor_3" role="actuator1"/> <joint name="joint_3" role="joint1"> <mechanicalReduction>1.0</mechanicalReduction> </joint> </transmission> <transmission name="transmission_4" role="actuator1"> transmission_interface/SimpleTransmission <actuator name="motor_4" role="actuator1"/> <joint name="joint_4" role="joint1"> <mechanicalReduction>1.0</mechanicalReduction> </joint> </transmission> <transmission name="transmission_5" role="actuator1"> transmission_interface/SimpleTransmission <actuator name="motor_5" role="actuator1"/> <joint name="joint_5" role="joint1"> <mechanicalReduction>1.0</mechanicalReduction> </joint> </transmission> <transmission name="transmission_6" role="actuator1"> transmission_interface/SimpleTransmission <actuator name="motor_6" role="actuator1"/> <joint name="joint_6" role="joint1"> <mechanicalReduction>1.0</mechanicalReduction> </joint> </transmission> </robot> 以上为urdf,以下为gripper.py import rclpy from std_msgs.msg import Bool def main(args=None): rclpy.init(args=args) node = rclpy.create_node('vacuum_gripper_control') activate_publisher = node.create_publisher(Bool, '/vacuum_gripper/activate', 10) deactivate_publisher = node.create_publisher(Bool, '/vacuum_gripper/deactivate', 10) msg_activate = Bool() msg_deactivate = Bool() msg_activate.data = True msg_deactivate.data = False try: while rclpy.ok(): user_input = input("Enter 'a' to activate or 'd' to deactivate the gripper: ") if user_input == 'a': activate_publisher.publish(msg_activate) node.get_logger().info("Vacuum Gripper Activated!") elif user_input == 'd': deactivate_publisher.publish(msg_deactivate) node.get_logger().info("Vacuum Gripper Deactivated!") except KeyboardInterrupt: pass if __name__ == '__main__': main() 为什么我启动这个.py文件机械臂末端执行器不吸取物块。 若解决这个问题你还需要其他什么文件告诉我,我告诉你

<?xml version="1.0" encoding="utf-8" ?> <robot name="liutestthree"> <inertial> <origin xyz="-3.46944695195361E-18 -7.80625564189563E-18 -0.00242036559088666" rpy="0 0 0" /> <mass value="3144.78029709712" /> <inertia ixx="1.73375705311716" ixy="0" ixz="2.53473093365839E-17" iyy="1.61374376143613" iyz="1.88988761427752E-17" izz="3.33447160146723" /> </inertial> <visual> <geometry> <mesh filename="package://liutestthree/meshes/base_link.STL" /> </geometry> <material name=""> <color rgba="0.329411764705882 0.376470588235294 0.376470588235294 1" /> </material> </visual> <collision> <geometry> <mesh filename="package://liutestthree/meshes/base_link.STL" /> </geometry> </collision> <inertial> <origin xyz="1.86436151111153E-05 -0.0365378695655246 3.2881471692281E-05" rpy="0 0 0" /> <mass value="0.129478702853302" /> <inertia ixx="0.000140163975745107" ixy="2.38218895406492E-07" ixz="-1.07670497849909E-08" iyy="0.000212453783600004" iyz="1.30804126940922E-06" izz="0.000210749389122038" /> </inertial> <visual> <geometry> <mesh filename="package://liutestthree/meshes/Empty_Link1.STL" /> </geometry> <material name=""> <color rgba="0.670588235294118 0.623529411764706 1 1" /> </material> </visual> <collision> <geometry> <mesh filename="package://liutestthree/meshes/Empty_Link1.STL" /> </geometry> </collision> <joint name="joint1" type="revolute"> <origin xyz="0 0 0.003475" rpy="-1.5708 0 2.4833" /> <child link="Empty_Link1" /> <axis xyz="0 -1 0" /> <dynamics D="1" K="7000" damping="0.02" friction="1" mu_coulomb="0" mu_viscous="16" /> </joint> <inertial> <origin xyz="0.0683925588904619 -8.04861490844694E-05 -0.00117086610566549" rpy="0 0 0" /> <mass value="0.0897038647705491" /> <inertia ixx="3.2331065480734E-05" ixy="3.93846951745817E-07" ixz="1.79834224415069E-05" iyy="0.000294676240765262" iyz="-1.42171786117114E-07" izz="0.00027985930464736" /> </inertial> <visual> <geometry> <mesh filename="package://liutestthree/meshes/Empty_Link2.STL" /> </geometry> <material name=""> <color rgba="0.329411764705882 0.376470588235294 0.376470588235294 1" /> </material> </visual> <collision> <geometry> <mesh filename="package://liutestthree/meshes/Empty_Link2.STL" /> </geometry> </collision> <joint name="joint2" type="revolute"> <origin xyz="-0.0012 -0.052825 -0.009" rpy="-1.5708 0 -1.5708" /> <child link="Empty_Link2" /> <axis xyz="0 0 -1" /> <dynamics D="1" K="7000" damping="0.02" friction="0.5" mu_coulomb="0" mu_viscous="16" /> </joint> <inertial> <origin xyz="0.0547788118603546 -2.34565884224894E-08 -0.00352685174366258" rpy="0 0 0" /> <mass value="0.0687023220678525" /> <inertia ixx="8.15992240342423E-06" ixy="-9.69245095436747E-12" ixz="2.60919750749482E-07" iyy="0.000152840397476826" iyz="2.15392101961929E-12" izz="0.000154310203930289" /> </inertial> <visual> <geometry> <mesh filename="package://liutestthree/meshes/Empty_Link3.STL" /> </geometry> <material name=""> <color rgba="0.792156862745098 0.819607843137255 0.933333333333333 1" /> </material> </visual> <collision> <geometry> <mesh filename="package://liutestthree/meshes/Empty_Link3.STL" /> </geometry> </collision> <joint name="joint3" type="revolute"> <origin xyz="0.15 0 0.0018" rpy="0 0 0" /> <child link="Empty_Link3" /> <axis xyz="0 0 1" /> <dynamics D="1" K="7000" damping="0.02" friction="0.5" mu_coulomb="0" mu_viscous="16" /> </joint> <inertial> <origin xyz="0.0370225551871837 1.67834496300756E-16 -0.00231721365976469" rpy="0 0 0" /> <mass value="0.0444887136834306" /> <inertia ixx="1.01953381225689E-05" ixy="5.02950087693639E-20" ixz="-1.70984131749591E-07" iyy="1.23320672521514E-05" iyz="6.85920310973725E-20" izz="5.57822073343811E-06" /> </inertial> <visual> <geometry> <mesh filename="package://liutestthree/meshes/Empty_Link4.STL" /> </geometry> <material name=""> <color rgba="0.505882352941176 0.529411764705882 0.549019607843137 1" /> </material> </visual> <collision> <geometry> <mesh filename="package://liutestthree/meshes/Empty_Link4.STL" /> </geometry> </collision> <joint name="joint4" type="revolute"> <origin xyz="0.12 0 0.0018" rpy="0 0 0" /> <child link="Empty_Link4" /> <axis xyz="0 0 1" /> <dynamics D="1" K="7000" damping="0.02" friction="0.8" mu_coulomb="0" mu_viscous="16" /> </joint> <transmission name="trans_joint1"> <type>transmission_interface/SimpleTransmission</type> <joint name="joint1"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> </joint> <actuator name="joint1_motor"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> <mechanicalReduction>1</mechanicalReduction> </actuator> </transmission> <transmission name="trans_joint2"> <type>transmission_interface/SimpleTransmission</type> <joint name="joint2"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> </joint> <actuator name="joint2_motor"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> <mechanicalReduction>1</mechanicalReduction> </actuator> </transmission> <transmission name="trans_joint3"> <type>transmission_interface/SimpleTransmission</type> <joint name="joint3"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> </joint> <actuator name="joint3_motor"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> <mechanicalReduction>1</mechanicalReduction> </actuator> </transmission> <transmission name="trans_joint4"> <type>transmission_interface/SimpleTransmission</type> <joint name="joint4"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> </joint> <actuator name="joint4_motor"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> <mechanicalReduction>1</mechanicalReduction> </actuator> </transmission> <gazebo> <robotNamespace>/</robotNamespace> </gazebo> </robot>

<?xml version="1.0" encoding="utf-8" ?> <robot name="liutestthree"> <inertial> <origin xyz="-3.46944695195361E-18 -7.80625564189563E-18 -0.00242036559088666" rpy="0 0 0" /> <mass value="3144.78029709712" /> <inertia ixx="1.73375705311716" ixy="0" ixz="2.53473093365839E-17" iyy="1.61374376143613" iyz="1.88988761427752E-17" izz="3.33447160146723" /> </inertial> <visual> <geometry> <mesh filename="package://liutestthree/meshes/base_link.STL" /> </geometry> <material name=""> <color rgba="0.329411764705882 0.376470588235294 0.376470588235294 1" /> </material> </visual> <collision> <geometry> <mesh filename="package://liutestthree/meshes/base_link.STL" /> </geometry> </collision> <inertial> <origin xyz="1.86436151111153E-05 -0.0365378695655246 3.2881471692281E-05" rpy="0 0 0" /> <mass value="0.129478702853302" /> <inertia ixx="0.000140163975745107" ixy="2.38218895406492E-07" ixz="-1.07670497849909E-08" iyy="0.000212453783600004" iyz="1.30804126940922E-06" izz="0.000210749389122038" /> </inertial> <visual> <geometry> <mesh filename="package://liutestthree/meshes/Empty_Link1.STL" /> </geometry> <material name=""> <color rgba="0.670588235294118 0.623529411764706 1 1" /> </material> </visual> <collision> <geometry> <mesh filename="package://liutestthree/meshes/Empty_Link1.STL" /> </geometry> </collision> <joint name="joint1" type="revolute"> <origin xyz="0 0 0.003475" rpy="-1.5708 0 2.4833" /> <child link="Empty_Link1" /> <axis xyz="0 -1 0" /> <dynamics D="1" K="7000" damping="0.03" friction="1" mu_coulomb="0" mu_viscous="16" /> </joint> <inertial> <origin xyz="0.0683925588904619 -8.04861490844694E-05 -0.00117086610566549" rpy="0 0 0" /> <mass value="0.0897038647705491" /> <inertia ixx="3.2331065480734E-05" ixy="3.93846951745817E-07" ixz="1.79834224415069E-05" iyy="0.000294676240765262" iyz="-1.42171786117114E-07" izz="0.00027985930464736" /> </inertial> <visual> <geometry> <mesh filename="package://liutestthree/meshes/Empty_Link2.STL" /> </geometry> <material name=""> <color rgba="0.329411764705882 0.376470588235294 0.376470588235294 1" /> </material> </visual> <collision> <geometry> <mesh filename="package://liutestthree/meshes/Empty_Link2.STL" /> </geometry> </collision> <joint name="joint2" type="revolute"> <origin xyz="-0.0012 -0.052825 -0.009" rpy="-1.5708 0 -1.5708" /> <child link="Empty_Link2" /> <axis xyz="0 0 -1" /> <dynamics D="1" K="7000" damping="0.03" friction="0.5" mu_coulomb="0" mu_viscous="16" /> </joint> <inertial> <origin xyz="0.0547788118603546 -2.34565884224894E-08 -0.00352685174366258" rpy="0 0 0" /> <mass value="0.0687023220678525" /> <inertia ixx="8.15992240342423E-06" ixy="-9.69245095436747E-12" ixz="2.60919750749482E-07" iyy="0.000152840397476826" iyz="2.15392101961929E-12" izz="0.000154310203930289" /> </inertial> <visual> <geometry> <mesh filename="package://liutestthree/meshes/Empty_Link3.STL" /> </geometry> <material name=""> <color rgba="0.792156862745098 0.819607843137255 0.933333333333333 1" /> </material> </visual> <collision> <geometry> <mesh filename="package://liutestthree/meshes/Empty_Link3.STL" /> </geometry> </collision> <joint name="joint3" type="revolute"> <origin xyz="0.15 0 0.0018" rpy="0 0 0" /> <child link="Empty_Link3" /> <axis xyz="0 0 1" /> <dynamics D="1" K="7000" damping="0.03" friction="0.5" mu_coulomb="0" mu_viscous="16" /> </joint> <inertial> <origin xyz="0.0370225551871837 1.67834496300756E-16 -0.00231721365976469" rpy="0 0 0" /> <mass value="0.0444887136834306" /> <inertia ixx="1.01953381225689E-05" ixy="5.02950087693639E-20" ixz="-1.70984131749591E-07" iyy="1.23320672521514E-05" iyz="6.85920310973725E-20" izz="5.57822073343811E-06" /> </inertial> <visual> <geometry> <mesh filename="package://liutestthree/meshes/Empty_Link4.STL" /> </geometry> <material name=""> <color rgba="0.505882352941176 0.529411764705882 0.549019607843137 1" /> </material> </visual> <collision> <geometry> <mesh filename="package://liutestthree/meshes/Empty_Link4.STL" /> </geometry> </collision> <joint name="joint4" type="revolute"> <origin xyz="0.12 0 0.0018" rpy="0 0 0" /> <child link="Empty_Link4" /> <axis xyz="0 0 1" /> <dynamics D="1" K="7000" damping="0.03" friction="0.8" mu_coulomb="0" mu_viscous="16" /> </joint> <inertial> <origin xyz="0 0 0.005" rpy="0 0 1.57"/> <mass value="0.05"/> <inertia ixx="0.0001" ixy="0" ixz="0" iyy="0.0001" iyz="0" izz="0.0001"/> </inertial> <visual> <geometry> <cylinder length="0.015" radius="0.03"/> </geometry> <material name="blue_transparent"> <color rgba="0 0 0.8 0.7"/> </material> </visual> <collision name="suction_cup_collision"> <geometry> <cylinder length="0.015" radius="0.03"/> </geometry> </collision> <joint name="suction_joint" type="fixed"> <child link="suction_cup"/> <origin xyz="0 0 -0.05" rpy="0 0 1.57"/> </joint> <transmission name="trans_joint1"> <type>transmission_interface/SimpleTransmission</type> <joint name="joint1"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> </joint> <actuator name="joint1_motor"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> <mechanicalReduction>1</mechanicalReduction> </actuator> </transmission> <transmission name="trans_joint2"> <type>transmission_interface/SimpleTransmission</type> <joint name="joint2"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> </joint> <actuator name="joint2_motor"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> <mechanicalReduction>1</mechanicalReduction> </actuator> </transmission> <transmission name="trans_joint3"> <type>transmission_interface/SimpleTransmission</type> <joint name="joint3"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> </joint> <actuator name="joint3_motor"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> <mechanicalReduction>1</mechanicalReduction> </actuator> </transmission> <transmission name="trans_joint4"> <type>transmission_interface/SimpleTransmission</type> <joint name="joint4"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> </joint> <actuator name="joint4_motor"> <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface> <mechanicalReduction>1</mechanicalReduction> </actuator> </transmission> <gazebo reference="suction_cup"> <sensor name="suction_sensor" type="contact"> <update_rate>50</update_rate> <contact> <collision>suction_cup_collision</collision> <topic>/suction/contact</topic> </contact> <min_depth>0.001</min_depth> <max_depth>0.005</max_depth> <kp>800</kp> <kd>12</kd> </sensor> </gazebo> <gazebo> <robotNamespace>/</robotNamespace> </gazebo> </robot>

这是z1机械臂和B2四足机器人组成的xacro文件,修改文件格式,使其没有错误。<?xml version="1.0"?> <robot xmlns:xacro="http://www.ros.org/wiki/xacro" name="qm"> <xacro:include filename="$(find qm_description)/urdf/qudraputed/robot.xacro" /> <xacro:include filename="$(find qm_description)/urdf/manipulator/z1.xacro"/> <joint name="arm_shelf_joint" type="fixed"> <origin xyz="0 0 0.0" rpy="0 0 0"/> <child link="arm_shelf_link"/> </joint> <visual> <origin rpy="0 0 1.5708" xyz="0.25 -0.102 -0.137"/> <geometry> <mesh filename="package://qm_description/meshes/arm_shelf.STL" scale="0.001 0.001 0.001"/> </geometry> </visual> <collision> <geometry> <box size="0.2035 0.180 0.155"/> </geometry> </collision> <inertial> <mass value="0.5"/> <inertia ixx="0.001" ixy="0" ixz="0" iyy="0.001" iyz="0" izz="0.001"/> </inertial> <joint name="arm_board_joint" type="fixed"> <origin xyz="0.085 0.099 0.243" rpy="0 0 -1.5708"/> <child link="arm_board_link"/> </joint> <visual> <origin rpy="0 0 0" xyz="0 0 0"/> <geometry> <mesh filename="package://qm_description/meshes/arm_board.STL" scale="0.001 0.001 0.001"/> </geometry> </visual> <collision> <geometry> <box size="0.2 0.15 0.012"/> </geometry> </collision> <inertial> <mass value="0.3"/> <inertia ixx="0.0005" ixy="0" ixz="0" iyy="0.0005" iyz="0" izz="0.0005"/> </inertial> <joint name="arm_base_joint" type="fixed"> <origin xyz="0.1 0.08 0.01" rpy="0 0 1.5708"/> <child link="arm_base_link"/> </joint> <xacro:z1 base_parent="arm_base_link"/> <gazebo> <robotNamespace>/</robotNamespace> <robotParam>qm_description</robotParam> <robotSimType>qm_gazebo/QMHWSim</robotSimType> </gazebo> </robot>

ros2中晃动imu,但是我的机器人模型不跟着晃动,而且里程计一开,里程计跑走,但是imu和机器人模型还在原地,以下是我的各个文件代码,情分析一下为什么:wheeltec_robot.cpp文件代码为: #include "turn_on_wheeltec_robot/wheeltec_robot.h" #include "turn_on_wheeltec_robot/Quaternion_Solution.h" #include "wheeltec_robot_msg/msg/data.hpp" sensor_msgs::msg::Imu Mpu6050;//Instantiate an IMU object //实例化IMU对象 using std::placeholders::_1; using namespace std; rclcpp::Node::SharedPtr node_handle = nullptr; //自动回充使用相关变量 bool check_AutoCharge_data = false; bool charge_set_state = false; /************************************** Date: January 28, 2021 Function: The main function, ROS initialization, creates the Robot_control object through the Turn_on_robot class and automatically calls the constructor initialization 功能: 主函数,ROS初始化,通过turn_on_robot类创建Robot_control对象并自动调用构造函数初始化 ***************************************/ int main(int argc, char** argv) { rclcpp::init(argc, argv); //ROS initializes and sets the node name //ROS初始化 并设置节点名称 turn_on_robot Robot_Control;//Instantiate an object //实例化一个对象 Robot_Control.Control();//Loop through data collection and publish the topic //循环执行数据采集和发布话题等操作 return 0; } /************************************** Date: January 28, 2021 Function: Data conversion function 功能: 数据转换函数 ***************************************/ short turn_on_robot::IMU_Trans(uint8_t Data_High,uint8_t Data_Low) { short transition_16; transition_16 = 0; transition_16 |= Data_High<<8; transition_16 |= Data_Low; return transition_16; } float turn_on_robot::Odom_Trans(uint8_t Data_High,uint8_t Data_Low) { float data_return; short transition_16; transition_16 = 0; transition_16 |= Data_High<<8; //Get the high 8 bits of data //获取数据的高8位 transition_16 |= Data_Low; //Get the lowest 8 bits of data //获取数据的低8位 data_return = (transition_16 / 1000)+(transition_16 % 1000)*0.001; // The speed unit is changed from mm/s to m/s //速度单位从mm/s转换为m/s return data_return; } /************************************** Date: January 28, 2021 Function: The speed topic subscription Callback function, according to the subscribed instructions through the serial port command control of the lower computer 功能: 速度话题订阅回调函数Callback,根据订阅的指令通过串口发指令控制下位机 ***************************************/ void turn_on_robot::Cmd_Vel_Callback(const geometry_msgs::msg::Twist::SharedPtr twist_aux) { short transition; //intermediate variable //中间变量 Send_Data.tx[0]= 0x06; //frame head 0x7B //帧头0X7B //Send_Data.tx[1] = AutoRecharge; //set aside //预留位 Send_Data.tx[1] = FRAME_HEADER; Send_Data.tx[2] = 0; //set aside //预留位 //The target velocity of the X-axis of the robot //机器人x轴的目标线速度 transition=0; transition = twist_aux->linear.x*1000; //将浮点数放大一千倍,简化传输 (mm/s) Send_Data.tx[4] = transition; //取数据的低8位 Send_Data.tx[3] = transition>>8; //取数据的高8位 //The target velocity of the Y-axis of the robot //机器人y轴的目标线速度 transition=0; transition = twist_aux->linear.y*1000; Send_Data.tx[6] = transition; Send_Data.tx[5] = transition>>8; //The target angular velocity of the robot's Z axis //机器人z轴的目标角速度 transition=0; transition = twist_aux->angular.z*1000; //(1000*rad/s) Send_Data.tx[8] = transition; Send_Data.tx[7] = transition>>8; Send_Data.tx[9]=Check_Sum(9,SEND_DATA_CHECK); //For the BCC check bits, see the Check_Sum function //BCC校验位,规则参见Check_Sum函数 Send_Data.tx[10]=0x0d; //frame tail 0x7D //帧尾0X7D Send_Data.tx[11]=0x0a; try { Stm32_Serial.write(Send_Data.tx,sizeof (Send_Data.tx)); //Sends data to the downloader via serial port //通过串口向下位机发送数据 } catch (serial::IOException& e) { RCLCPP_ERROR(this->get_logger(),("Unable to send data through serial port")); //If sending data fails, an error message is printed //如果发送数据失败,打印错误信息 } } /************************************** Date: January 28, 2021 Function: Publish the IMU data topic 功能: 发布IMU数据话题 ***************************************/ void turn_on_robot::Publish_ImuSensor() { sensor_msgs::msg::Imu Imu_Data_Pub; //Instantiate IMU topic data //实例化IMU话题数据 Imu_Data_Pub.header.stamp = rclcpp::Node::now(); Imu_Data_Pub.header.frame_id = gyro_frame_id; //IMU corresponds to TF coordinates, which is required to use the robot_pose_ekf feature pack //IMU对应TF坐标,使用robot_pose_ekf功能包需要设置此项 Imu_Data_Pub.orientation.x = Mpu6050.orientation.x; //A quaternion represents a three-axis attitude //四元数表达三轴姿态 Imu_Data_Pub.orientation.y = Mpu6050.orientation.y; Imu_Data_Pub.orientation.z = Mpu6050.orientation.z; Imu_Data_Pub.orientation.w = Mpu6050.orientation.w; Imu_Data_Pub.orientation_covariance[0] = 1e6; //Three-axis attitude covariance matrix //三轴姿态协方差矩阵 Imu_Data_Pub.orientation_covariance[4] = 1e6; Imu_Data_Pub.orientation_covariance[8] = 1e-6; Imu_Data_Pub.angular_velocity.x = Mpu6050.angular_velocity.x; //Triaxial angular velocity //三轴角速度 Imu_Data_Pub.angular_velocity.y = Mpu6050.angular_velocity.y; Imu_Data_Pub.angular_velocity.z = Mpu6050.angular_velocity.z; Imu_Data_Pub.angular_velocity_covariance[0] = 1e6; //Triaxial angular velocity covariance matrix //三轴角速度协方差矩阵 Imu_Data_Pub.angular_velocity_covariance[4] = 1e6; Imu_Data_Pub.angular_velocity_covariance[8] = 1e-6; Imu_Data_Pub.linear_acceleration.x = Mpu6050.linear_acceleration.x; //Triaxial acceleration //三轴线性加速度 Imu_Data_Pub.linear_acceleration.y = Mpu6050.linear_acceleration.y; Imu_Data_Pub.linear_acceleration.z = Mpu6050.linear_acceleration.z; imu_publisher->publish(Imu_Data_Pub); //Pub IMU topic //发布IMU话题 } /************************************** Date: January 28, 2021 Function: Publish the odometer topic, Contains position, attitude, triaxial velocity, angular velocity about triaxial, TF parent-child coordinates, and covariance matrix 功能: 发布里程计话题,包含位置、姿态、三轴速度、绕三轴角速度、TF父子坐标、协方差矩阵 ***************************************/ void turn_on_robot::Publish_Odom() { //Convert the Z-axis rotation Angle into a quaternion for expression //把Z轴转角转换为四元数进行表达 tf2::Quaternion q; q.setRPY(0,0,Mpu6050_Data.imu_yaw); geometry_msgs::msg::Quaternion odom_quat=tf2::toMsg(q); nav_msgs::msg::Odometry odom; //Instance the odometer topic data //实例化里程计话题数据 odom.header.stamp = rclcpp::Node::now(); ; odom.header.frame_id = odom_frame_id; // Odometer TF parent coordinates //里程计TF父坐标 odom.pose.pose.position.x = Robot_Pos.X; //Position //位置 odom.pose.pose.position.y = Robot_Pos.Y; //odom.pose.pose.position.z = Robot_Pos.Z; odom.pose.pose.orientation = odom_quat; //Posture, Quaternion converted by Z-axis rotation //姿态,通过Z轴转角转换的四元数 odom.child_frame_id = robot_frame_id; // Odometer TF subcoordinates //里程计TF子坐标 odom.twist.twist.linear.x = Robot_Vel.X; //Speed in the X direction //X方向速度 //odom.twist.twist.linear.y = Robot_Vel.Y; //Speed in the Y direction //Y方向速度 odom.twist.twist.angular.z = Mpu6050.angular_velocity.z; //Angular velocity around the Z axis //绕Z轴角速度 //There are two types of this matrix, which are used when the robot is at rest and when it is moving.Extended Kalman Filtering officially provides 2 matrices for the robot_pose_ekf feature pack //这个矩阵有两种,分别在机器人静止和运动的时候使用。扩展卡尔曼滤波官方提供的2个矩阵,用于robot_pose_ekf功能包 //if(Robot_Vel.X== 0&&Robot_Vel.Y== 0&&Robot_Vel.Z== 0) if(Robot_Vel.X== 0) //If the velocity is zero, it means that the error of the encoder will be relatively small, and the data of the encoder will be considered more reliable //如果velocity是零,说明编码器的误差会比较小,认为编码器数据更可靠 memcpy(&odom.pose.covariance, odom_pose_covariance2, sizeof(odom_pose_covariance2)), memcpy(&odom.twist.covariance, odom_twist_covariance2, sizeof(odom_twist_covariance2)); else //If the velocity of the trolley is non-zero, considering the sliding error that may be brought by the encoder in motion, the data of IMU is considered to be more reliable //如果小车velocity非零,考虑到运动中编码器可能带来的滑动误差,认为imu的数据更可靠 memcpy(&odom.pose.covariance, odom_pose_covariance, sizeof(odom_pose_covariance)), memcpy(&odom.twist.covariance, odom_twist_covariance, sizeof(odom_twist_covariance)); odom_publisher->publish(odom); //Pub odometer topic //发布里程计话题 } /************************************** Date: January 28, 2021 Function: Publish voltage-related information 功能: 发布电压相关信息 ***************************************/ void turn_on_robot::Publish_Voltage() { std_msgs::msg::Float32 voltage_msgs; //Define the data type of the power supply voltage publishing topic //定义电源电压发布话题的数据类型 static float Count_Voltage_Pub=0; if(Count_Voltage_Pub++>10) { Count_Voltage_Pub=0; voltage_msgs.data = Power_voltage; //The power supply voltage is obtained //电源供电的电压获取 voltage_publisher->publish(voltage_msgs); //Post the power supply voltage topic unit: V, volt //发布电源电压话题单位:V、伏特 } } ////////// 回充发布与回调 //////// /************************************** Date: January 17, 2022 Function: Pub the topic whether the robot finds the infrared signal (charging station) 功能: 发布机器人是否寻找到红外信号(充电桩)的话题 ***************************************/ void turn_on_robot::Publish_RED() { std_msgs::msg::UInt8 msg; msg.data=Red; RED_publisher->publish(msg); } /************************************** Date: January 14, 2022 Function: Publish a topic about whether the robot is charging 功能: 发布机器人是否在充电的话题 ***************************************/ void turn_on_robot::Publish_Charging() { static bool last_charging; std_msgs::msg::Bool msg; msg.data=Charging; Charging_publisher->publish(msg); if(last_charging==false && Charging==true)cout<<GREEN<<"Robot is charging."<<endl<<RESET; if(last_charging==true && Charging==false)cout<<RED <<"Robot charging has disconnected."<<endl<<RESET; last_charging=Charging; } /************************************** Date: January 28, 2021 Function: Publish charging current information 功能: 发布充电电流信息 ***************************************/ void turn_on_robot::Publish_ChargingCurrent() { std_msgs::msg::Float32 msg; msg.data=Charging_Current; Charging_current_publisher->publish(msg); } /************************************** Date: March 1, 2022 Function: Infrared connection speed topic subscription Callback function, according to the subscription command through the serial port to set the infrared connection speed 功能: 红外对接速度话题订阅回调函数Callback,根据订阅的指令通过串口发指令设置红外对接速度 ***************************************/ void turn_on_robot::Red_Vel_Callback(const geometry_msgs::msg::Twist::SharedPtr twist_aux) { short transition; //intermediate variable //中间变量 Send_Data.tx[0]=FRAME_HEADER; //frame head 0x7B //帧头0X7B Send_Data.tx[1] = 3; //Infrared docking speed setting flag bit = 3 //红外对接速度设置标志位=3 Send_Data.tx[2] = 0; //set aside //预留位 //The target velocity of the X-axis of the robot //机器人x轴的目标线速度 transition=0; transition = twist_aux->linear.x*1000; //将浮点数放大一千倍,简化传输 Send_Data.tx[4] = transition; //取数据的低8位 Send_Data.tx[3] = transition>>8; //取数据的高8位 //The target velocity of the Y-axis of the robot //机器人y轴的目标线速度 transition=0; transition = twist_aux->linear.y*1000; Send_Data.tx[6] = transition; Send_Data.tx[5] = transition>>8; //The target angular velocity of the robot's Z axis //机器人z轴的目标角速度 transition=0; transition = twist_aux->angular.z*1000; Send_Data.tx[8] = transition; Send_Data.tx[7] = transition>>8; Send_Data.tx[9]=Check_Sum(9,SEND_DATA_CHECK); //BCC check //BCC校验 Send_Data.tx[10]=FRAME_TAIL; //frame tail 0x7D //帧尾0X7D try { Stm32_Serial.write(Send_Data.tx,sizeof (Send_Data.tx)); //Sends data to the downloader via serial port //通过串口向下位机发送数据 } catch (serial::IOException& e) { RCLCPP_ERROR(this->get_logger(),("Unable to send data through serial port")); //If sending data fails, an error message is printed //如果发送数据失败,打印错误信息 } } /************************************** Date: January 14, 2022 Function: Subscription robot recharge flag bit topic, used to tell the lower machine speed command is normal command or recharge command 功能: 订阅机器人是否回充标志位话题,用于告诉下位机速度命令是正常命令还是回充命令 ***************************************/ void turn_on_robot::Recharge_Flag_Callback(const std_msgs::msg::Int8::SharedPtr Recharge_Flag) { AutoRecharge=Recharge_Flag->data; } //服务 void turn_on_robot::Set_Charge_Callback(const shared_ptr<turtlesim::srv::Spawn::Request> req,shared_ptr<turtlesim::srv::Spawn::Response> res) { Send_Data.tx[0]=FRAME_HEADER; //frame head 0x7B //֡ͷ0X7B if(round(req->x)==1) Send_Data.tx[1] = 1; else if(round(req->x)==2) Send_Data.tx[1] = 2; else if(round(req->x)==0) Send_Data.tx[1] = 0,AutoRecharge=0; Send_Data.tx[2] = 0; Send_Data.tx[3] = 0; Send_Data.tx[4] = 0; Send_Data.tx[5] = 0; Send_Data.tx[6] = 0; Send_Data.tx[7] = 0; Send_Data.tx[8] = 0; Send_Data.tx[9]=Check_Sum(9,SEND_DATA_CHECK); //For the BCC check bits, see the Check_Sum function //BCCУ��λ������μ�Check_Sum���� Send_Data.tx[10]=FRAME_TAIL; //frame tail 0x7D //֡β0X7D try { Stm32_Serial.write(Send_Data.tx,sizeof (Send_Data.tx)); //Sends data to the downloader via serial port //ͨ����������λ���������� } catch (serial::IOException& e) { res->name = "false"; } if( Send_Data.tx[1]==0 ) { if(charge_set_state==0) AutoRecharge=0,res->name = "true"; else res->name = "false"; } else { if(charge_set_state==1) res->name = "true"; else res->name = "false"; } return; } ////////// 回充发布与回调 //////// /************************************** Date: January 28, 2021 Function: Serial port communication check function, packet n has a byte, the NTH -1 byte is the check bit, the NTH byte bit frame end.Bit XOR results from byte 1 to byte n-2 are compared with byte n-1, which is a BCC check Input parameter: Count_Number: Check the first few bytes of the packet 功能: 串口通讯校验函数,数据包n有个字节,第n-1个字节为校验位,第n个字节位帧尾。第1个字节到第n-2个字节数据按位异或的结果与第n-1个字节对比,即为BCC校验 输入参数: Count_Number:数据包前几个字节加入校验 mode:对发送数据还是接收数据进行校验 ***************************************/ unsigned char turn_on_robot::Check_Sum(unsigned char Count_Number,unsigned char mode) { unsigned char check_sum=0,k; if(mode==0) //Receive data mode //接收数据模式 { for(k=0;k<Count_Number;k++) { check_sum=check_sum^Receive_Data.rx[k]; //By bit or by bit //按位异或 } } if(mode==1) //Send data mode //发送数据模式 { for(k=1;k<Count_Number;k++) { check_sum=check_sum^Send_Data.tx[k]; //By bit or by bit //按位异或 } } return check_sum; //Returns the bitwise XOR result //返回按位异或结果 } //自动回充专用校验位 unsigned char turn_on_robot::Check_Sum_AutoCharge(unsigned char Count_Number,unsigned char mode) { unsigned char check_sum=0,k; if(mode==0) //Receive data mode //接收数据模式 { for(k=0;k<Count_Number;k++) { check_sum=check_sum^Receive_AutoCharge_Data.rx[k]; //By bit or by bit //按位异或 } } return check_sum; } /************************************** Date: November 18, 2021 Function: Read and verify the data sent by the lower computer frame by frame through the serial port, and then convert the data into international units 功能: 通过串口读取并逐帧校验下位机发送过来的数据,然后数据转换为国际单位 ***************************************/ bool turn_on_robot::Get_Sensor_Data_New() { short transition_16=0; //Intermediate variable //中间变量 //uint8_t i=0; uint8_t check=0,check2=0, error=1,error2=1,Receive_Data_Pr[1]; //Temporary variable to save the data of the lower machine //临时变量,保存下位机数据 static int count,count2; //Static variable for counting //静态变量,用于计数 Stm32_Serial.read(Receive_Data_Pr,sizeof(Receive_Data_Pr)); //Read the data sent by the lower computer through the serial port //通过串口读取下位机发送过来的数据 /*//View the received raw data directly and debug it for use//直接查看接收到的原始数据,调试使用 ROS_INFO("%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x", Receive_Data_Pr[0],Receive_Data_Pr[1],Receive_Data_Pr[2],Receive_Data_Pr[3],Receive_Data_Pr[4],Receive_Data_Pr[5],Receive_Data_Pr[6],Receive_Data_Pr[7], Receive_Data_Pr[8],Receive_Data_Pr[9],Receive_Data_Pr[10],Receive_Data_Pr[11],Receive_Data_Pr[12],Receive_Data_Pr[13],Receive_Data_Pr[14],Receive_Data_Pr[15], Receive_Data_Pr[16],Receive_Data_Pr[17],Receive_Data_Pr[18],Receive_Data_Pr[19],Receive_Data_Pr[20],Receive_Data_Pr[21],Receive_Data_Pr[22],Receive_Data_Pr[23]); */ Receive_Data.rx[count] = Receive_Data_Pr[0]; //Fill the array with serial data //串口数据填入数组 Receive_AutoCharge_Data.rx[count2] = Receive_Data_Pr[0]; Receive_Data.Frame_Header = Receive_Data.rx[0]; //The first part of the data is the frame header 0X7B //数据的第一位是帧头0X7B Receive_Data.Frame_Tail = Receive_Data.rx[23]; //The last bit of data is frame tail 0X7D //数据的最后一位是帧尾0X7D //接收到自动回充数据的帧头、上一个数据是24字节的帧尾,表明自动回充数据开始到来 if((Receive_Data_Pr[0] == AutoCharge_HEADER )||count2>0) count2++; else count2=0; if(Receive_Data_Pr[0] == FRAME_HEADER || count>0) //Ensure that the first data in the array is FRAME_HEADER //确保数组第一个数据为FRAME_HEADER count++; else count=0; //自动回充数据处理 if(count2 == AutoCharge_DATA_SIZE) { count2=0; if(Receive_AutoCharge_Data.rx[AutoCharge_DATA_SIZE-1]==AutoCharge_TAIL) //确认帧尾 { check2 = Check_Sum_AutoCharge(6,0);//校验位计算 if(check2 == Receive_AutoCharge_Data.rx[AutoCharge_DATA_SIZE-2]) //校验正确 { error2=0; } if(error2 == 0) //校验正确开始赋值 { transition_16 = 0; transition_16 |= Receive_AutoCharge_Data.rx[1]<<8; transition_16 |= Receive_AutoCharge_Data.rx[2]; Charging_Current = transition_16/1000+(transition_16 % 1000)*0.001; //充电电流 Red = Receive_AutoCharge_Data.rx[3]; //红外接受状态 Charging = Receive_AutoCharge_Data.rx[4];//小车充电状态 charge_set_state = Receive_AutoCharge_Data.rx[5]; check_AutoCharge_data = true; //数据成功接收标志位 } } } if(count == 24) //Verify the length of the packet //验证数据包的长度 { count=0; //Prepare for the serial port data to be refill into the array //为串口数据重新填入数组做准备 if(Receive_Data.Frame_Tail == FRAME_TAIL) //Verify the frame tail of the packet //验证数据包的帧尾 { check=Check_Sum(22,READ_DATA_CHECK); //BCC check passes or two packets are interlaced //BCC校验通过或者两组数据包交错 if(check == Receive_Data.rx[22]) { error=0; //XOR bit check successful //异或位校验成功 } if(error == 0) { /*//Check receive_data.rx for debugging use //查看Receive_Data.rx,调试使用 ROS_INFO("%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x", Receive_Data.rx[0],Receive_Data.rx[1],Receive_Data.rx[2],Receive_Data.rx[3],Receive_Data.rx[4],Receive_Data.rx[5],Receive_Data.rx[6],Receive_Data.rx[7], Receive_Data.rx[8],Receive_Data.rx[9],Receive_Data.rx[10],Receive_Data.rx[11],Receive_Data.rx[12],Receive_Data.rx[13],Receive_Data.rx[14],Receive_Data.rx[15], Receive_Data.rx[16],Receive_Data.rx[17],Receive_Data.rx[18],Receive_Data.rx[19],Receive_Data.rx[20],Receive_Data.rx[21],Receive_Data.rx[22],Receive_Data.rx[23]); */ Receive_Data.Flag_Stop=Receive_Data.rx[1]; //set aside //预留位 Robot_Vel.X = Odom_Trans(Receive_Data.rx[2],Receive_Data.rx[3]); //Get the speed of the moving chassis in the X direction //获取运动底盘X方向速度 //Robot_Vel.Y = Odom_Trans(Receive_Data.rx[4],Receive_Data.rx[5]); //Get the speed of the moving chassis in the Y direction, The Y speed is only valid in the omnidirectional mobile robot chassis //获取运动底盘Y方向速度,Y速度仅在全向移动机器人底盘有效 //Robot_Vel.Z = Odom_Trans(Receive_Data.rx[6],Receive_Data.rx[7]); //Get the speed of the moving chassis in the Z direction //获取运动底盘Z方向速度 //MPU6050 stands for IMU only and does not refer to a specific model. It can be either MPU6050 or MPU9250 //Mpu6050仅代表IMU,不指代特定型号,既可以是MPU6050也可以是MPU9250 Mpu6050_Data.imu_rol = IMU_Trans(Receive_Data.rx[4],Receive_Data.rx[5]) * 0.01 * 3.14159/180; Mpu6050_Data.imu_yaw = IMU_Trans(Receive_Data.rx[6],Receive_Data.rx[7]) * 0.01 * 3.14159/180; Mpu6050_Data.accele_x_data = IMU_Trans(Receive_Data.rx[8],Receive_Data.rx[9]); //Get the X-axis acceleration of the IMU //获取IMU的X轴加速度 Mpu6050_Data.accele_y_data = IMU_Trans(Receive_Data.rx[10],Receive_Data.rx[11]); //Get the Y-axis acceleration of the IMU //获取IMU的Y轴加速度 Mpu6050_Data.accele_z_data = IMU_Trans(Receive_Data.rx[12],Receive_Data.rx[13]); //Get the Z-axis acceleration of the IMU //获取IMU的Z轴加速度 Mpu6050_Data.gyros_x_data = IMU_Trans(Receive_Data.rx[14],Receive_Data.rx[15]); //Get the X-axis angular velocity of the IMU //获取IMU的X轴角速度 Mpu6050_Data.gyros_y_data = IMU_Trans(Receive_Data.rx[16],Receive_Data.rx[17]); //Get the Y-axis angular velocity of the IMU //获取IMU的Y轴角速度 Mpu6050_Data.gyros_z_data = IMU_Trans(Receive_Data.rx[18],Receive_Data.rx[19]); //Get the Z-axis angular velocity of the IMU //获取IMU的Z轴角速度 //Linear acceleration unit conversion is related to the range of IMU initialization of STM32, where the range is ±2g=19.6m/s^2 //线性加速度单位转化,和STM32的IMU初始化的时候的量程有关,这里量程±2g=19.6m/s^2 Mpu6050.linear_acceleration.x = Mpu6050_Data.accele_x_data * 0.01 * 9.8; Mpu6050.linear_acceleration.y = Mpu6050_Data.accele_y_data * 0.01 * 9.8; Mpu6050.linear_acceleration.z = Mpu6050_Data.accele_z_data * 0.01 * 9.8; //The gyroscope unit conversion is related to the range of STM32's IMU when initialized. Here, the range of IMU's gyroscope is ±500°/s //Because the robot generally has a slow Z-axis speed, reducing the range can improve the accuracy //陀螺仪单位转化,和STM32的IMU初始化的时候的量程有关,这里IMU的陀螺仪的量程是±500°/s //因为机器人一般Z轴速度不快,降低量程可以提高精度 Mpu6050.angular_velocity.x = Mpu6050_Data.gyros_x_data * 0.01 *3.14159/180; Mpu6050.angular_velocity.y = Mpu6050_Data.gyros_y_data * 0.01 *3.14159/180; Mpu6050.angular_velocity.z = Mpu6050_Data.gyros_z_data * 0.01 *3.14159/180; //Get the battery voltage //获取电池电压 transition_16 = 0; transition_16 |= Receive_Data.rx[20]<<8; transition_16 |= Receive_Data.rx[21]; Power_voltage = transition_16/1000+(transition_16 % 1000)*0.001; //Unit conversion millivolt(mv)->volt(v) //单位转换毫伏(mv)->伏(v) return true; } } } return false; } /************************************** Date: January 28, 2021 Function: Loop access to the lower computer data and issue topics 功能: 循环获取下位机数据与发布话题 ***************************************/ void turn_on_robot::Control() { //_Last_Time = ros::Time::now(); _Last_Time = rclcpp::Node::now(); while(rclcpp::ok()) { try { //_Now = ros::Time::now(); _Now = rclcpp::Node::now(); Sampling_Time = (_Now - _Last_Time).seconds(); //Retrieves time interval, which is used to integrate velocity to obtain displacement (mileage) //获取时间间隔,用于积分速度获得位移(里程) if (true == Get_Sensor_Data_New()) //The serial port reads and verifies the data sent by the lower computer, and then the data is converted to international units //通过串口读取并校验下位机发送过来的数据,然后数据转换为国际单位 { //Robot_Pos.X+=(Robot_Vel.X * cos(Robot_Pos.Z) - Robot_Vel.Y * sin(Robot_Pos.Z)) * Sampling_Time; //Calculate the displacement in the X direction, unit: m //计算X方向的位移,单位:m //Robot_Pos.Y+=(Robot_Vel.X * sin(Robot_Pos.Z) + Robot_Vel.Y * cos(Robot_Pos.Z)) * Sampling_Time; //Calculate the displacement in the Y direction, unit: m //计算Y方向的位移,单位:m //Robot_Pos.Z+=Robot_Vel.Z * Sampling_Time; //The angular displacement about the Z axis, in rad //绕Z轴的角位移,单位:rad Robot_Pos.X+=(Robot_Vel.X * cos(Mpu6050_Data.imu_yaw)) * Sampling_Time; //Calculate the displacement in the X direction, unit: m //计算X方向的位移,单位:m Robot_Pos.Y+=(Robot_Vel.X * sin(Mpu6050_Data.imu_yaw)) * Sampling_Time; //Calculate the displacement in the Y direction, unit: m //计算Y方向的位移,单位:m //Robot_Pos.Z = 0 ; //Calculate the three-axis attitude from the IMU with the angular velocity around the three-axis and the three-axis acceleration //通过IMU绕三轴角速度与三轴加速度计算三轴姿态 Quaternion_Solution(Mpu6050.angular_velocity.x, Mpu6050.angular_velocity.y, Mpu6050.angular_velocity.z,\ Mpu6050.linear_acceleration.x, Mpu6050.linear_acceleration.y, Mpu6050.linear_acceleration.z); Publish_Odom(); //Pub the speedometer topic //发布里程计话题 Publish_ImuSensor(); //Pub the IMU topic //发布IMU话题 Publish_Voltage(); //Pub the topic of power supply voltage //发布电源电压话题 _Last_Time = _Now; //Record the time and use it to calculate the time interval //记录时间,用于计算时间间隔 } //自动回充数据话题 if(check_AutoCharge_data) { Publish_Charging(); //Pub a topic about whether the robot is charging //发布机器人是否在充电的话题 Publish_RED(); //Pub the topic whether the robot finds the infrared signal (charging station) //发布机器人是否寻找到红外信号(充电桩)的话题 Publish_ChargingCurrent(); //Pub the charging current topic //发布充电电流话题 check_AutoCharge_data = false; } rclcpp::spin_some(this->get_node_base_interface()); //The loop waits for the callback function //循环等待回调函数 } catch (const rclcpp::exceptions::RCLError & e ) { RCLCPP_ERROR(this->get_logger(),"unexpectedly failed whith %s",e.what()); } } } /************************************** Date: January 28, 2021 Function: Constructor, executed only once, for initialization 功能: 构造函数, 只执行一次,用于初始化 ***************************************/ turn_on_robot::turn_on_robot():rclcpp::Node ("wheeltec_robot") { Sampling_Time=0; Power_voltage=0; //Clear the data //清空数据 memset(&Robot_Pos, 0, sizeof(Robot_Pos)); memset(&Robot_Vel, 0, sizeof(Robot_Vel)); memset(&Receive_Data, 0, sizeof(Receive_Data)); memset(&Send_Data, 0, sizeof(Send_Data)); memset(&Mpu6050_Data, 0, sizeof(Mpu6050_Data)); //ros::NodeHandle private_nh("~"); //Create a node handle //创建节点句柄 //The private_nh.param() entry parameter corresponds to the initial value of the name of the parameter variable on the parameter server //private_nh.param()入口参数分别对应:参数服务器上的名称 参数变量名 初始值 this->declare_parameter<int>("serial_baud_rate",115200); this->declare_parameter<std::string>("usart_port_name", "/dev/ttyACM0"); this->declare_parameter<std::string>("odom_frame_id", "odom_combined"); this->declare_parameter<std::string>("robot_frame_id", "base_footprint"); this->declare_parameter<std::string>("gyro_frame_id", "gyro_link"); this->get_parameter("serial_baud_rate", serial_baud_rate);//Communicate baud rate 115200 to the lower machine //和下位机通信波特率115200 this->get_parameter("usart_port_name", usart_port_name);//Fixed serial port number //固定串口号 this->get_parameter("odom_frame_id", odom_frame_id);//The odometer topic corresponds to the parent TF coordinate //里程计话题对应父TF坐标 this->get_parameter("robot_frame_id", robot_frame_id);//The odometer topic corresponds to sub-TF coordinates //里程计话题对应子TF坐标 this->get_parameter("gyro_frame_id", gyro_frame_id);//IMU topics correspond to TF coordinates //IMU话题对应TF坐标 odom_publisher = create_publisher("odom", 2);//Create the odometer topic publisher //创建里程计话题发布者 imu_publisher = create_publisher<sensor_msgs::msg::Imu>("imu/data_raw", 2); //Create an IMU topic publisher //创建IMU话题发布者 voltage_publisher = create_publisher<std_msgs::msg::Float32>("PowerVoltage", 1);//Create a battery-voltage topic publisher //创建电池电压话题发布者 //回充发布者 Charging_publisher = create_publisher<std_msgs::msg::Bool>("robot_charging_flag", 10); Charging_current_publisher = create_publisher<std_msgs::msg::Float32>("robot_charging_current", 10); RED_publisher = create_publisher<std_msgs::msg::UInt8>("robot_red_flag", 10); //回充订阅者 Red_Vel_Sub = create_subscription<geometry_msgs::msg::Twist>( "red_vel", 10, std::bind(&turn_on_robot::Red_Vel_Callback, this, std::placeholders::_1)); Recharge_Flag_Sub = create_subscription<std_msgs::msg::Int8>( "robot_recharge_flag", 10, std::bind(&turn_on_robot::Recharge_Flag_Callback, this,std::placeholders::_1)); //回充服务提供 SetCharge_Service=this->create_service<turtlesim::srv::Spawn>\ ("/set_charge",std::bind(&turn_on_robot::Set_Charge_Callback,this, std::placeholders::_1 ,std::placeholders::_2)); //Set the velocity control command callback function //速度控制命令订阅回调函数设置 Cmd_Vel_Sub = create_subscription<geometry_msgs::msg::Twist>( "cmd_vel", 2, std::bind(&turn_on_robot::Cmd_Vel_Callback, this, _1)); RCLCPP_INFO(this->get_logger(),"wheeltec_robot Data ready"); //Prompt message //提示信息 try { //Attempts to initialize and open the serial port //尝试初始化与开启串口 Stm32_Serial.setPort(usart_port_name); //Select the serial port number to enable //选择要开启的串口号 Stm32_Serial.setBaudrate(serial_baud_rate); //Set the baud rate //设置波特率 serial::Timeout _time = serial::Timeout::simpleTimeout(2000); //Timeout //超时等待 Stm32_Serial.setTimeout(_time); Stm32_Serial.open(); //Open the serial port //开启串口 } catch (serial::IOException& e) { RCLCPP_ERROR(this->get_logger(),"wheeltec_robot can not open serial port,Please check the serial port cable! "); //If opening the serial port fails, an error message is printed //如果开启串口失败,打印错误信息 } if(Stm32_Serial.isOpen()) { RCLCPP_INFO(this->get_logger(),"wheeltec_robot serial port opened"); //Serial port opened successfully //串口开启成功提示 } } /************************************** Date: January 28, 2021 Function: Destructor, executed only once and called by the system when an object ends its life cycle 功能: 析构函数,只执行一次,当对象结束其生命周期时系统会调用这个函数 ***************************************/ turn_on_robot::~turn_on_robot() { //Sends the stop motion command to the lower machine before the turn_on_robot object ends //对象turn_on_robot结束前向下位机发送停止运动命令 Send_Data.tx[0]=0x06; Send_Data.tx[1] = FRAME_HEADER; Send_Data.tx[2] = 0; //The target velocity of the X-axis of the robot //机器人X轴的目标线速度 Send_Data.tx[4] = 0; Send_Data.tx[3] = 0; //The target velocity of the Y-axis of the robot //机器人Y轴的目标线速度 Send_Data.tx[6] = 0; Send_Data.tx[5] = 0; //The target velocity of the Z-axis of the robot //机器人Z轴的目标角速度 Send_Data.tx[8] = 0; Send_Data.tx[7] = 0; Send_Data.tx[9]=Check_Sum(9,SEND_DATA_CHECK); //Check the bits for the Check_Sum function //校验位,规则参见Check_Sum函数 Send_Data.tx[10]=0x0d; Send_Data.tx[11]=0x0a; try { Stm32_Serial.write(Send_Data.tx,sizeof (Send_Data.tx)); //Send data to the serial port //向串口发数据 } catch (serial::IOException& e) { RCLCPP_ERROR(this->get_logger(),"Unable to send data through serial port"); //If sending data fails, an error message is printed //如果发送数据失败,打印错误信息 } Stm32_Serial.close(); //Close the serial port //关闭串口 RCLCPP_INFO(this->get_logger(),"Shutting down"); //Prompt message //提示信息 } turn_on_wheeltec_robot.launch.py文件代码为: import os from pathlib import Path import launch from launch.actions import SetEnvironmentVariable from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import (DeclareLaunchArgument, GroupAction, IncludeLaunchDescription, SetEnvironmentVariable) from launch.launch_description_sources import PythonLaunchDescriptionSource from launch.substitutions import LaunchConfiguration, PythonExpression from launch_ros.actions import PushRosNamespace import launch_ros.actions from launch.conditions import IfCondition from launch.conditions import UnlessCondition def generate_launch_description(): # Get the launch directory bringup_dir = get_package_share_directory('turn_on_wheeltec_robot') launch_dir = os.path.join(bringup_dir, 'launch') ekf_config = Path(get_package_share_directory('turn_on_wheeltec_robot'), 'config', 'ekf.yaml') ekf_carto_config = Path(get_package_share_directory('turn_on_wheeltec_robot'), 'config', 'ekf_carto.yaml') imu_config = Path(get_package_share_directory('turn_on_wheeltec_robot'), 'config', 'imu.yaml') carto_slam = LaunchConfiguration('carto_slam', default='false') carto_slam_dec = DeclareLaunchArgument('carto_slam',default_value='false') wheeltec_robot = IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(launch_dir, 'base_serial.launch.py')), ) robot_ekf = IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(launch_dir, 'wheeltec_ekf.launch.py')), launch_arguments={'carto_slam':carto_slam}.items(), ) base_to_link = launch_ros.actions.Node( package='tf2_ros', executable='static_transform_publisher', name='base_to_link', arguments=['0', '0', '0','0', '0','0','base_footprint','base_link'], ) base_to_gyro = launch_ros.actions.Node( package='tf2_ros', executable='static_transform_publisher', name='base_to_gyro', arguments=['0', '0', '0','0', '0','0','base_link','gyro_link'], ) imu_filter_node = launch_ros.actions.Node( package='imu_filter_madgwick', executable='imu_filter_madgwick_node', parameters=[imu_config] ) # joint_state_publisher_node = launch_ros.actions.Node( # package='joint_state_publisher', # executable='joint_state_publisher', # name='joint_state_publisher', # ) #select a robot model,the default model is mini_mec #minibot.launch.py contains commonly used robot models #launch_arguments choices:mini_mec/mini_akm/mini_tank/mini_4wd/mini_diff/mini_omni/brushless_senior_diff #!!!At the same time, you need to modify ld.add_action(minibot_type) and #ld.add_action(flagship_type) minibot_type = IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(launch_dir, 'robot_mode_description_minibot.launch.py')), launch_arguments={'bike_robot': 'true'}.items(), ) #robot_mode_description.launch.py contains flagship products, usually larger chassis robots #launch_arguments choices: #senior_akm/top_akm_bs/top_akm_dl #senior_mec_bs/senior_mec_dl/top_mec_bs/top_mec_dl/ mec_EightDrive_robot/flagship_mec_bs_robot/flagship_mec_dl_robot�� #senior_omni/top_omni #senior_4wd_bs_robot/senior_4wd_dl_robot/flagship_4wd_bs_robot/flagship_4wd_dl_robot/top_4wd_bs_robot/top_4wd_dl_robot #senior_diff_robot/four_wheel_diff_bs/four_wheel_diff_dl/flagship_four_wheel_diff_bs_robot/flagship_four_wheel_diff_dl_robot #!!!At the same time, you need to modify ld.add_action(flagship_type) and #ld.add_action(minibot_type) flagship_type = IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(launch_dir, 'robot_mode_description.launch.py')), launch_arguments={'senior_akm': 'true'}.items(), ) ld = LaunchDescription() ld.add_action(minibot_type) #ld.add_action(flagship_type) ld.add_action(carto_slam_dec) ld.add_action(wheeltec_robot) ld.add_action(base_to_link) ld.add_action(base_to_gyro) # ld.add_action(joint_state_publisher_node) ld.add_action(imu_filter_node) ld.add_action(robot_ekf) return ld base_serial.launch.py文件代码为: from launch import LaunchDescription from launch.actions import DeclareLaunchArgument from launch.substitutions import LaunchConfiguration from launch.conditions import IfCondition from launch.conditions import UnlessCondition import launch_ros.actions #def launch(launch_descriptor, argv): def generate_launch_description(): return LaunchDescription([ launch_ros.actions.Node( package='turn_on_wheeltec_robot', executable='wheeltec_robot_node', output='screen', parameters=[{'usart_port_name': '/dev/ttyACM0', 'serial_baud_rate':115200, 'robot_frame_id': 'base_footprint', 'odom_frame_id': 'odom_combined', 'cmd_vel': 'cmd_vel',}], ) ]) robot_mode_description_minibot.launch.py文件代码为: import os from ament_index_python.packages import get_package_share_directory import launch_ros.actions from launch import LaunchDescription from launch.actions import DeclareLaunchArgument, GroupAction, SetEnvironmentVariable from launch.conditions import IfCondition from launch.substitutions import LaunchConfiguration, PythonExpression from launch_ros.actions import LoadComposableNodes from launch_ros.actions import Node from launch_ros.descriptions import ComposableNode from nav2_common.launch import RewrittenYaml def generate_robot_node(robot_urdf,child): return launch_ros.actions.Node( package='robot_state_publisher', executable='robot_state_publisher', name=f'robot_state_publisher_{child}', arguments=[os.path.join(get_package_share_directory('wheeltec_robot_urdf'), 'urdf', robot_urdf)], ) def generate_static_transform_publisher_node(translation, rotation, parent, child): return launch_ros.actions.Node( package='tf2_ros', executable='static_transform_publisher', name=f'base_to_{child}', arguments=[translation[0], translation[1], translation[2], rotation[0], rotation[1], rotation[2], parent, child], ) def generate_launch_description(): bike_robot = LaunchConfiguration('bike_robot', default='false') bike_robot_ = GroupAction( condition=IfCondition(bike_robot), actions=[ generate_robot_node('xuan_bike_robot.urdf','bike_robot'), generate_static_transform_publisher_node(['0.048', '0', '0.18'], ['0', '0', '0'], 'base_link', 'laser'), generate_static_transform_publisher_node(['0.048', '0', '0.18'], ['0', '0', '0'], 'base_link', 'camera_link'), ]) # Create the launch description and populate ld = LaunchDescription() # Set environment variables # Declare the launch options #ld.add_action(declare_use_composition_cmd) # Add the actions to launch all of the localiztion nodes ld.add_action(mini_mec_) ld.add_action(mini_akm_) ld.add_action(mini_tank_) ld.add_action(mini_4wd_) ld.add_action(mini_diff_) ld.add_action(brushless_senior_diff_) ld.add_action(bike_robot_) return ld xuan_bike_robot.urdf文件代码为: <?xml version="1.0"?> <robot name="wheeltec_robot"> <visual> <geometry> <mesh filename="file:///home/deepbot/ros-relate/wheeltec_ros2/src/wheeltec_robot_urdf/wheeltec_robot_urdf/meshes/Xuan-release.stl"scale="0.001 0.001 0.001"/> </geometry> <origin xyz="0 0 0" rpy="0 0 0"/> <material name="blue"> <color rgba="0 0 0.8 0.5"/> </material> </visual> </robot>

最新推荐

recommend-type

C#实现多功能画图板功能详解

根据给定的文件信息,我们可以从中提取出与C#编程语言相关的知识点,以及利用GDI+进行绘图的基本概念。由于文件信息较为简短,以下内容会结合这些信息点和相关的IT知识进行扩展,以满足字数要求。 标题中提到的“C#编的画图版”意味着这是一款用C#语言编写的画图软件。C#(发音为 "C Sharp")是一种由微软开发的面向对象的高级编程语言,它是.NET框架的一部分。C#语言因为其简洁的语法和强大的功能被广泛应用于各种软件开发领域,包括桌面应用程序、网络应用程序以及游戏开发等。 描述中提到了“用GDI+绘图来实现画图功能”,这表明该软件利用了GDI+(Graphics Device Interface Plus)技术进行图形绘制。GDI+是Windows平台下的一个图形设备接口,用于处理图形、图像以及文本。它提供了一系列用于2D矢量图形、位图图像、文本和输出设备的API,允许开发者在Windows应用程序中实现复杂的图形界面和视觉效果。 接下来,我们可以进一步展开GDI+中一些关键的编程概念和组件: 1. GDI+对象模型:GDI+使用了一套面向对象的模型来管理图形元素。其中包括Device Context(设备上下文), Pen(画笔), Brush(画刷), Font(字体)等对象。程序员可以通过这些对象来定义图形的外观和行为。 2. Graphics类:这是GDI+中最核心的类之一,它提供了大量的方法来进行绘制操作,比如绘制直线、矩形、椭圆、曲线、图像等。Graphics类通常会与设备上下文相关联,为开发人员提供了一个在窗口、图片或其他表面进行绘图的画布。 3. Pen类:用于定义线条的颜色、宽度和样式。通过Pens类,GDI+提供了预定义的笔刷对象,如黑色笔、红色笔等。程序员也可以创建自定义的Pen对象来满足特定的绘图需求。 4. Brush类:提供了用于填充图形对象的颜色或图案的对象,包括SolidBrush(实心画刷)、HatchBrush(图案画刷)、TextureBrush(纹理画刷)等。程序员可以通过这些画刷在图形对象内部或边缘上进行填充。 5. Fonts类:表示字体样式,GDI+中可以使用Fonts类定义文本的显示样式,包括字体的家族、大小、样式和颜色。 6. 事件驱动的绘图:在C#中,通常会结合事件处理机制来响应用户操作(如鼠标点击或移动),以实现交互式的绘图功能。程序员可以通过重写控件的事件处理函数(例如MouseClick, MouseMove等)来捕获用户的输入并作出相应的绘图响应。 7. 画布变换:在GDI+中,可以通过变换Graphics对象来实现平移、旋转和缩放等效果,这对于实现更复杂的绘图功能是非常有用的。 由于没有具体的文件名称列表,我们无法从这方面提取更多的知识点。但根据标题和描述,我们可以推断该文件名称列表中的“画图板”指的是这款软件的名称,这可能是一个与GDI+绘图功能相结合的用户界面程序,它允许用户在界面上进行绘画和书写操作。 总结以上内容,我们可以了解到C#编程语言与GDI+结合可以创建出功能丰富的画图应用程序。开发人员能够利用GDI+提供的丰富API实现复杂的图形操作,提供用户友好的界面和交互体验。这不仅有助于提高软件的图形处理能力,同时也能够满足设计人员对于高质量视觉效果的追求。
recommend-type

超参数调优:锂电池预测模型优化的不传之秘

# 摘要 本文针对锂电池预测模型的优化进行了系统性的研究,深入探讨了理论基础、超参数调优的策略与技巧,并实践了在锂电池预测模型中的应用。通过理论分析与实验验证,本文揭示了超参数与模型性能之间的关系,并探讨了多种超参数优化方法。同时,本文提供了针对锂电池预测模型的性能评估方法,识别并解决了过拟合与
recommend-type

青龙面板怎么搭建

<think>我们正在回答用户关于如何在服务器上搭建青龙面板的问题。根据用户提供的引用,我们有多个不同的安装方法,主要使用Docker进行部署。我们将综合这些引用,给出一个清晰、步骤详细的安装教程。 注意:青龙面板是一个支持Python3、JavaScript、Shell、TypeScript的定时任务管理平台,常用于运行各种脚本。 我们将按照以下步骤进行: 1. 准备环境:确保服务器已安装Docker和Docker Compose。 2. 创建目录并下载配置文件(如果使用docker-compose方式)。 3. 运行容器。 4. 访问面板并进行初始化配置。 由于引用中有
recommend-type

全面深入掌握应用密码学第二版精华

### 知识点概述 **标题**:Applied Cryptography PART1 **描述**:《应用密码学第二版》是一本全面的密码学资料,它涵盖密码学的基础知识和高级应用,对于想要深入理解并运用密码学的读者来说,是一个宝贵的资源。 **标签**:Applied Cryptography 密码 应用 **压缩包子文件列表**:APPLYC12.pdf、APPLYC11.pdf、APPLYC3.pdf、APPLYC4.pdf、APPLYC2.pdf、APPLYC5.pdf、APPLYC13.pdf、APPLYC6.pdf、APPLYC14.pdf、APPLYC9.pdf ### 知识点详细说明 #### 密码学基础 密码学(Cryptography)是研究信息加密和解密的数学原理和计算方法的学科。在《应用密码学第二版》中,可能涉及以下基础知识: 1. **对称密钥加密**:使用相同的密钥进行加密和解密,如AES(高级加密标准)和DES(数据加密标准)算法。 2. **非对称密钥加密**:使用一对密钥(公钥和私钥),公钥加密信息,私钥解密,如RSA算法。 3. **哈希函数**:一种单向加密函数,将任意长度的数据映射到固定长度的值,如SHA-256和MD5。 4. **数字签名**:利用非对称密钥加密原理,用于验证消息的完整性和来源。 #### 密码学的应用 **应用密码学**涉及到将密码学原理和技术应用到实际的安全问题和解决方案中。在该书籍中,可能会探讨以下应用领域: 1. **网络安全**:包括SSL/TLS协议,用于保护互联网上的通信安全。 2. **区块链技术**:密码学在区块链中的应用,如工作量证明(Proof of Work)和非对称密钥。 3. **安全存储**:如何使用加密技术安全地存储数据,例如在数据库中的加密技术。 4. **安全协议**:在不同计算平台间交换加密信息的协议,例如IPSec。 #### 密码学进阶主题 进阶主题可能包括: 1. **密码学中的数学基础**:素数、群、环、域以及椭圆曲线等数学概念。 2. **密码分析**:研究攻击加密系统的方法,包括已知明文攻击、选择明文攻击等。 3. **量子密码学**:探讨量子计算对当前加密算法的影响,以及量子安全的加密技术。 #### 文档内容细节 从压缩包子文件列表来看,文档内容可能按照章节或主题进行分割,例如: - **APPLYC12.pdf** 和 **APPLYC11.pdf** 可能涵盖了密码学的基础知识和基本概念。 - **APPLYC3.pdf** 和 **APPLYC4.pdf** 可能讨论了对称加密算法以及实现的案例和方法。 - **APPLYC2.pdf** 和 **APPLYC5.pdf** 可能深入讲解了非对称加密技术,如RSA算法。 - **APPLYC13.pdf** 和 **APPLYC6.pdf** 可能包含了哈希函数和数字签名的详细描述。 - **APPLYC14.pdf** 和 **APPLYC9.pdf** 可能介绍了密码学在网络安全、区块链、安全存储和安全协议中的应用实例。 ### 结论 《应用密码学第二版》作为一本全面的密码学参考书,不仅为读者提供了密码学的基础理论知识,还深入探讨了这些理论在现实世界中的具体应用。通过阅读这本书籍,读者将能够更好地理解密码学的原理,并学会如何在实际中运用这些知识来解决安全问题。特别是对于那些希望在信息安全领域深造的学习者来说,该书无疑是一份宝贵的资源。通过对压缩包子文件列表的分析,我们可以看到这本书覆盖了广泛的加密算法和技术,使其成为密码学爱好者的必读之作。
recommend-type

LSTM网络结构选择指南:让锂电池寿命预测更准确

# 摘要 长短期记忆网络(LSTM)作为一种特殊的循环神经网络(RNN),近年来因其在序列数据处理上的卓越性能受到广泛关注。本文首先介绍了LSTM网络的基础知识及在锂电池寿命预测中的应用概述。随后深入探讨了LSTM的理论框架、关键技术、网络结构选择与优化。文中详细分析了锂电池寿命预测的数据处理流程、模型
recommend-type

大物公式

<think>首先,用户意图是查找大学物理相关公式,用户问题是“大学物理常用公式汇总”。我需要根据任务要求进行网络搜索,整合内容,生成回答。 任务要求关键点: - 调用网络搜索工具进行检索。 - 整合内容,生成详细、清晰、实用、可操作的回答。 - 禁止将所有引用内容集中在回答末尾;引用应该分散在回答中。 - 避免使用第一人称(如“我”)。 - 避免步骤词汇(如“首先”、“然后”)。 - 组织答案为多个方法或步骤,每个步骤间换行。 - 对于公式和代码:行内公式用$ $,独立公式用$$ $$;代码用三个反引号注明语言。 - 回答后添加“§§相关问题§§:”部分,列出至少3个相关问题,基于用户问题
recommend-type

全面掌握西门子PLC技术的中文培训资料

西门子是全球知名的电气工程和电子公司,以生产自动化设备、驱动和控制技术等工业产品而著称。在自动化领域,西门子的可编程逻辑控制器(PLC)尤为著名,是工业自动化系统中的核心设备之一。以下是从提供的文件信息中提炼出的知识点。 1. 西门子PLC技术介绍 - 西门子PLC是指西门子生产的一系列可编程逻辑控制器,包括S7-1200、S7-1500等型号,广泛应用于各种自动化生产、加工和监测系统。 - PLC技术是工业自动化领域的核心技术之一,用于替代传统的继电器逻辑控制,通过软件编程实现对工业过程的控制。 - PLC具备高可靠性、高稳定性和灵活的可扩展性,适合各种复杂控制任务。 2. 西门子PLC编程基础 - 西门子PLC编程通常采用STEP 7、TIA Portal等专业软件,支持梯形图、功能块图、语句列表等多种编程语言。 - 用户需要掌握基本的PLC硬件知识,例如CPU、数字/模拟输入输出模块、通讯模块等的配置和使用方法。 - 理解基本的编程概念,如I/O映射、变量存储、数据类型以及模块化编程等。 3. 西门子PLC的网络通讯 - 熟悉西门子PLC的网络通讯协议,如PROFINET、Profibus等,以及如何在不同设备间实现数据交换和设备互联。 - 网络通讯是实现工业4.0和智能制造的关键技术,对于实现远程监控和数据采集(SCADA)系统非常重要。 - 学习如何配置网络参数、故障诊断和维护通讯系统。 4. 西门子PLC的高级应用 - 进阶知识包括PID控制、运动控制、数据记录和故障诊断等高级功能。 - 掌握如何应用西门子PLC在特定工业场景中的高级控制策略,比如在纺织、包装、汽车制造等行业。 - 学习如何使用HMI(人机界面)与PLC交互,设计直观的操作界面,提高操作便利性和效率。 5. 西门子PLC的维护与故障排除 - 了解如何对西门子PLC进行日常检查和维护工作,以确保系统稳定运行。 - 学习如何使用诊断工具,对PLC及其外围设备进行故障检测和快速修复。 6. 西门子PLC培训的资源与支持 - 利用西门子官方提供的培训材料和在线资源,比如培训手册、视频教程、FAQ等。 - 参与西门子或授权的第三方培训机构组织的培训课程,以获取更加系统和深入的知识。 - 加入西门子技术支持社区和论坛,与其他工程师交流心得,解决遇到的技术难题。 综上所述,西门子中文培训资料内容涵盖了从基础理论到高级应用、从硬件操作到软件编程、从系统配置到故障排除的全方位知识。这些资料不仅适合自动化领域的初学者,也为经验丰富的工程师提供了复习和拓展知识的途径。学习西门子PLC技术能够提高个人的市场竞争力,同时也为推动工业自动化和智能制造的发展做出贡献。
recommend-type

揭秘LSTM预测锂电池RUL:一步到位的实现秘籍

# 摘要 本文综合论述了使用长短期记忆网络(LSTM)对锂电池剩余使用寿命(RUL)进行预测的理论和实践方法。首先介绍了锂电池衰退的基本理论和衰退机制,然后深入探讨了LSTM的网络结构及在RUL预测中的应用,包括数据预处理、模型设计、评估与优化。实战演练部分详细描述了数据集的准备、模型编码实现和预测结果的解读。最后,本文展望了LSTM在该领域的未来发展方
recommend-type

True Traceback (most recent call last): File "/home/xxzx/Desktop/ruanzhu/ziti.py", line 9, in <module> print(fm.get_cachedir()) # 显示缓存路径 ^^^^^^^^^^^^^^^ AttributeError: module 'matplotlib.font_manager' has no attribute 'get_cachedir'

<think>我们遇到了一个具体问题:用户在使用`matplotlib.font_manager.get_cachedir`时遇到了`AttributeError`,因为该方法不存在。我们需要提供替代方法或解决方案。 在Matplotlib中,获取字体缓存目录的正确方法是什么? 根据Matplotlib文档和常见实践,我们可以使用以下方法: 1. 使用`matplotlib.get_cachedir()`函数(从matplotlib 1.2开始提供)[^1]。 2. 使用`matplotlib.font_manager.get_font_cache_path()`(在较新版本中)[
recommend-type

FCKeditor开源在线编辑器的压缩文件解析

根据给定的文件信息,我们可以推断出一些知识点。文件名为"FCKeditor_N.zip",这暗示了一个与FCKeditor相关的压缩包。FCKeditor是一个广泛使用的开源文本编辑器,它允许网页开发者在网页中嵌入一个功能丰富的文本编辑器,用户可以在前端使用它进行文字编辑,并且与后端程序交互。 【知识点】: 1. FCKeditor的定义与功能 FCKeditor是一个面向Web的文本编辑器,最初由 Frederico Caldeira Knabben 开发,后来成为了CKEditor,两者之间存在一定的关联性。FCKeditor能够嵌入到网页中,提供类似于Microsoft Word的编辑体验。用户可以使用它进行文字排版、插入图片、表格等操作。FCKeditor对多种浏览器进行了优化,以便为用户提供跨平台的兼容性。 2. FCKeditor的应用场景 FCKeditor经常被用在需要富文本编辑能力的网页中,例如博客、论坛、内容管理系统(CMS)、在线文章编辑器、网页表单等。它允许用户在网页上直接进行内容的创建与编辑,无需额外的桌面编辑软件。 3. FCKeditor的优势 使用FCKeditor的一个明显优势是它降低了网页开发中集成富文本编辑功能的难度。它提供了一个标准的接口,方便地与服务器端脚本语言(如PHP、ASP、JSP等)集成,实现了前端富文本编辑与后端数据处理之间的无缝对接。同时,FCKeditor的可定制性很强,支持通过插件和配置选项来扩展功能,满足不同场景下的特殊需求。 4. FCKeditor与CKEditor的关系 FCKeditor的版本发展到一定阶段后,开发团队对它进行了重构,并且重命名为CKEditor。CKEditor是FCKeditor的后继版本,它继承了FCKeditor的功能,并添加了更多现代化的特性,如更轻量级的设计、更流畅的用户界面和更多的API接口。虽然两者功能相似,但CKEditor被视为当前的主流产品,而FCKeditor则逐渐被废弃。 5. FCKeditor的集成和配置 要在网页中集成FCKeditor,通常需要下载编辑器的源代码包,然后根据需要进行配置。例如,将"FCKeditor_N.zip"解压之后,我们可能会找到一个名为"fckjsp"的文件夹,这表明其中包含用于Java Server Pages (JSP) 环境的配置文件和代码库。将这些文件放到Web应用的适当位置,然后通过配置web.xml文件或直接在JSP页面中引入,便可以将FCKeditor嵌入到JSP页面中。 6. FCKeditor的开源性质 FCKeditor作为一个开源项目,意味着它遵循开源协议,任何人都可以免费使用,并且可以根据自己的需求自由地修改和分发源代码。这种开放性大大促进了Web开发社区的合作,也使得FCKeditor能够迅速发展和改进。 7. FCKeditor的未来 随着Web技术的不断进步,富文本编辑器也在不断地演变。FCKeditor虽然已经被CKEditor所取代,但它的历史地位仍然在Web开发史上占有重要的一席。现代Web开发人员在考虑使用富文本编辑器时,可能会转向CKEditor的最新版本,或者选择其他具有类似功能的现代编辑器,如TinyMCE或者Summernote等。 总结来说,FCKeditor是一个功能强大、易于集成的开源文本编辑器,它支持多种平台和编程语言,尤其在Java Web开发领域中有着广泛的应用。尽管它已经被CKEditor取代,但它在Web开发的历史中仍然具有不可磨灭的地位。开发者在进行项目设计时,可以根据实际需求选择使用FCKeditor或其后续替代品CKEditor,并且可以利用开源社区提供的各种资源进行功能的扩展和定制。