df = pd.read_excel('stockdata.xlsx', dtype={'股票代码': 'str'}) df['年份'] = pd.DatetimeIndex(df['日期']).year df = df.groupby(['股票代码', '年份', '行业代码']).mean().reset_index() df = df.groupby(by=['股票代码', '年份', '行业代码'], as_index=False).first() # 如果一个企业有多个实际控制人或行业代码,选取第一个数值 df.fillna(df.mean(), inplace=True) # 处理缺失值,使用均值填充 df['实际控制人性质']=df.fillna(method='bfill', inplace=True) df = df[['股票代码', '年份', '行业代码', '实际控制人性质', '短期负债', '长期负债合计', '资产负债率']] df.to_excel('a2.xlsx', index=False, encoding='utf-8')
时间: 2023-08-20 07:39:43 浏览: 91
这段代码是用来对股票数据进行处理的。首先,它从名为 "stockdata.xlsx" 的Excel文件中读取数据,数据中包括股票代码、日期、行业代码、实际控制人性质、短期负债、长期负债合计和资产负债率等字段。然后,它通过对日期进行处理,提取出年份,并按照股票代码、年份和行业代码进行分组,计算每组的均值,并将多个实际控制人或行业代码的情况下,选取第一个数值。接着,它使用均值填充缺失值,并将实际控制人性质填充为后一个非缺失值。最后,它选择股票代码、年份、行业代码、实际控制人性质、短期负债、长期负债合计和资产负债率这些字段,并将处理后的数据保存到名为 "a2.xlsx" 的Excel文件中。
相关问题
import pandas as pd df = pd.read_excel('stockdata.xlsx') freq = df['股票代码'].value_counts() print(freq)怎么运行不了
这段代码可能无法运行的原因可能有以下几种:
1. `stockdata.xlsx` 文件不存在或者路径不正确。
2. `pandas` 模块未安装或者版本过低。
3. `pd.read_excel()` 函数中的参数不正确,例如文件格式不是 Excel 格式或者 sheet 名称不正确。
4. `df['股票代码']` 中的列名不正确或者不存在。
你可以先检查以上几点,然后再运行代码。如果仍然无法运行,可以提供更多的错误信息或者代码上下文,这样我才能更好地帮助你解决问题。
stockdata = pd.read_excel('stockdata.xlsx')#pd.read_excel读取文件 count_dict = get_count_dict(stockdata) #调用get_count_dict 函数获取频数字典count_dict count = 0 for _ in count_dict.items(): count += _[1] frequency_dict = get_frequency_dict(count_dict, count) #将count_dict输入frequency 函数计算均值
这段代码是读取一个名为stockdata.xlsx的Excel文件,然后调用get_count_dict函数获取该文件中元素的频数字典count_dict。接着,代码会遍历count_dict并统计所有元素出现的次数,存储在count变量中。最后,代码会调用get_frequency_dict函数,将count_dict和count作为参数传递,计算出每个元素的频率字典frequency_dict。这里的均值可能是指所有元素出现次数的平均值。
阅读全文
相关推荐















