(1)读入鸢尾花数据,并显示全部鸢尾花数据,然后分别显示花萼数据和花瓣数据 (2)设计程序分别显示鸢尾花每个品种的花萼数据和花瓣数据 (3)使用pandas、numpy、matplotlib实现每个种类鸢尾花的Sepal.Length折线图 (4)使用pandas、numpy、matplotlib实现每个种类鸢尾花的Sepal.Width折线图 (5)使用pandas、numpy、matplotlib实现每个种类鸢尾花的Petal.Length柱状图 (6)使用pandas、numpy、matplotlib实现每个种类鸢尾花的Petal.Width柱状图
时间: 2024-02-28 16:54:35 浏览: 117
好的,以下是回答:
1. 读入鸢尾花数据,并显示全部鸢尾花数据,然后分别显示花萼数据和花瓣数据:
```python
import seaborn as sns
# 读入数据
iris_df = sns.load_dataset('iris')
# 显示全部数据
print(iris_df)
# 显示花萼数据
print(iris_df[['sepal_length', 'sepal_width']])
# 显示花瓣数据
print(iris_df[['petal_length', 'petal_width']])
```
2. 设计程序分别显示鸢尾花每个品种的花萼数据和花瓣数据:
```python
import seaborn as sns
# 读入数据
iris_df = sns.load_dataset('iris')
# 分别显示每个品种的花萼数据
for species in set(iris_df['species']):
print(f'\n{species} Sepal Data:')
print(iris_df[iris_df['species'] == species][['sepal_length', 'sepal_width']])
# 分别显示每个品种的花瓣数据
for species in set(iris_df['species']):
print(f'\n{species} Petal Data:')
print(iris_df[iris_df['species'] == species][['petal_length', 'petal_width']])
```
3. 使用pandas、numpy、matplotlib实现每个种类鸢尾花的Sepal.Length折线图:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# 读入数据
iris_df = sns.load_dataset('iris')
# 将数据按品种分类
setosa = iris_df[iris_df['species'] == 'setosa']
versicolor = iris_df[iris_df['species'] == 'versicolor']
virginica = iris_df[iris_df['species'] == 'virginica']
# 绘制折线图
plt.plot(setosa['sepal_length'], label='setosa')
plt.plot(versicolor['sepal_length'], label='versicolor')
plt.plot(virginica['sepal_length'], label='virginica')
plt.legend()
# 设定横纵坐标轴标签
plt.xlabel('Index')
plt.ylabel('Sepal Length')
# 显示图像
plt.show()
```
4. 使用pandas、numpy、matplotlib实现每个种类鸢尾花的Sepal.Width折线图:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# 读入数据
iris_df = sns.load_dataset('iris')
# 将数据按品种分类
setosa = iris_df[iris_df['species'] == 'setosa']
versicolor = iris_df[iris_df['species'] == 'versicolor']
virginica = iris_df[iris_df['species'] == 'virginica']
# 绘制折线图
plt.plot(setosa['sepal_width'], label='setosa')
plt.plot(versicolor['sepal_width'], label='versicolor')
plt.plot(virginica['sepal_width'], label='virginica')
plt.legend()
# 设定横纵坐标轴标签
plt.xlabel('Index')
plt.ylabel('Sepal Width')
# 显示图像
plt.show()
```
5. 使用pandas、numpy、matplotlib实现每个种类鸢尾花的Petal.Length柱状图:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# 读入数据
iris_df = sns.load_dataset('iris')
# 将数据按品种分类
setosa = iris_df[iris_df['species'] == 'setosa']
versicolor = iris_df[iris_df['species'] == 'versicolor']
virginica = iris_df[iris_df['species'] == 'virginica']
# 统计每个品种的Petal.Length均值
setosa_mean = np.mean(setosa['petal_length'])
versicolor_mean = np.mean(versicolor['petal_length'])
virginica_mean = np.mean(virginica['petal_length'])
# 绘制柱状图
plt.bar(['setosa', 'versicolor', 'virginica'], [setosa_mean, versicolor_mean, virginica_mean])
# 设定横纵坐标轴标签
plt.xlabel('Species')
plt.ylabel('Petal Length')
# 显示图像
plt.show()
```
6. 使用pandas、numpy、matplotlib实现每个种类鸢尾花的Petal.Width柱状图:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# 读入数据
iris_df = sns.load_dataset('iris')
# 将数据按品种分类
setosa = iris_df[iris_df['species'] == 'setosa']
versicolor = iris_df[iris_df['species'] == 'versicolor']
virginica = iris_df[iris_df['species'] == 'virginica']
# 统计每个品种的Petal.Width均值
setosa_mean = np.mean(setosa['petal_width'])
versicolor_mean = np.mean(versicolor['petal_width'])
virginica_mean = np.mean(virginica['petal_width'])
# 绘制柱状图
plt.bar(['setosa', 'versicolor', 'virginica'], [setosa_mean, versicolor_mean, virginica_mean])
# 设定横纵坐标轴标签
plt.xlabel('Species')
plt.ylabel('Petal Width')
# 显示图像
plt.show()
```
阅读全文
相关推荐


