活动介绍

root@0990f993406e:/# ollama run gemma2:2b >>> 你是一个智能助手.识别图片内容并打印https://team.gitee.cn/project/images/team-logo.svg ⠧ gemma2:2b运行内存要求

时间: 2025-07-07 19:47:06 浏览: 20
<think>好的,我现在需要回答用户关于Gemma2:2B模型运行内存要求的问题。首先,用户提到他们参考了站内的引用[1],其中提到了不同模型和配置所需的显卡性能,比如qwen:4b需要3060 12G,qwen:2b需要1660 6G。这可能帮助我推断Gemma2:2B的内存需求。 接下来,我需要考虑Gemma2:2B模型本身的特点。2B指的是20亿参数,属于中等规模的模型。通常,参数数量会影响内存占用,因为每个参数需要存储,比如在FP16精度下,每个参数占2字节,那么20亿参数大约需要4GB显存。但实际运行时会需要更多内存,因为还有激活值、优化器状态等开销。 然后,用户提到的引用[1]中提到低端CPU可以运行小模型,但速度慢,尤其是配合向量模型时会更慢。因此,Gemma2:2B可能在CPU上运行需要较大的系统内存,比如可能需要8GB或更多,但具体数值需要查阅官方文档或相关资源。 另外,用户可能想知道在GPU上的显存需求。根据类似模型的经验,比如qwen:2b在1660 6G上运行,可能Gemma2:2B在GPU上需要至少6GB显存,但如果有优化技术如量化,可能可以降低需求。 最后,我应该建议用户参考官方文档,因为不同的框架和优化方法会影响实际内存需求,同时提醒他们在CPU和GPU上的不同配置可能。</think>根据模型参数规模及常见推理需求,Gemma2:2B模型的运行内存要求可参考以下分析框架: 1. **基础显存估算** 对于20亿参数的模型,按FP16精度计算需要约$2B \times 2bytes = 4GB$基础显存,考虑激活值、中间计算结果等额外开销,建议预留至少6GB显存[^1] 2. **CPU运行要求** 若使用CPU推理,根据开源社区经验: - 最低配置:4核CPU + 8GB内存(量化版) - 推荐配置:8核CPU + 16GB内存(FP16精度) 3. **混合计算场景** 当配合M3E向量模型运行时: ```python # 典型的多模型加载示例 from transformers import AutoModel, AutoTokenizer gemma = AutoModel.from_pretrained("google/gemma-2b") m3e = AutoModel.from_pretrained("moka-ai/m3e-base") ``` 此时显存需求将叠加,建议使用12GB以上显存的GPU(如RTX 3060/3080)
阅读全文

相关推荐

非常好!我们将在前文的基础上,**重新整理一套完整、清晰、适合地质行业电脑小白用户的 AI 工作流部署方案**。该方案将基于: - **Windows 11 + WSL2** - **Docker Desktop(Linux 容器模式)** - **Ollama(本地大模型)** - **RAGFlow(文档知识库 + 向量检索)** - **Dify(可视化 AI 工作流)** - **Python 脚本(自动生成 Word 报告)** --- ## 📁 部署目标结构 D:\AI_Studio\ ├── apps\ # 所有应用程序安装目录 │ ├── docker\ # Docker Desktop 安装路径 │ ├── python\ # Python 安装路径 │ └── ollama\ # Ollama 原生可执行文件(备选) │ ├── data\ # 数据存储目录 │ ├── models\ # 模型缓存(如 Ollama 模型) │ ├── ragflow_data\ # RAGFlow 数据目录 │ ├── dify_data\ # Dify 数据目录 │ ├── docker\ # Docker 数据卷 │ └── reports\ # Word 报告模板与输出 │ ├── templates\ # Word 模板 │ └── output\ # 自动生成的报告 │ ├── installer\ # 安装包统一存放目录 │ ├── Docker Desktop Installer.exe │ ├── ollama-windows-amd64.exe │ └── python-3.11.9-amd64.exe │ └── scripts\ # 自定义脚本目录 └── generate_report.py # 自动生成 Word 报告的 Python 脚本 --- ## 🔧 第一步:准备系统环境 ### ✅ 1. 启用 WSL2(无需手动安装 Ubuntu) 以管理员身份打开 PowerShell: powershell # 启用 WSL 功能并安装默认发行版(Ubuntu) wsl --install # 设置默认版本为 WSL2 wsl --set-default-version 2 # 查看已安装的发行版 wsl --list --verbose > ⚠️ 如果未自动安装 Ubuntu,运行: powershell wsl --install -d Ubuntu 安装完成后设置用户名和密码。 --- ## 🐳 第二步:安装 Docker Desktop(集成 WSL2) ### ✅ 1. 下载安装包 放入: D:\AI_Studio\installer\Docker%20Desktop%20Installer.exe ### ✅ 2. 安装 Docker Desktop 双击运行安装程序,并选择安装路径为: D:\AI_Studio\apps\docker > 💡 如果安装程序不支持更改路径,可以先安装到默认位置,再移动文件夹并创建软链接。 ### ✅ 3. 设置 Docker 数据卷路径 编辑或新建配置文件: C:\ProgramData\Docker\config\daemon.json 写入内容: json { "data-root": "D:/AI_Studio/data/docker" } 重启 Docker 服务生效。 ### ✅ 4. 切换容器类型为 Linux 模式 右键任务栏 Docker Desktop 图标 → Switch to Linux containers --- ## 🧠 第三步:安装 Ollama(推荐使用 Docker 模式) ### ✅ 方法一:使用 Docker 运行 Ollama(推荐) powershell docker run -d -p 11434:11434 -v D:/AI_Studio/data/models:/root/.ollama infiniflow/ollama:latest 拉取模型: powershell ollama pull llama3 ### ✅ 方法二:使用原生 Windows 版本(备选) 将下载好的 ollama-windows-amd64.exe 放入: D:\AI_Studio\apps\ollama 重命名为 ollama.exe,并在 PowerShell 中运行: powershell cd D:\AI_Studio\apps\ollama .\ollama.exe serve --- ## 📚 第四步:部署 RAGFlow(基于 Docker) powershell mkdir D:\AI_Studio\data\ragflow_data docker run -d --name ragflow -p 8080:8080 -v D:/AI_Studio/data/ragflow_data:/data -e LOCAL_MODE=1 -e MODEL_PROVIDER=ollama -e OLLAMA_BASE_URL=http://host.docker.internal:11434 -e DEFAULT_VICUNA_MODEL=llama3 infiniflow/ragflow:latest 访问: http://localhost:8080 --- ## 🔧 第五步:部署 Dify(基于 Docker) powershell mkdir D:\AI_Studio\data\dify_data docker run -d --name dify -p 3000:3000 -v D:/AI_Studio/data/dify_data:/app/data -e DATABASE_URL=file:///app/data/dify.db -e OLLAMA_API_BASE=http://host.docker.internal:11434 -e MODEL_PROVIDER=ollama chatchat/oneclick:latest 访问: http://localhost:3000 --- ## 🐍 第六步:安装 Python(用于自动化脚本) ### ✅ 安装建议版本:Python 3.11.x 下载地址: 🔗 [https://www.python.org/downloads/windows/](https://www.python.org/downloads/windows/) 安装时请勾选: - ✅ Add Python to PATH(添加到系统环境变量) 修改安装路径为: D:\AI_Studio\apps\python ### ✅ 安装常用库 powershell pip install docxtpl requests python-docx pandas flask langchain --- ## 📝 第七步:编写自动化生成 Word 报告脚本 保存路径:D:\AI_Studio\scripts\generate_report.py python from docxtpl import DocxTemplate import os def generate_report(template_name, context): template_path = os.path.join("D:\\AI_Studio\\data\\reports\\templates", template_name) doc = DocxTemplate(template_path) doc.render(context) output_path = os.path.join("D:\\AI_Studio\\data\\reports\\output", f"report_{context['project']}.docx") doc.save(output_path) print(f"Report saved to {output_path}") # 示例调用 generate_report( "geology_template.docx", { "project": "某矿区勘探项目", "location": "新疆某地", "conclusion": "发现高品位铜矿带" } ) --- ## 🔁 第八步:整合工作流(RAGFlow + Dify + Python 报告生成) 你可以通过 Dify 构建如下 AI 工作流: 1. 用户上传 PDF 地质资料 2. Dify 调用 RAGFlow 提取关键信息(如构造、岩性、矿体等) 3. 输出结构化 JSON 数据 4. 传入 Python 脚本填充 Word 模板 5. 自动生成 Word 报告并归档至指定路径 --- ## ✅ 总结部署步骤一览表 | 步骤 | 操作说明 | |------|----------| | 1 | 创建完整目录结构:installer, apps, data, scripts | | 2 | 启用 WSL2 并安装 Ubuntu 子系统 | | 3 | 安装 Docker Desktop 到 D:\AI_Studio\apps\docker | | 4 | 设置 Docker 数据卷路径为 D:\AI_Studio\data\docker | | 5 | 使用 Docker 安装并运行 Ollama | | 6 | 设置 Ollama 模型缓存路径为 D:\AI_Studio\data\models | | 7 | 使用 Docker 部署 RAGFlow 到 D:\AI_Studio\data\ragflow_data | | 8 | 使用 Docker 部署 Dify 到 D:\AI_Studio\data\dify_data | | 9 | 安装 Python 到 D:\AI_Studio\apps\python | | 10 | 编写 Python 脚本实现 Word 报告自动生成 | | 11 | 使用 Dify 构建 AI 工作流,整合 RAGFlow 和 Word 生成模块 | --- ##电脑小白自动安装版

timestamp, hostname, api, model, precision, input_tokens, output_tokens, prefill_time, prefill_rate, decode_time, decode_rate, memory 20250518 15:24:27, lyan-desktop, mlc, HF://dusty-nv/Llama-3.2-1B-Instruct-q4f16_ft-MLC, MLC, 18, 128, 0.015906775333333335, 1152.1491596025971, 1.4829113754540684, 86.31680311712834, 1077.296875 20250518 15:28:46, lyan-desktop, mlc, HF://dusty-nv/Llama-3.2-3B-Instruct-q4f16_ft-MLC, MLC, 18, 128, 0.03446315800000001, 531.902004795764, 3.269266599979003, 39.152582515347646, 1181.3359375 20250518 15:35:20, lyan-desktop, mlc, HF://dusty-nv/Llama-3.1-8B-Instruct-q4f16_ft-MLC, MLC, 18, 128, 0.07374422466666666, 248.6317380453315, 6.871479741816272, 18.62775617455641, 1304.65625 20250518 15:41:21, lyan-desktop, mlc, HF://dusty-nv/Llama-2-7b-chat-hf-q4f16_ft-MLC, MLC, 20, 128, 0.06836841133333334, 292.5336252554004, 6.002553366173228, 21.32425965156252, 1055.89453125 20250518 15:43:42, lyan-desktop, mlc, HF://dusty-nv/Qwen2.5-0.5B-Instruct-q4f16_ft-MLC, MLC, 1, 114, 0.009421591, 106.18970215740416, 0.8550749830796254, 133.7521586434499, 1119.296875 20250518 15:46:37, lyan-desktop, mlc, HF://dusty-nv/Qwen2.5-1.5B-Instruct-q4f16_ft-MLC, MLC, 19, 115, 0.01937756733333334, 980.6365887546056, 1.610312740818777, 71.24470297966548, 1148.78515625 20250518 15:52:09, lyan-desktop, mlc, HF://dusty-nv/Qwen2.5-7B-Instruct-q4f16_ft-MLC, MLC, 19, 128, 0.06954662866666667, 273.19829106044574, 6.629001840209975, 19.309103655140483, 1232.62890625 20250518 15:56:17, lyan-desktop, mlc, HF://mlc-ai/gemma-2-2b-it-q4f16_1-MLC, MLC, 13, 128, 0.08149855200000002, 135.47223927944813, 3.651719763653544, 35.05265878612133, 1350.98828125 20250518 16:00:08, lyan-desktop, mlc, HF://dusty-nv/Phi-3.5-mini-instruct-q4f16_ft-MLC, MLC, 12, 128, 0.037959572000000004, 275.3450370674631, 3.610325953511811, 35.45386568470883, 1004.4296875 20250518 16:03:11, lyan-desktop, mlc, HF://dusty-nv/SmolLM2-135M-Instruct-q4f16_ft-MLC, MLC, 14, 128, 0.01486336666666667, 815.9287017266039, 0.659275389312336, 194.22638971451948, 1062.95703125 20250518 16:06:26, lyan-desktop, mlc, HF://dusty-nv/SmolLM2-360M-Instruct-q4f16_ft-MLC, MLC, 14, 110, 0.016463410333333334, 732.8045080487393, 0.6842916086847877, 160.87697704944213, 1115.4140625 20250518 16:09:36, lyan-desktop, mlc, HF://dusty-nv/SmolLM2-1.7B-Instruct-q4f16_ft-MLC, MLC, 14, 128, 0.02005880666666667, 625.9932727795469, 1.973092667128609, 64.87279019410019, 1018.12890625 20250518 16:17:01, lyan-desktop, mlc, HF://dusty-nv/Llama-3.2-1B-Instruct-q4f16_ft-MLC, MLC, 18, 128, 0.015236920000000001, 1202.960634832396, 1.44522712928084, 88.56740168877337, 1056.38671875 20250518 16:21:33, lyan-desktop, mlc, HF://dusty-nv/Llama-3.2-3B-Instruct-q4f16_ft-MLC, MLC, 18, 128, 0.034624267, 529.7432062949644, 3.259655160272966, 39.267977634764236, 1194.76953125 20250518 16:28:13, lyan-desktop, mlc, HF://dusty-nv/Llama-3.1-8B-Instruct-q4f16_ft-MLC, MLC, 18, 128, 0.07327828566666668, 250.12485665218432, 6.834818684976378, 18.72763683946975, 1302.98046875 20250518 16:34:42, lyan-desktop, mlc, HF://dusty-nv/Llama-2-7b-chat-hf-q4f16_ft-MLC, MLC, 20, 120, 0.06829140233333333, 292.8626724860238, 5.599301619388121, 21.43515084814026, 1058.5234375 20250518 16:36:59, lyan-desktop, mlc, HF://dusty-nv/Qwen2.5-0.5B-Instruct-q4f16_ft-MLC, MLC, 7, 128, 0.008347386333333333, 779.5177224666528, 0.9061044315380578, 141.3598096817907, 1082.25390625 20250518 16:40:09, lyan-desktop, mlc, HF://dusty-nv/Qwen2.5-1.5B-Instruct-q4f16_ft-MLC, MLC, 19, 108, 0.018811383, 1010.1042056478245, 1.492941049692798, 72.67303515868629, 1129.6015625 20250518 16:46:27, lyan-desktop, mlc, HF://dusty-nv/Qwen2.5-7B-Instruct-q4f16_ft-MLC, MLC, 19, 119, 0.07009660033333334, 271.06619029022124, 6.142558513069099, 19.427134623721756, 1245.9453125 20250518 16:50:39, lyan-desktop, mlc, HF://mlc-ai/gemma-2-2b-it-q4f16_1-MLC, MLC, 13, 126, 0.08088827000000001, 136.36136642323896, 3.5498229806472006, 35.397779561694016, 1370.6953125 20250518 16:54:27, lyan-desktop, mlc, HF://dusty-nv/Phi-3.5-mini-instruct-q4f16_ft-MLC, MLC, 12, 128, 0.03716280366666667, 283.0125363745294, 3.586102897889764, 35.69345110773751, 1019.16796875 20250518 16:57:24, lyan-desktop, mlc, HF://dusty-nv/SmolLM2-135M-Instruct-q4f16_ft-MLC, MLC, 20, 128, 0.008601623333333334, 2363.705761481012, 0.5499296702152231, 232.7570912557338, 1054.53125 20250518 17:00:34, lyan-desktop, mlc, HF://dusty-nv/SmolLM2-360M-Instruct-q4f16_ft-MLC, MLC, 8, 112, 0.008005688666666667, 752.27271816386, 0.666063508656693, 168.79378782298483, 1106.52734375 20250518 17:03:35, lyan-desktop, mlc, HF://dusty-nv/SmolLM2-1.7B-Instruct-q4f16_ft-MLC, MLC, 20, 111, 0.02133993233333334, 952.7117527879018, 1.685485941457729, 65.8915225054968, 1010.81640625 output as table

/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/tyro/_parsers.py:332: UserWarning: The field model.action-expert-variant is annotated with type typing.Literal['dummy', 'gemma_300m', 'gemma_2b', 'gemma_2b_lora'], but the default value gemma_300m_lora has type <class 'str'>. We'll try to handle this gracefully, but it may cause unexpected behavior. warnings.warn(message) 19:07:30.004 [I] Running on: shuo-hp (10287:train.py:195) INFO:2025-05-12 19:07:30,228:jax._src.xla_bridge:945: Unable to initialize backend 'rocm': module 'jaxlib.xla_extension' has no attribute 'GpuAllocatorConfig' 19:07:30.228 [I] Unable to initialize backend 'rocm': module 'jaxlib.xla_extension' has no attribute 'GpuAllocatorConfig' (10287:xla_bridge.py:945) INFO:2025-05-12 19:07:30,228:jax._src.xla_bridge:945: Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory 19:07:30.228 [I] Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory (10287:xla_bridge.py:945) 19:07:30.500 [I] Wiped checkpoint directory /home/shuo/VLA/openpi/checkpoints/pi0_ours_aloha/your_experiment_name (10287:checkpoints.py:25) 19:07:30.500 [I] Created BasePyTreeCheckpointHandler: pytree_metadata_options=PyTreeMetadataOptions(support_rich_types=False), array_metadata_store=None (10287:base_pytree_checkpoint_handler.py:332) 19:07:30.500 [I] Created BasePyTreeCheckpointHandler: pytree_metadata_options=PyTreeMetadataOptions(support_rich_types=False), array_metadata_store=None (10287:base_pytree_checkpoint_handler.py:332) 19:07:30.500 [I] [thread=MainThread] Failed to get flag value for EXPERIMENTAL_ORBAX_USE_DISTRIBUTED_PROCESS_ID. (10287:multihost.py:375) 19:07:30.500 [I] [process=0][thread=MainThread] CheckpointManager init: checkpointers=None, item_names=None, item_handlers={'assets': <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50>, 'train_state': <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90>, 'params': <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0>}, handler_registry=None (10287:checkpoint_manager.py:622) 19:07:30.501 [I] Deferred registration for item: "assets". Adding handler <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50> for item "assets" and save args <class 'openpi.training.checkpoints.CallbackSave'> and restore args <class 'openpi.training.checkpoints.CallbackRestore'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Deferred registration for item: "train_state". Adding handler <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90> for item "train_state" and save args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'> and restore args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Deferred registration for item: "params". Adding handler <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0> for item "params" and save args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'> and restore args <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Deferred registration for item: "metrics". Adding handler <orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonCheckpointHandler object at 0x72e5cad7fd10> for item "metrics" and save args <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonSaveArgs'> and restore args <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonRestoreArgs'> to _handler_registry. (10287:composite_checkpoint_handler.py:239) 19:07:30.501 [I] Initialized registry DefaultCheckpointHandlerRegistry({('assets', <class 'openpi.training.checkpoints.CallbackSave'>): <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50>, ('assets', <class 'openpi.training.checkpoints.CallbackRestore'>): <openpi.training.checkpoints.CallbackHandler object at 0x72e5cae0ff50>, ('train_state', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90>, ('train_state', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa0e90>, ('params', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeSaveArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0>, ('params', <class 'orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeRestoreArgs'>): <orbax.checkpoint._src.handlers.pytree_checkpoint_handler.PyTreeCheckpointHandler object at 0x72e5cafa05d0>, ('metrics', <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonSaveArgs'>): <orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonCheckpointHandler object at 0x72e5cad7fd10>, ('metrics', <class 'orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonRestoreArgs'>): <orbax.checkpoint._src.handlers.json_checkpoint_handler.JsonCheckpointHandler object at 0x72e5cad7fd10>}). (10287:composite_checkpoint_handler.py:508) 19:07:30.501 [I] orbax-checkpoint version: 0.11.1 (10287:abstract_checkpointer.py:35) 19:07:30.501 [I] [process=0][thread=MainThread] Using barrier_sync_fn: <function get_barrier_sync_fn.<locals>.<lambda> at 0x72e5cacb85e0> timeout: 7200 secs and primary_host=0 for async checkpoint writes (10287:async_checkpointer.py:80) 19:07:30.501 [I] Found 0 checkpoint steps in /home/shuo/VLA/openpi/checkpoints/pi0_ours_aloha/your_experiment_name (10287:checkpoint_manager.py:1528) 19:07:30.501 [I] Saving root metadata (10287:checkpoint_manager.py:1569) 19:07:30.501 [I] [process=0][thread=MainThread] Skipping global process sync, barrier name: CheckpointManager:save_metadata (10287:multihost.py:293) 19:07:30.501 [I] [process=0][thread=MainThread] CheckpointManager created, primary_host=0, CheckpointManagerOptions=CheckpointManagerOptions(save_interval_steps=1, max_to_keep=1, keep_time_interval=None, keep_period=5000, should_keep_fn=None, best_fn=None, best_mode='max', keep_checkpoints_without_metrics=True, step_prefix=None, step_format_fixed_length=None, step_name_format=None, create=False, cleanup_tmp_directories=False, save_on_steps=frozenset(), single_host_load_and_broadcast=False, todelete_subdir=None, enable_background_delete=False, read_only=False, enable_async_checkpointing=True, async_options=AsyncOptions(timeout_secs=7200, barrier_sync_fn=None, post_finalization_callback=None, create_directories_asynchronously=False), multiprocessing_options=MultiprocessingOptions(primary_host=0, active_processes=None, barrier_sync_key_prefix=None), should_save_fn=None, file_options=FileOptions(path_permission_mode=None), save_root_metadata=True, temporary_path_class=None, save_decision_policy=None), root_directory=/home/shuo/VLA/openpi/checkpoints/pi0_ours_aloha/your_experiment_name: <orbax.checkpoint.checkpoint_manager.CheckpointManager object at 0x72e5cadffd10> (10287:checkpoint_manager.py:797) 19:07:30.553 [I] Loaded norm stats from s3://openpi-assets/checkpoints/pi0_base/assets/trossen (10287:config.py:166) Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). 19:07:30.553 [W] Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). (10287:_snapshot_download.py:213) Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). 19:07:30.554 [W] Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). (10287:_snapshot_download.py:213) Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). 19:07:30.555 [W] Returning existing local_dir /home/shuo/VLA/lerobot/aloha-real-data as remote repo cannot be accessed in snapshot_download (None). (10287:_snapshot_download.py:213) Traceback (most recent call last): File "/home/shuo/VLA/openpi/scripts/train.py", line 273, in <module> main(_config.cli()) File "/home/shuo/VLA/openpi/scripts/train.py", line 226, in main batch = next(data_iter) ^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/training/data_loader.py", line 177, in __iter__ for batch in self._data_loader: File "/home/shuo/VLA/openpi/src/openpi/training/data_loader.py", line 257, in __iter__ batch = next(data_iter) ^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 708, in __next__ data = self._next_data() ^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 1480, in _next_data return self._process_data(data) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/dataloader.py", line 1505, in _process_data data.reraise() File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/_utils.py", line 733, in reraise raise exception KeyError: Caught KeyError in DataLoader worker process 0. Original Traceback (most recent call last): File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/_utils/worker.py", line 349, in _worker_loop data = fetcher.fetch(index) # type: ignore[possibly-undefined] ^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 52, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 52, in data = [self.dataset[idx] for idx in possibly_batched_index] ~~~~~~~~~~~~^^^^^ File "/home/shuo/VLA/openpi/src/openpi/training/data_loader.py", line 47, in __getitem__ return self._transform(self._dataset[index]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/transforms.py", line 70, in __call__ data = transform(data) ^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/transforms.py", line 101, in __call__ return jax.tree.map(lambda k: flat_item[k], self.structure) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/jax/_src/tree.py", line 155, in map return tree_util.tree_map(f, tree, *rest, is_leaf=is_leaf) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/jax/_src/tree_util.py", line 358, in tree_map return treedef.unflatten(f(*xs) for xs in zip(*all_leaves)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/shuo/VLA/openpi/.venv/lib/python3.11/site-packages/jax/_src/tree_util.py", line 358, in <genexpr> return treedef.unflatten(f(*xs) for xs in zip(*all_leaves)) ^^^^^^ File "/home/shuo/VLA/openpi/src/openpi/transforms.py", line 101, in <lambda> return jax.tree.map(lambda k: flat_item[k], self.structure) ~~~~~~~~~^^^ KeyError: 'observation.images.cam_low'

dify怎么加ollama的gemma2:2b ,sandbox-1 | [GIN] 2025/03/19 - 03:07:50 | 200 | 29.11µs | ::1 | GET "/health" sandbox-1 | [GIN] 2025/03/19 - 03:08:21 | 200 | 25.57µs | ::1 | GET "/health" plugin_daemon-1 | [GIN] 2025/03/19 - 03:08:21 | 200 | 5m0s | 172.18.0.8 | POST "/plugin/a0378355-47af-456d-8d69-9f0a57f0857a/dispatch/model/validate_model_credentials" api-1 | 2025-03-19 03:08:21.371 ERROR [Dummy-3] [models.py:162] - Failed to save model credentials, tenant_id: a0378355-47af-456d-8d69-9f0a57f0857a, model: gemma2:2b, model_type: llm api-1 | Traceback (most recent call last): api-1 | File "/app/api/controllers/console/workspace/models.py", line 154, in post api-1 | model_provider_service.save_model_credentials( api-1 | File "/app/api/services/model_provider_service.py", line 237, in save_model_credentials api-1 | provider_configuration.add_or_update_custom_model_credentials( api-1 | File "/app/api/core/entities/provider_configuration.py", line 422, in add_or_update_custom_model_credentials api-1 | provider_model_record, credentials = self.custom_model_credentials_validate(model_type, model, credentials) api-1 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ api-1 | File "/app/api/core/entities/provider_configuration.py", line 402, in custom_model_credentials_validate api-1 | credentials = model_provider_factory.model_credentials_validate( api-1 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ api-1 | File "/app/api/core/model_runtime/model_providers/model_provider_factory.py", line 191, in model_credentials_validate api-1 | self.plugin_model_manager.validate_model_credentials( api-1 | File "/app/api/core/plugin/manage

vllm serve 部署模型出现ERROR 03-21 09:05:00 engine.py:400] 'Gemma3Config' object has no attribute 'vocab_size' ERROR 03-21 09:05:00 engine.py:400] Traceback (most recent call last): ERROR 03-21 09:05:00 engine.py:400] File "/usr/local/python3.10/lib/python3.10/site-packages/vllm/engine/multiprocessing/engine.py", line 391, in run_mp_engine ERROR 03-21 09:05:00 engine.py:400] engine = MQLLMEngine.from_engine_args(engine_args=engine_args, ERROR 03-21 09:05:00 engine.py:400] File "/usr/local/python3.10/lib/python3.10/site-packages/vllm/engine/multiprocessing/engine.py", line 124, in from_engine_args ERROR 03-21 09:05:00 engine.py:400] return cls(ipc_path=ipc_path, ERROR 03-21 09:05:00 engine.py:400] File "/usr/local/python3.10/lib/python3.10/site-packages/vllm/engine/multiprocessing/engine.py", line 76, in __init__ ERROR 03-21 09:05:00 engine.py:400] self.engine = LLMEngine(*args, **kwargs) ERROR 03-21 09:05:00 engine.py:400] File "/usr/local/python3.10/lib/python3.10/site-packages/vllm/engine/llm_engine.py", line 273, in __init__ ERROR 03-21 09:05:00 engine.py:400] self.model_executor = executor_class(vllm_config=vllm_config, ) ERROR 03-21 09:05:00 engine.py:400] File "/usr/local/python3.10/lib/python3.10/site-packages/vllm/executor/executor_base.py", line 52, in __init__ ERROR 03-21 09:05:00 engine.py:400] self._init_executor() ERROR 03-21 09:05:00 engine.py:400] File "/usr/local/python3.10/lib/python3.10/site-packages/vllm/executor/uniproc_executor.py", line 47, in _init_executor ERROR 03-21 09:05:00 engine.py:400] self.collective_rpc("load_model") ERROR 03-21 09:05:00 engine.py:400] File "/usr/local/python3.10/lib/python3.10/site-packages/vllm/executor/uniproc_executor.py", line 56, in collective_rpc ERROR 03-21 09:05:00 engine.py:400] answer = run_method(self.driver_worker, method, args, kwargs) ERROR 03-21 09:05:00 engine.py:400] File "/usr/local/python3.10/lib/python3.10/site-packages/vllm/utils.py", line 2196, in run_method ERROR 03-21 09:05:00 engine.py:400] return func(*args, **kwargs) ERROR 03-21 09:05:00 engine.py:400] File "/usr/local/python3.10/lib/python3.10/site-packages/vllm_ascend/worker/worker.py", line 179, in load_model ERROR 03-21 09:05:00 engine.py:400] self.model_runner.load_model() ERROR 03-21 09:05:00 engine.py:400] File "/usr/local/python3.10/lib/python3.10/site-packages/vllm_ascend/worker/model_runner.py", line 818, in load_model ERROR 03-21 09:05:00 engine.py:400] self.model = get_model(vllm_config=self.vllm_config) ERROR 03-21 09:05:00 engine.py:400] File "/usr/local/python3.10/lib/python3.10/site-packages/vllm/model_executor/model_loader/__init__.py", line 14, in get_model ERROR 03-21 09:05:00 engine.py:400] return loader.load_model(vllm_config=vllm_config) ERROR 03-21 09:05:00 engine.py:400] File "/usr/local/python3.10/lib/python3.10/site-packages/vllm/model_executor/model_loader/loader.py", line 406, in load_model ERROR 03-21 09:05:00 engine.py:400] model = _initialize_model(vllm_config=vllm_config) ERROR 03-21 09:05:00 engine.py:400] File "/usr/local/python3.10/lib/python3.10/site-packages/vllm/model_executor/model_loader/loader.py", line 125, in _initialize_model ERROR 03-21 09:05:00 engine.py:400] return model_class(vllm_config=vllm_config, prefix=prefix) ERROR 03-21 09:05:00 engine.py:400] File "/usr/local/python3.10/lib/python3.10/site-packages/vllm/model_executor/models/transformers.py", line 135, in __init__ ERROR 03-21 09:05:00 engine.py:400] self.vocab_size = config.vocab_size ERROR 03-21 09:05:00 engine.py:400] File "/usr/local/python3.10/lib/python3.10/site-packages/transformers/configuration_utils.py", line 214, in __getattribute__ ERROR 03-21 09:05:00 engine.py:400] return super().__getattribute__(key)

大家在看

recommend-type

ELEC5208 Group project submissions.zip_furniturer4m_smart grid_悉

悉尼大学ELEC5208智能电网project的很多组的报告和code都在里面,供学习和参考
recommend-type

基于python单通道脑电信号的自动睡眠分期研究

【作品名称】:基于python单通道脑电信号的自动睡眠分期研究 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:网络结构(具体可查看network.py文件): 网络整体结构类似于TinySleepNet,对RNN部分进行了修改,增加了双向RNN、GRU、Attention等网络结构,可根据参数进行调整选择。 定义了seq_len参数,可以更灵活地调整batch_size与seq_len。 数据集加载(具体可查看dataset.py文件) 直接继承自torch的Dataset,并定义了seq_len和shuffle_seed,方便调整输入,并复现实验。 训练(具体可查看train.py文件): 定义并使用了focal loss损失函数 在实验中有使用wandb,感觉用起来还挺方便的,非常便于实验记录追溯 测试(具体可查看test.py文件): 可以输出accuracy、mf1、recall_confusion_matrics、precision_confusion_matrics、f1
recommend-type

bid格式文件电子标书阅读器.zip

软件介绍: bid格式招投标文件阅读器,可以打开浏览、管理电子招标文件,如果打不开标书文件,请按下面步骤检查:1、请查看招标文件(.bid文件)是否下载完全,请用IE下载工具下载;2、查看IE浏览器版本,如果版本低于IE8,低于IE8版本的请升级为IE8浏览器。
recommend-type

机器翻译WMT14数据集

机器翻译WMT14数据集,ACL2014公布的share task,很多模型都在这上benchmark
recommend-type

高通QXDM使用手册.pdf

高通QXDM使用手册,介绍高通QXDM工具软件的使用,中文版的哦。

最新推荐

recommend-type

C#类库封装:简化SDK调用实现多功能集成,构建地磅无人值守系统

内容概要:本文介绍了利用C#类库封装多个硬件设备的SDK接口,实现一系列复杂功能的一键式调用。具体功能包括身份证信息读取、人证识别、车牌识别(支持臻识和海康摄像头)、LED显示屏文字输出、称重数据读取、二维码扫描以及语音播报。所有功能均被封装为简单的API,极大降低了开发者的工作量和技术门槛。文中详细展示了各个功能的具体实现方式及其应用场景,如身份证读取、人证核验、车牌识别等,并最终将这些功能整合到一起,形成了一套完整的地磅称重无人值守系统解决方案。 适合人群:具有一定C#编程经验的技术人员,尤其是需要快速集成多种硬件设备SDK的应用开发者。 使用场景及目标:适用于需要高效集成多种硬件设备SDK的项目,特别是那些涉及身份验证、车辆管理、物流仓储等领域的企业级应用。通过使用这些封装好的API,可以大大缩短开发周期,降低维护成本,提高系统的稳定性和易用性。 其他说明:虽然封装后的API极大地简化了开发流程,但对于一些特殊的业务需求,仍然可能需要深入研究底层SDK。此外,在实际部署过程中,还需考虑网络环境、硬件兼容性等因素的影响。
recommend-type

基于STM32F1的BLDC无刷直流电机与PMSM永磁同步电机源码解析:传感器与无传感器驱动详解

基于STM32F1的BLDC无刷直流电机和PMSM永磁同步电机的驱动实现方法,涵盖了有传感器和无传感两种驱动方式。对于BLDC电机,有传感器部分采用霍尔传感器进行六步换相,无传感部分则利用反电动势过零点检测实现换相。对于PMSM电机,有传感器部分包括霍尔传感器和编码器的方式,无传感部分则采用了滑模观测器进行矢量控制(FOC)。文中不仅提供了详细的代码片段,还分享了许多调试经验和技巧。 适合人群:具有一定嵌入式系统和电机控制基础知识的研发人员和技术爱好者。 使用场景及目标:适用于需要深入了解和实现BLDC和PMSM电机驱动的开发者,帮助他们掌握不同传感器条件下的电机控制技术和优化方法。 其他说明:文章强调了实际调试过程中可能遇到的问题及其解决方案,如霍尔传感器的中断触发换相、反电动势过零点检测的采样时机、滑模观测器的参数调整以及编码器的ABZ解码等。
recommend-type

Teleport Pro教程:轻松复制网站内容

标题中提到的“复制别人网站的软件”指向的是一种能够下载整个网站或者网站的特定部分,然后在本地或者另一个服务器上重建该网站的技术或工具。这类软件通常被称作网站克隆工具或者网站镜像工具。 描述中提到了一个具体的教程网址,并提到了“天天给力信誉店”,这可能意味着有相关的教程或资源可以在这个网店中获取。但是这里并没有提供实际的教程内容,仅给出了网店的链接。需要注意的是,根据互联网法律法规,复制他人网站内容并用于自己的商业目的可能构成侵权,因此在此类工具的使用中需要谨慎,并确保遵守相关法律法规。 标签“复制 别人 网站 软件”明确指出了这个工具的主要功能,即复制他人网站的软件。 文件名称列表中列出了“Teleport Pro”,这是一款具体的网站下载工具。Teleport Pro是由Tennyson Maxwell公司开发的网站镜像工具,允许用户下载一个网站的本地副本,包括HTML页面、图片和其他资源文件。用户可以通过指定开始的URL,并设置各种选项来决定下载网站的哪些部分。该工具能够帮助开发者、设计师或内容分析人员在没有互联网连接的情况下对网站进行离线浏览和分析。 从知识点的角度来看,Teleport Pro作为一个网站克隆工具,具备以下功能和知识点: 1. 网站下载:Teleport Pro可以下载整个网站或特定网页。用户可以设定下载的深度,例如仅下载首页及其链接的页面,或者下载所有可访问的页面。 2. 断点续传:如果在下载过程中发生中断,Teleport Pro可以从中断的地方继续下载,无需重新开始。 3. 过滤器设置:用户可以根据特定的规则过滤下载内容,如排除某些文件类型或域名。 4. 网站结构分析:Teleport Pro可以分析网站的链接结构,并允许用户查看网站的结构图。 5. 自定义下载:用户可以自定义下载任务,例如仅下载图片、视频或其他特定类型的文件。 6. 多任务处理:Teleport Pro支持多线程下载,用户可以同时启动多个下载任务来提高效率。 7. 编辑和管理下载内容:Teleport Pro具备编辑网站镜像的能力,并可以查看、修改下载的文件。 8. 离线浏览:下载的网站可以在离线状态下浏览,这对于需要测试网站在不同环境下的表现的情况十分有用。 9. 备份功能:Teleport Pro可以用来备份网站,确保重要数据的安全。 在实际使用此类工具时,需要注意以下几点: - 著作权法:复制网站内容可能侵犯原作者的版权,因此在使用此类工具时,必须确保有合法权利去下载和使用目标网站的内容。 - 服务条款:许多网站的服务条款明确禁止未经授权的网站克隆。因此,在使用此类软件之前,应当仔细阅读并遵守目标网站的服务条款。 - 数据隐私:下载含有个人数据的网站可能触及隐私保护法律,特别是在欧洲通用数据保护条例(GDPR)等法规的环境下。 - 网络安全:随意下载网站可能导致恶意软件和病毒的传播,用户应当使用最新的反病毒软件,并在安全的环境中进行操作。 综上所述,虽然“复制别人网站的软件”在技术上是可行的,且可以用于多种正当目的,但在使用此类工具时,必须遵守法律法规和道德规范,不可侵犯他人的合法权益。
recommend-type

【跨平台开发者的必读】:解决Qt5Widgetsd.lib目标计算机类型冲突终极指南

# 1. 跨平台开发与Qt框架简介 跨平台开发已经成为现代软件开发中不可或缺的一部分,它使得开发者能够构建出能够在多种操作系统上运行的应用程序,从而触及更广泛的用户群体。在这其中,Qt框架作为一套成熟的跨平台应用程序和用户界面框架,扮演着关键角色。Qt不仅仅是一个跨平台的工具集,它的设计哲学还包含了模块化和可扩展性,使其能够适应各种规模和复杂度的项目。本章节我们将简要介绍
recommend-type

普通RNN结构和特点

<think>首先,用户的问题是:“我想了解普通RNN的结构及其特点请问RNN循环神经网络结构特点工作原理”。这涉及到RNN的结构、特点和工作原理。根据系统级指令:-所有行内数学表达式必须使用$...$格式。-独立公式必须使用$$...$$格式并单独成段。-LaTeX语法正确。-使用中文回答。-生成相关问题。-回答中引用的段落末尾自然地添加引用标识。用户可见层指令:-回答结构清晰,帮助用户逐步解决问题。-保证回答真实可靠。参考站内引用:-引用[1]:关于RNN的基本介绍,为什么需要RNN。-引用[2]:关于RNN的工作原理、结构图,以及与其他网络的比较。用户上一次的问题和我的回答:用户是第一次
recommend-type

探讨通用数据连接池的核心机制与应用

根据给定的信息,我们能够推断出讨论的主题是“通用数据连接池”,这是一个在软件开发和数据库管理中经常用到的重要概念。在这个主题下,我们可以详细阐述以下几个知识点: 1. **连接池的定义**: 连接池是一种用于管理数据库连接的技术,通过维护一定数量的数据库连接,使得连接的创建和销毁操作更加高效。开发者可以在应用程序启动时预先创建一定数量的连接,并将它们保存在一个池中,当需要数据库连接时,可以直接从池中获取,从而降低数据库连接的开销。 2. **通用数据连接池的概念**: 当提到“通用数据连接池”时,它意味着这种连接池不仅支持单一类型的数据库(如MySQL、Oracle等),而且能够适应多种不同数据库系统。设计一个通用的数据连接池通常需要抽象出一套通用的接口和协议,使得连接池可以兼容不同的数据库驱动和连接方式。 3. **连接池的优点**: - **提升性能**:由于数据库连接创建是一个耗时的操作,连接池能够减少应用程序建立新连接的时间,从而提高性能。 - **资源复用**:数据库连接是昂贵的资源,通过连接池,可以最大化现有连接的使用,避免了连接频繁创建和销毁导致的资源浪费。 - **控制并发连接数**:连接池可以限制对数据库的并发访问,防止过载,确保数据库系统的稳定运行。 4. **连接池的关键参数**: - **最大连接数**:池中能够创建的最大连接数。 - **最小空闲连接数**:池中保持的最小空闲连接数,以应对突发的连接请求。 - **连接超时时间**:连接在池中保持空闲的最大时间。 - **事务处理**:连接池需要能够管理不同事务的上下文,保证事务的正确执行。 5. **实现通用数据连接池的挑战**: 实现一个通用的连接池需要考虑到不同数据库的连接协议和操作差异。例如,不同的数据库可能有不同的SQL方言、认证机制、连接属性设置等。因此,通用连接池需要能够提供足够的灵活性,允许用户配置特定数据库的参数。 6. **数据连接池的应用场景**: - **Web应用**:在Web应用中,为了处理大量的用户请求,数据库连接池可以保证数据库连接的快速复用。 - **批处理应用**:在需要大量读写数据库的批处理作业中,连接池有助于提高整体作业的效率。 - **微服务架构**:在微服务架构中,每个服务可能都需要与数据库进行交互,通用连接池能够帮助简化服务的数据库连接管理。 7. **常见的通用数据连接池技术**: - **Apache DBCP**:Apache的一个Java数据库连接池库。 - **C3P0**:一个提供数据库连接池和控制工具的开源Java框架。 - **HikariCP**:目前性能最好的开源Java数据库连接池之一。 - **BoneCP**:一个高性能的开源Java数据库连接池。 - **Druid**:阿里巴巴开源的一个数据库连接池,提供了对性能监控的高级特性。 8. **连接池的管理与监控**: 为了保证连接池的稳定运行,开发者需要对连接池的状态进行监控,并对其进行适当的管理。监控指标可能包括当前活动的连接数、空闲的连接数、等待获取连接的请求队列长度等。一些连接池提供了监控工具或与监控系统集成的能力。 9. **连接池的配置和优化**: 连接池的性能与连接池的配置密切相关。需要根据实际的应用负载和数据库性能来调整连接池的参数。例如,在高并发的场景下,可能需要增加连接池中连接的数量。另外,适当的线程池策略也可以帮助连接池更好地服务于多线程环境。 10. **连接池的应用案例**: 一个典型的案例是电商平台在大型促销活动期间,用户访问量激增,此时通用数据连接池能够保证数据库操作的快速响应,减少因数据库连接问题导致的系统瓶颈。 总结来说,通用数据连接池是现代软件架构中的重要组件,它通过提供高效的数据库连接管理,增强了软件系统的性能和稳定性。了解和掌握连接池的原理及实践,对于任何涉及数据库交互的应用开发都至关重要。在实现和应用连接池时,需要关注其设计的通用性、配置的合理性以及管理的有效性,确保在不同的应用场景下都能发挥出最大的效能。
recommend-type

【LabVIEW网络通讯终极指南】:7个技巧提升UDP性能和安全性

# 摘要 本文系统介绍了LabVIEW在网络通讯中的应用,尤其是针对UDP协议的研究与优化。首先,阐述了UDP的原理、特点及其在LabVIEW中的基础应用。随后,本文深入探讨了通过调整数据包大小、实现并发通信及优化缓冲区管理等技巧来优化UDP性能的LabVIEW方法。接着,文章聚焦于提升UDP通信安全性,介绍了加密技术和认证授权机制在LabVIEW中的实现,以及防御网络攻击的策略。最后,通过具体案例展示了LabVIEW在实时数据采集和远程控制系统中的高级应用,并展望了LabVIEW与UDP通讯技术的未来发展趋势及新兴技术的影响。 # 关键字 LabVIEW;UDP网络通讯;性能优化;安全性;
recommend-type

简要介绍cnn卷积神经网络

<think>首先,用户的问题是:“我想了解卷积神经网络的基本概念和原理 请问CNN卷积神经网络简介及其工作原理”。所以,我需要基于提供的引用材料,构建一个清晰的回答。 引用材料总结: - [^1]: CNN的核心思想是局部感受野、权值共享和时间或空间亚采样,提供位移、尺度、形变不变性。三大特色:局部感知、权重共享和多卷积核。 - [^2]: CNN是一种前馈神经网络,由卷积层和池化层组成,特别在图像处理方面出色。与传统多层神经网络相比,CNN加入了卷积层和池化层,使特征学习更有效。 - [^3]: CNN与全连接神经网络的区别:至少有一个卷积层提取特征;神经元局部连接和权值共享,减少参数数
recommend-type

基于ASP的深度学习网站导航系统功能详解

从给定文件中我们可以提取以下IT知识点: ### 标题知识点 #### "ASP系统篇" - **ASP技术介绍**:ASP(Active Server Pages)是一种服务器端的脚本环境,用于创建动态交互式网页。ASP允许开发者将HTML网页与服务器端脚本结合,使用VBScript或JavaScript等语言编写代码,以实现网页内容的动态生成。 - **ASP技术特点**:ASP适用于小型到中型的项目开发,它可以与数据库紧密集成,如Microsoft的Access和SQL Server。ASP支持多种组件和COM(Component Object Model)对象,使得开发者能够实现复杂的业务逻辑。 #### "深度学习网址导航系统" - **深度学习概念**:深度学习是机器学习的一个分支,通过构建深层的神经网络来模拟人类大脑的工作方式,以实现对数据的高级抽象和学习。 - **系统功能与深度学习的关系**:该标题可能意味着系统在进行网站分类、搜索优化、内容审核等方面采用了深度学习技术,以提供更智能、自动化的服务。然而,根据描述内容,实际上系统并没有直接使用深度学习技术,而是提供了一个传统的网址导航服务,可能是命名上的噱头。 ### 描述知识点 #### "全后台化管理,操作简单" - **后台管理系统的功能**:后台管理系统允许网站管理员通过Web界面执行管理任务,如内容更新、用户管理等。它通常要求界面友好,操作简便,以适应不同技术水平的用户。 #### "栏目无限分类,自由添加,排序,设定是否前台显示" - **动态网站结构设计**:这意味着网站结构具有高度的灵活性,支持创建无限层级的分类,允许管理员自由地添加、排序和设置分类的显示属性。这种设计通常需要数据库支持动态生成内容。 #### "各大搜索和站内搜索随意切换" - **搜索引擎集成**:网站可能集成了外部搜索引擎(如Google、Bing)和内部搜索引擎功能,让用户能够方便地从不同来源获取信息。 #### "网站在线提交、审阅、编辑、删除" - **内容管理系统的功能**:该系统提供了一个内容管理平台,允许用户在线提交内容,由管理员进行审阅、编辑和删除操作。 #### "站点相关信息后台动态配置" - **动态配置机制**:网站允许管理员通过后台系统动态调整各种配置信息,如网站设置、参数调整等,从而实现快速的网站维护和更新。 #### "自助网站收录,后台审阅" - **网站收录和审核机制**:该系统提供了一套自助收录流程,允许其他网站提交申请,由管理员进行后台审核,决定是否收录。 #### "网站广告在线发布" - **广告管理功能**:网站允许管理员在线发布和管理网站广告位,以实现商业变现。 #### "自动生成静态页 ver2.4.5" - **动态与静态内容**:系统支持动态内容的生成,同时也提供了静态页面的生成机制,这可能有助于提高网站加载速度和搜索引擎优化。 #### "重写后台网址分类管理" - **系统优化与重构**:提到了后台网址分类管理功能的重写,这可能意味着系统进行了一次重要的更新,以修复前一个版本的错误,并提高性能。 ### 标签知识点 #### "ASP web 源代码 源码" - **ASP程序开发**:标签表明这是一个ASP语言编写的网站源代码,可能是一个开源项目,供开发者下载、研究或部署到自己的服务器上。 ### 压缩包子文件名称列表知识点 #### "深度学习(asp)网址导航程序" - **文件内容和类型**:文件列表中提到的“深度学习(asp)网址导航程序”表明这是一个ASP语言编写的网址导航系统程序,可能包含了系统安装和配置需要的所有源文件。 通过以上分析,我们可以得出这个ASP系统是一个传统的网址导航系统,以后台管理为核心功能,并没有实际运用到深度学习技术。系统的主要功能包括对网站内容、分类、搜索引擎、广告位、以及其他网站相关信息的管理。它可能还提供了一个平台,供用户提交网址,供管理员审核并收录到导航中。源代码可能以ASP语言编写,并在文件中包含了所有必要的程序文件。
recommend-type

【Oracle数据泵进阶技巧】:避免ORA-31634和ORA-31664错误的终极策略

# 1. Oracle数据泵技术概述 ## Oracle数据泵技术简介 Oracle数据泵(Data Pump)是一种用于高效地在Oracle数据库之间传输数据和元数据的工具。它从Oracle 10g版本开始引入,提供了快速且灵活的数据导入导出功能。数据泵技术优于旧版的`imp`和`exp`工具,因为它支持多线程,可以在导入和导出过程中显著提高性能。 ## 数据泵的核心优势 数据泵的核心优势在于它能并行处理数据,支持大对象(LOBs)和网络传输。它还允许用户自定义数据和对象的传输方式,以及可以控制传输过程中的各种细节,如过滤对象、调整数据缓冲区大小、并行度和网络数据包大小等。 ## 数据