活动介绍

with tf.name_scope('final_training_ops'): weights = tf.Variable( tf.truncated_normal([BOTTLENECK_TENSOR_SIZE, n_classes], stddev=0.1))

时间: 2024-06-03 09:07:32 浏览: 110
This code creates a variable named "weights" using TensorFlow's truncated normal initializer. The variable has a shape of [BOTTLENECK_TENSOR_SIZE, n_classes], where BOTTLENECK_TENSOR_SIZE is the size of the bottleneck tensor and n_classes is the number of classes in the classification task. The standard deviation of the normal distribution used for the initializer is 0.1. This variable will be used in the final training operations of the neural network. The name_scope is used to group related operations in the TensorFlow graph for better visualization and organization.
相关问题

import tensorflow as tf from model import MicroISP def convert_model(IMAGE_HEIGHT, IMAGE_WIDTH): g = tf.Graph() with g.as_default(), tf.compat.v1.Session() as sess: input_image = tf.compat.v1.placeholder(tf.float32, [1, IMAGE_HEIGHT, IMAGE_WIDTH, 4], name="input") output = MicroISP(input_image) sess.run(tf.compat.v1.global_variables_initializer()) saver = tf.compat.v1.train.Saver() saver.restore(sess, "pretrained_weights/MicroISP.ckpt") converter = tf.compat.v1.lite.TFLiteConverter.from_session(sess, [input_image], [output]) converter.experimental_new_converter = True tflite_model = converter.convert() open("tflite_model/MicroISP.tflite2", "wb").write(tflite_model) if __name__ == "__main__": INPUT_IMAGE_HEIGHT = 1500 INPUT_IMAGE_WIDTH = 2000 convert_model(INPUT_IMAGE_HEIGHT, INPUT_IMAGE_WIDTH) 帮我把这段代码改成使用v2

<think>好的,用户现在需要将他们的TensorFlow v1代码迁移到v2。之前的对话中,他们已经遇到了兼容性问题,特别是关于graph_util.convert_variables_to_constants的问题。现在他们提供了一个具体的代码片段,希望将其转换为使用TensorFlow v2。 首先,我需要分析用户提供的代码。看起来他们正在尝试转换一个模型到TFLite格式,代码中使用了TensorFlow v1的兼容模式,比如tf.compat.v1.Session、placeholder和Saver。这些都是v1的特性,在v2中已经不推荐使用。 用户的目标是将这段代码迁移到v2,这意味着需要替换掉所有v1特有的API。首先,应该检查代码中使用的v1组件,并找到对应的v2方法。例如,v2中推荐使用tf.function和跟踪函数来处理模型,而不是Session和placeholder。 接下来,用户可能不熟悉v2的具体变化,比如如何保存和加载模型,以及如何转换到TFLite。在v2中,推荐使用SavedModel格式,然后使用tf.lite.TFLiteConverter.from_saved_model,而不是通过Session来转换。此外,变量的初始化和保存也需要调整,可能使用Checkpoint或SavedModel的方式。 另外,用户之前遇到的错误是关于convert_variables_to_constants的缺失,这可能是因为他们在v2中尝试使用v1的函数。所以在新代码中,必须确保所有函数都是v2兼容的。 还需要考虑用户可能没有提到的其他问题,比如是否有自定义层或操作在转换中可能不兼容,或者是否有特定的输入输出需求。例如,输入形状是否正确,是否需要使用具体函数(concrete function)来保存模型。 然后,我应该逐步替换代码中的v1部分。例如,移除Session,使用tf.function装饰器来定义模型,用tf.keras.Input代替placeholder,使用SavedModel保存模型,再转换为TFLite。同时,需要处理预训练权重的加载,可能需要使用v2的检查点机制。 还要注意用户提到的TFLite转换部分,原来的代码使用from_session,这在v2中不再适用,应该使用from_concrete_functions或from_saved_model。另外,设置experimental_new_converter可能已经默认启用,但可能需要确认。 最后,测试代码是否能在v2环境中运行,确保没有遗留的v1 API,并且生成的TFLite模型能够正确工作。同时,需要提醒用户可能遇到的常见问题,比如输入输出名称的变化,或者需要指定具体函数的输入签名。 总结一下,步骤可能包括:替换Session和placeholder为tf.function和Keras Input,使用SavedModel保存,调整TFLite转换器,处理权重加载,并确保所有API调用都是v2兼容的。同时,提供解释帮助用户理解每个改动的原因,以及可能的备选方案或注意事项。</think>我将为您提供分步骤的TensorFlow v2代码改造方案,并标注关键修改点: ```python import tensorflow as tf from model import MicroISP def convert_model(IMAGE_HEIGHT, IMAGE_WIDTH): # ================================ # 主要修改点1:移除Graph/Session架构 # ================================ # 创建Keras输入层替代placeholder input_image = tf.keras.Input(shape=[IMAGE_HEIGHT, IMAGE_WIDTH, 4], name="input") # 构建模型 model = tf.keras.Model( inputs=input_image, outputs=MicroISP()(input_image) ) # ================================ # 主要修改点2:使用v2的权重加载方式 # ================================ # 加载checkpoint(假设是v1格式ckpt) checkpoint = tf.train.Checkpoint(model=model) checkpoint.restore("pretrained_weights/MicroISP.ckpt").expect_partial() # ================================ # 主要修改点3:TFLite转换新API # ================================ # 定义concrete function @tf.function(input_signature=[ tf.TensorSpec(shape=[1, IMAGE_HEIGHT, IMAGE_WIDTH, 4], dtype=tf.float32) ]) def serving_fn(inputs): return model(inputs) # 转换到TFLite converter = tf.lite.TFLiteConverter.from_concrete_functions( [serving_fn.get_concrete_function()]) # 优化设置(根据需求调整) converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_ops = [ tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS ] tflite_model = converter.convert() # 保存模型 with open("tflite_model/MicroISP.tflite2", "wb") as f: f.write(tflite_model) if __name__ == "__main__": INPUT_IMAGE_HEIGHT = 1500 INPUT_IMAGE_WIDTH = 2000 convert_model(INPUT_IMAGE_HEIGHT, INPUT_IMAGE_WIDTH) ``` 关键修改说明: 1. **架构迁移** - 移除`tf.Graph`和`tf.Session`(v2默认启用eager execution) - 使用`tf.keras.Model`构建模型(替代原始函数式调用) - 用`tf.keras.Input`替代`tf.placeholder` 2. **权重加载** - 使用`tf.train.Checkpoint`加载旧版ckpt文件 - `expect_partial()`处理可能存在的变量不匹配 3. **TFLite转换** - 使用`@tf.function`定义具体函数 - `from_concrete_functions()`替代旧的`from_session()` - 移除显式的`experimental_new_converter`设置(v2默认启用) 4. **兼容性增强** - 显式指定输入签名`input_signature` - 添加常用优化配置(可根据实际需求调整) 验证建议: ```python # 测试加载转换后的模型 interpreter = tf.lite.Interpreter(model_path="tflite_model/MicroISP.tflite2") interpreter.allocate_tensors() # 获取输入/输出详情 input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print("Input shape:", input_details[0]['shape']) print("Output shape:", output_details[0]['shape']) ``` 备选方案:若需保持原始模型结构,可改用SavedModel格式转换: ```python # 保存为SavedModel tf.saved_model.save(model, "saved_model_dir") # 转换方式 converter = tf.lite.TFLiteConverter.from_saved_model("saved_model_dir") ``` 迁移注意事项: 1. 如果`MicroISP`类包含v1特有操作(如`variable_scope`),需要修改为v2风格 2. 输入尺寸`[1, H, W, 4]`中的batch维度在转换时可能需要显式处理 3. 建议使用`tf.__version__ >= 2.8`以保证最佳兼容性 如遇到具体错误,可提供完整报错信息以便进一步诊断。

with tf.control_dependencies(update_ops): train_op = optimizer.minimize(loss, global_step=global_step)

`tf.control_dependencies` 是TensorFlow中的一个机制,它确保在计算图中执行一组依赖操作(在这个例子中是`update_ops`)之后再执行其他操作(如`optimizer.minimize(loss)`)。`update_ops`通常包括批量归一化层、变量更新等对模型有副作用的操作,它们可能不是直接的训练操作,但为了保持模型状态的一致性,必须在其后运行。 在上述代码片段中,`update_ops` 集合包含了那些在每次反向传播后需要执行的更新操作。通过 `tf.control_dependencies(update_ops)`,我们告诉TensorFlow,在调用`minimize`方法优化损失之前,先保证这些更新已经完成。这样做的目的是确保梯度下降过程中的各个部分顺序正确,比如在网络训练过程中可能涉及到的移动平均或其他状态更新。 具体地,这段代码展示了如何使用`optimizer.minimize()`来执行模型的优化,并通过控制依赖确保所有必要的更新操作都在每个训练迭代结束时执行: ```python # 获取所有需要在训练步后执行的更新操作 update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # 使用control_dependencies确保先执行update_ops with tf.control_dependencies(update_ops): # 训练操作,同时指定全局步数 train_op = optimizer.minimize(loss, global_step=global_step) ```
阅读全文

相关推荐

@staticmethod def inference_detection(image, train=False): """ HandSegNet: Detects the hand in the input image by segmenting it. Inputs: image: [B, H, W, 3] tf.float32 tensor, Image with mean subtracted train: bool, True in case weights should be trainable Outputs: scoremap_list_large: list of [B, 256, 256, 2] tf.float32 tensor, Scores for the hand segmentation classes """ with tf.compat.v1.variable_scope('HandSegNet'): scoremap_list = list() layers_per_block = [2, 2, 4, 4] out_chan_list = [64, 128, 256, 512] pool_list = [True, True, True, False] # learn some feature representation, that describes the image content well x = image for block_id, (layer_num, chan_num, pool) in enumerate(zip(layers_per_block, out_chan_list, pool_list), 1): for layer_id in range(layer_num): x = ops.conv_relu(x, 'conv%d_%d' % (block_id, layer_id+1), kernel_size=3, stride=1, out_chan=chan_num, trainable=train) if pool: x = ops.max_pool(x, 'pool%d' % block_id) x = ops.conv_relu(x, 'conv5_1', kernel_size=3, stride=1, out_chan=512, trainable=train) encoding = ops.conv_relu(x, 'conv5_2', kernel_size=3, stride=1, out_chan=128, trainable=train) # use encoding to detect initial scoremap x = ops.conv_relu(encoding, 'conv6_1', kernel_size=1, stride=1, out_chan=512, trainable=train) scoremap = ops.conv(x, 'conv6_2', kernel_size=1, stride=1, out_chan=2, trainable=train) scoremap_list.append(scoremap) # upsample to full size s = image.get_shape().as_list() scoremap_list_large = [tf.image.resize_images(x, (s[1], s[2])) for x in scoremap_list] return scoremap_list_large详细注释

mse_scores = [] #dataset = tf.data.Dataset.from_tensor_slices((chara_vd, vd_tg)) for i, (train_index, test_index) in enumerate(loo.split(chara_vd)): #scaler = StandardScaler() #x_train = scaler.fit_transform(chara_vd.iloc[train_index, :]) #x_test = scaler.fit_transform(chara_vd.iloc[test_index, :] ) #y_train = vd_tg[train_index] #y_test = vd_tg[test_index] x_train = chara_vd.astype(np.float32).iloc[train_index, :] x_test= chara_vd.astype(np.float32).iloc[test_index, :] y_train = vd_tg.astype(np.float32)[train_index+1] y_test = vd_tg.astype(np.float32)[test_index+1] model = tf.keras.Sequential([ tf.keras.layers.Dense(10, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.001), input_shape=(6,)), # 首隐藏层 tf.keras.layers.Dropout(0.05), # 防过拟合 tf.keras.layers.Dense(10, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.001)), # 第二隐藏层 tf.keras.layers.Dense(1) # 输出层(回归任务) ]) model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=0.005), loss='mse', metrics=['mae'] ) #dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) #dataset = dataset.shuffle(28).batch(1).prefetch(tf.data.AUTOTUNE) model.fit(x_train, y_train, epochs=100, verbose=0) #model.fit(dataset, epochs=100, verbose=0) y_pred = model.predict(x_test) mse = MSE(y_test, y_pred) mse_scores.append(mse) np.mean(mse_scores) 上述代码运行后提示C:\Users\WLY\.conda\envs\tf-cpu\lib\site-packages\tensorflow\python\data\ops\structured_function.py:264: UserWarning: Even though the tf.config.experimental_run_functions_eagerly option is set, this option does not apply to tf.data functions. To force eager execution of tf.data functions, please use tf.data.experimental.enable_debug_mode(). warnings.warn(怎么修改代码

# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=invalid-name """Inception-ResNet V2 model for Keras. Reference: - [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261) (AAAI 2017) """ from tensorflow.python.keras import backend from tensorflow.python.keras.applications import imagenet_utils from tensorflow.python.keras.engine import training from tensorflow.python.keras.layers import VersionAwareLayers from tensorflow.python.keras.utils import data_utils from tensorflow.python.keras.utils import layer_utils from tensorflow.python.lib.io import file_io from tensorflow.python.util.tf_export import keras_export BASE_WEIGHT_URL = ('https://storage.googleapis.com/tensorflow/' 'keras-applications/inception_resnet_v2/') layers = None @keras_export('keras.applications.inception_resnet_v2.InceptionResNetV2', 'keras.applications.InceptionResNetV2') def InceptionResNetV2(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation='softmax', **kwargs): """Instantiates the Inception-ResNet v2 architecture. Reference: - [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261) (AAAI 2017) This function returns a Keras image classification model, optionally loaded with weights pre-trained on ImageNet. For image classification use cases, see [this page for detailed examples]( https://keras.io/api/applications/#usage-examples-for-image-classification-models). For transfer learning use cases, make sure to read the [guide to transfer learning & fine-tuning]( https://keras.io/guides/transfer_learning/). Note: each Keras Application expects a specific kind of input preprocessing. For InceptionResNetV2, call tf.keras.applications.inception_resnet_v2.preprocess_input on your inputs before passing them to the model. inception_resnet_v2.preprocess_input will scale input pixels between -1 and 1. Args: include_top: whether to include the fully-connected layer at the top of the network. weights: one of None (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of layers.Input()) to use as image input for the model. input_shape: optional shape tuple, only to be specified if include_top is False (otherwise the input shape has to be (299, 299, 3) (with 'channels_last' data format) or (3, 299, 299) (with 'channels_first' data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 75. E.g. (150, 150, 3) would be one valid value. pooling: Optional pooling mode for feature extraction when include_top is False. - None means that the output of the model will be the 4D tensor output of the last convolutional block. - 'avg' means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - 'max' means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if include_top is True, and if no weights argument is specified. classifier_activation: A str or callable. The activation function to use on the "top" layer. Ignored unless include_top=True. Set classifier_activation=None to return the logits of the "top" layer. When loading pretrained weights, classifier_activation can only be None or "softmax". **kwargs: For backwards compatibility only. Returns: A keras.Model instance. """ global layers if 'layers' in kwargs: layers = kwargs.pop('layers') else: layers = VersionAwareLayers() if kwargs: raise ValueError('Unknown argument(s): %s' % (kwargs,)) if not (weights in {'imagenet', None} or file_io.file_exists_v2(weights)): raise ValueError('The weights argument should be either ' 'None (random initialization), imagenet ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using weights as "imagenet" with include_top' ' as true, classes should be 1000') # Determine proper input shape input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=299, min_size=75, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights) if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor # Stem block: 35 x 35 x 192 x = conv2d_bn(img_input, 32, 3, strides=2, padding='valid') x = conv2d_bn(x, 32, 3, padding='valid') x = conv2d_bn(x, 64, 3) x = layers.MaxPooling2D(3, strides=2)(x) x = conv2d_bn(x, 80, 1, padding='valid') x = conv2d_bn(x, 192, 3, padding='valid') x = layers.MaxPooling2D(3, strides=2)(x) # Mixed 5b (Inception-A block): 35 x 35 x 320 branch_0 = conv2d_bn(x, 96, 1) branch_1 = conv2d_bn(x, 48, 1) branch_1 = conv2d_bn(branch_1, 64, 5) branch_2 = conv2d_bn(x, 64, 1) branch_2 = conv2d_bn(branch_2, 96, 3) branch_2 = conv2d_bn(branch_2, 96, 3) branch_pool = layers.AveragePooling2D(3, strides=1, padding='same')(x) branch_pool = conv2d_bn(branch_pool, 64, 1) branches = [branch_0, branch_1, branch_2, branch_pool] channel_axis = 1 if backend.image_data_format() == 'channels_first' else 3 x = layers.Concatenate(axis=channel_axis, name='mixed_5b')(branches) # 10x block35 (Inception-ResNet-A block): 35 x 35 x 320 for block_idx in range(1, 11): x = inception_resnet_block( x, scale=0.17, block_type='block35', block_idx=block_idx) # Mixed 6a (Reduction-A block): 17 x 17 x 1088 branch_0 = conv2d_bn(x, 384, 3, strides=2, padding='valid') branch_1 = conv2d_bn(x, 256, 1) branch_1 = conv2d_bn(branch_1, 256, 3) branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='valid') branch_pool = layers.MaxPooling2D(3, strides=2, padding='valid')(x) branches = [branch_0, branch_1, branch_pool] x = layers.Concatenate(axis=channel_axis, name='mixed_6a')(branches) # 20x block17 (Inception-ResNet-B block): 17 x 17 x 1088 for block_idx in range(1, 21): x = inception_resnet_block( x, scale=0.1, block_type='block17', block_idx=block_idx) # Mixed 7a (Reduction-B block): 8 x 8 x 2080 branch_0 = conv2d_bn(x, 256, 1) branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='valid') branch_1 = conv2d_bn(x, 256, 1) branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='valid') branch_2 = conv2d_bn(x, 256, 1) branch_2 = conv2d_bn(branch_2, 288, 3) branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='valid') branch_pool = layers.MaxPooling2D(3, strides=2, padding='valid')(x) branches = [branch_0, branch_1, branch_2, branch_pool] x = layers.Concatenate(axis=channel_axis, name='mixed_7a')(branches) # 10x block8 (Inception-ResNet-C block): 8 x 8 x 2080 for block_idx in range(1, 10): x = inception_resnet_block( x, scale=0.2, block_type='block8', block_idx=block_idx) x = inception_resnet_block( x, scale=1., activation=None, block_type='block8', block_idx=10) # Final convolution block: 8 x 8 x 1536 x = conv2d_bn(x, 1536, 1, name='conv_7b') if include_top: # Classification block x = layers.GlobalAveragePooling2D(name='avg_pool')(x) imagenet_utils.validate_activation(classifier_activation, weights) x = layers.Dense(classes, activation=classifier_activation, name='predictions')(x) else: if pooling == 'avg': x = layers.GlobalAveragePooling2D()(x) elif pooling == 'max': x = layers.GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of input_tensor. if input_tensor is not None: inputs = layer_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = training.Model(inputs, x, name='inception_resnet_v2') # Load weights. if weights == 'imagenet': if include_top: fname = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5' weights_path = data_utils.get_file( fname, BASE_WEIGHT_URL + fname, cache_subdir='models', file_hash='e693bd0210a403b3192acc6073ad2e96') else: fname = ('inception_resnet_v2_weights_' 'tf_dim_ordering_tf_kernels_notop.h5') weights_path = data_utils.get_file( fname, BASE_WEIGHT_URL + fname, cache_subdir='models', file_hash='d19885ff4a710c122648d3b5c3b684e4') model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model def conv2d_bn(x, filters, kernel_size, strides=1, padding='same', activation='relu', use_bias=False, name=None): """Utility function to apply conv + BN. Args: x: input tensor. filters: filters in Conv2D. kernel_size: kernel size as in Conv2D. strides: strides in Conv2D. padding: padding mode in Conv2D. activation: activation in Conv2D. use_bias: whether to use a bias in Conv2D. name: name of the ops; will become name + '_ac' for the activation and name + '_bn' for the batch norm layer. Returns: Output tensor after applying Conv2D and BatchNormalization. """ x = layers.Conv2D( filters, kernel_size, strides=strides, padding=padding, use_bias=use_bias, name=name)( x) if not use_bias: bn_axis = 1 if backend.image_data_format() == 'channels_first' else 3 bn_name = None if name is None else name + '_bn' x = layers.BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x) if activation is not None: ac_name = None if name is None else name + '_ac' x = layers.Activation(activation, name=ac_name)(x) return x def inception_resnet_block(x, scale, block_type, block_idx, activation='relu'): """Adds an Inception-ResNet block. This function builds 3 types of Inception-ResNet blocks mentioned in the paper, controlled by the block_type argument (which is the block name used in the official TF-slim implementation): - Inception-ResNet-A: block_type='block35' - Inception-ResNet-B: block_type='block17' - Inception-ResNet-C: block_type='block8' Args: x: input tensor. scale: scaling factor to scale the residuals (i.e., the output of passing x through an inception module) before adding them to the shortcut branch. Let r be the output from the residual branch, the output of this block will be x + scale * r. block_type: 'block35', 'block17' or 'block8', determines the network structure in the residual branch. block_idx: an int used for generating layer names. The Inception-ResNet blocks are repeated many times in this network. We use block_idx to identify each of the repetitions. For example, the first Inception-ResNet-A block will have block_type='block35', block_idx=0, and the layer names will have a common prefix 'block35_0'. activation: activation function to use at the end of the block (see [activations](../activations.md)). When activation=None, no activation is applied (i.e., "linear" activation: a(x) = x). Returns: Output tensor for the block. Raises: ValueError: if block_type is not one of 'block35', 'block17' or 'block8'. """ if block_type == 'block35': branch_0 = conv2d_bn(x, 32, 1) branch_1 = conv2d_bn(x, 32, 1) branch_1 = conv2d_bn(branch_1, 32, 3) branch_2 = conv2d_bn(x, 32, 1) branch_2 = conv2d_bn(branch_2, 48, 3) branch_2 = conv2d_bn(branch_2, 64, 3) branches = [branch_0, branch_1, branch_2] elif block_type == 'block17': branch_0 = conv2d_bn(x, 192, 1) branch_1 = conv2d_bn(x, 128, 1) branch_1 = conv2d_bn(branch_1, 160, [1, 7]) branch_1 = conv2d_bn(branch_1, 192, [7, 1]) branches = [branch_0, branch_1] elif block_type == 'block8': branch_0 = conv2d_bn(x, 192, 1) branch_1 = conv2d_bn(x, 192, 1) branch_1 = conv2d_bn(branch_1, 224, [1, 3]) branch_1 = conv2d_bn(branch_1, 256, [3, 1]) branches = [branch_0, branch_1] else: raise ValueError('Unknown Inception-ResNet block type. ' 'Expects "block35", "block17" or "block8", ' 'but got: ' + str(block_type)) block_name = block_type + '_' + str(block_idx) channel_axis = 1 if backend.image_data_format() == 'channels_first' else 3 mixed = layers.Concatenate( axis=channel_axis, name=block_name + '_mixed')( branches) up = conv2d_bn( mixed, backend.int_shape(x)[channel_axis], 1, activation=None, use_bias=True, name=block_name + '_conv') x = layers.Lambda( lambda inputs, scale: inputs[0] + inputs[1] * scale, output_shape=backend.int_shape(x)[1:], arguments={'scale': scale}, name=block_name)([x, up]) if activation is not None: x = layers.Activation(activation, name=block_name + '_ac')(x) return x @keras_export('keras.applications.inception_resnet_v2.preprocess_input') def preprocess_input(x, data_format=None): return imagenet_utils.preprocess_input(x, data_format=data_format, mode='tf') @keras_export('keras.applications.inception_resnet_v2.decode_predictions') def decode_predictions(preds, top=5): return imagenet_utils.decode_predictions(preds, top=top) preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( mode='', ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF, error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC) decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ 修改下载地址或在提前下载放置

# 新增库导入 import cv2 import tensorflow as tf from tensorflow.keras.models import Model # Grad-CAM热图生成函数 def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None): grad_model = Model( [model.inputs], [model.get_layer(last_conv_layer_name).output, model.output] ) with tf.GradientTape() as tape: last_conv_layer_output, preds = grad_model(img_array) if pred_index is None: pred_index = tf.argmax(preds[0]) class_channel = preds[:, pred_index] grads = tape.gradient(class_channel, last_conv_layer_output) pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) last_conv_layer_output = last_conv_layer_output[0] heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis] heatmap = tf.squeeze(heatmap) heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap) # 归一化 return heatmap.numpy() # 获取示例图像 sample_batch = next(train_generator) sample_images = sample_batch[0][:5] # 取前5个样本 # 获取最后一层卷积层名称(根据模型结构调整) last_conv_layer_name = "conv2d_1" # 根据实际模型结构确认 # 创建热力图可视化 plt.figure(figsize=(16, 8)) for i in range(5): img = sample_images[i] img_array = np.expand_dims(img, axis=0) # 生成热力图 heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name) # 调整热力图大小匹配原图 heatmap = cv2.resize(heatmap, (img_width, img_height)) heatmap = np.uint8(255 * heatmap) heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) # 叠加热力图和原图 superimposed_img = cv2.addWeighted( cv2.cvtColor(np.uint8(img*255), cv2.COLOR_RGB2BGR), 0.6, heatmap, 0.4, 0 ) # 绘制结果 plt.subplot(2, 5, i+1) plt.imshow(img) plt.title("Original") plt.axis("off") plt.subplot(2, 5, i+6) plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB)) plt.title("Heatmap") plt.axis("off") plt.tight_layout() plt.show()Traceback (most recent call last): File “D:\建模\cnn3.py”, line 117, in <module> heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name) File “D:\建模\cnn3.py”, line 85, in make_gradcam_heatmap [model.get_layer(last_conv_layer_name).output, model.output] File “C:\Users\29930\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\ops\operation.py”, line 280, in output return self._get_node_attribute_at_index(0, “output_tensors”, “output”) File “C:\Users\29930\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\src\ops\operation.py”, line 299, in _get_node_attribute_at_index raise AttributeError( AttributeError: The layer sequential has never been called and thus has no defined output… Did you mean: ‘outputs’? 解决该问题并生成一个可用的代码

最新推荐

recommend-type

Tensorflow中的图(tf.Graph)和会话(tf.Session)的实现

在Tensorflow中,图(tf.Graph)和会话(tf.Session)是两个核心概念,它们构成了Tensorflow程序的基础架构。 **图(tf.Graph)** 计算图是Tensorflow中用于描述计算流程的数据结构,它是一个有向图,由节点(Nodes...
recommend-type

Comsol声子晶体能带计算:六角与三角晶格原胞选取及布里渊区高对称点选择 - 声子晶体 v1.0

内容概要:本文详细探讨了利用Comsol进行声子晶体能带计算过程中,六角晶格和三角晶格原胞选取的不同方法及其对简约布里渊区高对称点选择的影响。文中不仅介绍了两种晶格类型的基矢量定义方式,还强调了正确设置周期性边界条件(特别是相位补偿)的重要性,以避免计算误差如鬼带现象。同时,提供了具体的MATLAB代码片段用于演示关键步骤,并分享了一些实践经验,例如如何通过观察能带图中的狄拉克锥特征来验证路径设置的准确性。 适合人群:从事材料科学、物理学研究的专业人士,尤其是那些正在使用或计划使用Comsol软件进行声子晶体模拟的研究人员。 使用场景及目标:帮助研究人员更好地理解和掌握在Comsol环境中针对不同类型晶格进行精确的声子晶体能带计算的方法和技术要点,从而提高仿真精度并减少常见错误的发生。 其他说明:文章中提到的实际案例展示了因晶格类型混淆而导致的问题,提醒使用者注意细节差异,确保模型构建无误。此外,文中提供的代码片段可以直接应用于相关项目中作为参考模板。
recommend-type

springboot213大学生心理健康管理系统的设计与实现.zip

springboot213大学生心理健康管理系统的设计与实现
recommend-type

Web前端开发:CSS与HTML设计模式深入解析

《Pro CSS and HTML Design Patterns》是一本专注于Web前端设计模式的书籍,特别针对CSS(层叠样式表)和HTML(超文本标记语言)的高级应用进行了深入探讨。这本书籍属于Pro系列,旨在为专业Web开发人员提供实用的设计模式和实践指南,帮助他们构建高效、美观且可维护的网站和应用程序。 在介绍这本书的知识点之前,我们首先需要了解CSS和HTML的基础知识,以及它们在Web开发中的重要性。 HTML是用于创建网页和Web应用程序的标准标记语言。它允许开发者通过一系列的标签来定义网页的结构和内容,如段落、标题、链接、图片等。HTML5作为最新版本,不仅增强了网页的表现力,还引入了更多新的特性,例如视频和音频的内置支持、绘图API、离线存储等。 CSS是用于描述HTML文档的表现(即布局、颜色、字体等样式)的样式表语言。它能够让开发者将内容的表现从结构中分离出来,使得网页设计更加模块化和易于维护。随着Web技术的发展,CSS也经历了多个版本的更新,引入了如Flexbox、Grid布局、过渡、动画以及Sass和Less等预处理器技术。 现在让我们来详细探讨《Pro CSS and HTML Design Patterns》中可能包含的知识点: 1. CSS基础和选择器: 书中可能会涵盖CSS基本概念,如盒模型、边距、填充、边框、背景和定位等。同时还会介绍CSS选择器的高级用法,例如属性选择器、伪类选择器、伪元素选择器以及选择器的组合使用。 2. CSS布局技术: 布局是网页设计中的核心部分。本书可能会详细讲解各种CSS布局技术,包括传统的浮动(Floats)布局、定位(Positioning)布局,以及最新的布局模式如Flexbox和CSS Grid。此外,也会介绍响应式设计的媒体查询、视口(Viewport)单位等。 3. 高级CSS技巧: 这些技巧可能包括动画和过渡效果,以及如何优化性能和兼容性。例如,CSS3动画、关键帧动画、转换(Transforms)、滤镜(Filters)和混合模式(Blend Modes)。 4. HTML5特性: 书中可能会深入探讨HTML5的新标签和语义化元素,如`<article>`、`<section>`、`<nav>`等,以及如何使用它们来构建更加标准化和语义化的页面结构。还会涉及到Web表单的新特性,比如表单验证、新的输入类型等。 5. 可访问性(Accessibility): Web可访问性越来越受到重视。本书可能会介绍如何通过HTML和CSS来提升网站的无障碍访问性,比如使用ARIA标签(Accessible Rich Internet Applications)来增强屏幕阅读器的使用体验。 6. 前端性能优化: 性能优化是任何Web项目成功的关键。本书可能会涵盖如何通过优化CSS和HTML来提升网站的加载速度和运行效率。内容可能包括代码压缩、合并、避免重绘和回流、使用Web字体的最佳实践等。 7. JavaScript与CSS/HTML的交互: 在现代Web开发中,JavaScript与CSS及HTML的交云并用是不可或缺的。书中可能会讲解如何通过JavaScript动态地修改样式、操作DOM元素以及使用事件监听和响应用户交互。 8. Web框架和预处理器: 这本书可能会提到流行的Web开发框架和预处理器,比如Bootstrap、Foundation、Sass和Less等,它们是如何简化和加速开发流程的。 9. 测试和维护: 书中也可能包含关于如何测试网页以及如何持续优化和维护CSS和HTML代码的章节。例如,使用断言测试、自动化测试、性能分析工具等。 最后,鉴于文件名称列表中的“压缩包子文件”的表述,这可能是对“压缩包”文件的一种误译或误用,此处“压缩包”应该指的是包含该书籍PDF文件的压缩文件格式,如ZIP或RAR。而“Pro CSS and HTML Design Patterns.pdf”指的就是该书籍的PDF格式电子版文件。 以上所述,构成了《Pro CSS and HTML Design Patterns》一书可能包含的核心知识点。通过学习这些内容,Web前端开发者可以掌握更为高效和优雅的设计模式,从而在日常工作中更高效地解决实际问题。
recommend-type

Zotero 7数据同步:Attanger插件安装&设置,打造文献管理利器

/i.s3.glbimg.com/v1/AUTH_08fbf48bc0524877943fe86e43087e7a/internal_photos/bs/2018/L/j/ipKA8TRPyt4ptaG1DGww/t-m-01.png) # 1. Zotero 7数据同步简介 在数字时代,管理研究数据变得日益重要,而Zot
recommend-type

卷积神经网络的基础理论200字

<think>我们正在回答用户关于卷积神经网络(CNN)基础理论的询问。根据提供的引用资料,我们可以概述CNN的基本结构和工作原理。引用[1]提到CNN是一种前馈神经网络,信息从输入单向流动到输出。引用[2]指出CNN在图像处理等领域应用广泛,通过层次结构和参数调整实现模式识别。引用[3]说明CNN包含卷积层,使用卷积核提取局部特征,减少参数量,提高效率。引用[4]则提到了训练过程,包括前向传播、误差计算和反向传播(梯度下降)。因此,我们将从以下几个方面概述CNN:1.CNN的基本结构(卷积层、池化层、全连接层)2.卷积操作的工作原理(局部感受野、权重共享)3.训练过程(前向传播、损失函数、反
recommend-type

轻便实用的Java库类查询工具介绍

标题 "java2库类查询" 和描述表明,所提及的工具是一个专门用于查询Java库类的应用程序。此软件旨在帮助开发者快速地查找和引用Java的标准开发工具包(SDK)中包含的所有应用程序编程接口(API)类。通过这样的工具,开发者可以节省大量在官方文档或搜索引擎上寻找类定义和使用方法的时间。它被描述为轻巧且方便,这表明其占用的系统资源相对较少,同时提供直观的用户界面,使得查询过程简洁高效。 从描述中可以得出几个关键知识点: 1. Java SDK:Java的软件开发工具包(SDK)是Java平台的一部分,提供了一套用于开发Java应用软件的软件包和库。这些软件包通常被称为API,为开发者提供了编程界面,使他们能够使用Java语言编写各种类型的应用程序。 2. 库类查询:这个功能对于开发者来说非常关键,因为它提供了一个快速查找特定库类及其相关方法、属性和使用示例的途径。良好的库类查询工具可以帮助开发者提高工作效率,减少因查找文档而中断编程思路的时间。 3. 轻巧性:软件的轻巧性通常意味着它对计算机资源的要求较低。这样的特性对于资源受限的系统尤为重要,比如老旧的计算机、嵌入式设备或是当开发者希望最小化其开发环境占用空间时。 4. 方便性:软件的方便性通常关联于其用户界面设计,一个直观、易用的界面可以让用户快速上手,并减少在使用过程中遇到的障碍。 5. 包含所有API:一个优秀的Java库类查询软件应当能够覆盖Java所有标准API,这包括Java.lang、Java.util、Java.io等核心包,以及Java SE平台的所有其他标准扩展包。 从标签 "java 库 查询 类" 可知,这个软件紧密关联于Java编程语言的核心功能——库类的管理和查询。这些标签可以关联到以下知识点: - Java:一种广泛用于企业级应用、移动应用(如Android应用)、网站后端、大型系统和许多其他平台的编程语言。 - 库:在Java中,库是一组预打包的类和接口,它们可以被应用程序重复使用。Java提供了庞大的标准库,以支持各种常见的任务和功能。 - 查询:查询指的是利用软件工具搜索、定位和检索信息的过程。对于Java库类查询工具来说,这意味着可以通过类名、方法签名或其他标识符来查找特定的API条目。 最后,压缩包文件列表包含了两个文件:“java.dit”和“Java.exe”。其中“Java.exe”很可能是程序的可执行文件,而“java.dit”可能是一个数据文件,用于存储Java类的索引或数据。由于文件名后缀通常与文件类型相关联,但“dit”并不是一个常见的文件扩展名。这可能是一个特定于软件的自定义格式,或是一个打字错误。 总结来说,"java2库类查询" 是一个针对Java开发者的实用工具,它提供了一个轻量级、易用的平台来查询和定位Java标准库中的所有类和API。此工具对优化开发流程,减少查找Java类文档的时间大有裨益,尤其适合需要频繁查阅Java API的开发者使用。
recommend-type

【Zotero 7终极指南】:新手必备!Attanger插件全攻略与数据同步神技

# 1. Zotero 7与Attanger插件的介绍 在当今的学术研究和知识管理领域,高效的文献管理工具至关重要。Zotero 7作为一个流行的参考文献管理软件,因其强大的功能和用户友好的界面而受到专业人士的青睐。而Attanger插件则为Zotero 7带来了更多定制化和高级功能,极大地增强
recommend-type

MATLAB整段注释快捷键

<think>首先,用户的问题是:“MATLAB整段注释快捷键”,意思是“MATLAB整段注释快捷键”。我需要用中文回答。 根据规则: - 回答必须用中文。 - 回答完问题后,必须在末尾输出“§§相关问题§§”,然后提出3-5个相关问题。 - “§§相关问题§§”必须完整输出在第一行,禁止换行分散。 - 相关问题必须基于用户的问题和我的回答。 现在,回忆MATLAB的快捷键:在MATLAB中,整段注释通常使用快捷键Ctrl + R来注释选中的代码行,使用Ctrl + T来取消注释。用户问的是“整段注释”,所以我应该确认快捷键。 在MATLAB中: - 注释选中的行:Ctrl + R -
recommend-type

Eclipse Jad反编译插件:提升.class文件查看便捷性

反编译插件for Eclipse是一个专门设计用于在Eclipse集成开发环境中进行Java反编译的工具。通过此类插件,开发者可以在不直接访问源代码的情况下查看Java编译后的.class文件的源代码,这在开发、维护和学习使用Java技术的过程中具有重要的作用。 首先,我们需要了解Eclipse是一个跨平台的开源集成开发环境,主要用来开发Java应用程序,但也支持其他诸如C、C++、PHP等多种语言的开发。Eclipse通过安装不同的插件来扩展其功能。这些插件可以由社区开发或者官方提供,而jadclipse就是这样一个社区开发的插件,它利用jad.exe这个第三方命令行工具来实现反编译功能。 jad.exe是一个反编译Java字节码的命令行工具,它可以将Java编译后的.class文件还原成一个接近原始Java源代码的格式。这个工具非常受欢迎,原因在于其反编译速度快,并且能够生成相对清晰的Java代码。由于它是一个独立的命令行工具,直接使用命令行可以提供较强的灵活性,但是对于一些不熟悉命令行操作的用户来说,集成到Eclipse开发环境中将会极大提高开发效率。 使用jadclipse插件可以很方便地在Eclipse中打开任何.class文件,并且将反编译的结果显示在编辑器中。用户可以在查看反编译的源代码的同时,进行阅读、调试和学习。这样不仅可以帮助开发者快速理解第三方库的工作机制,还能在遇到.class文件丢失源代码时进行紧急修复工作。 对于Eclipse用户来说,安装jadclipse插件相当简单。一般步骤包括: 1. 下载并解压jadclipse插件的压缩包。 2. 在Eclipse中打开“Help”菜单,选择“Install New Software”。 3. 点击“Add”按钮,输入插件更新地址(通常是jadclipse的更新站点URL)。 4. 选择相应的插件(通常名为“JadClipse”),然后进行安装。 5. 安装完成后重启Eclipse,插件开始工作。 一旦插件安装好之后,用户只需在Eclipse中双击.class文件,或者右键点击文件并选择“Open With Jadclipse”,就能看到对应的Java源代码。如果出现反编译不准确或失败的情况,用户还可以直接在Eclipse中配置jad.exe的路径,或者调整jadclipse的高级设置来优化反编译效果。 需要指出的是,使用反编译工具虽然方便,但要注意反编译行为可能涉及到版权问题。在大多数国家和地区,反编译软件代码属于合法行为,但仅限于学习、研究、安全测试或兼容性开发等目的。如果用户意图通过反编译获取商业机密或进行非法复制,则可能违反相关法律法规。 总的来说,反编译插件for Eclipse是一个强大的工具,它极大地简化了Java反编译流程,提高了开发效率,使得开发者在没有源代码的情况下也能有效地维护和学习Java程序。但开发者在使用此类工具时应遵守法律与道德规范,避免不当使用。