活动介绍

class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=out_channels , kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU() self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = downsample

时间: 2024-04-04 09:34:19 浏览: 213
这是一个PyTorch中定义ResNet的BasicBlock的代码。BasicBlock是ResNet中的基本残差块,包含两个卷积层和一个跳跃连接。参数in_channels和out_channels分别表示输入通道数和输出通道数。stride表示卷积核的步长,downsample表示是否需要对输入进行下采样。 在BasicBlock的构造函数中,首先调用父类的构造函数,然后定义了两个卷积层。其中,第一个卷积层使用3×3的卷积核,stride为stride,padding为1,不使用偏置项;第二个卷积层与第一个卷积层类似,但stride为1。在卷积层之间,使用BatchNorm2d和ReLU激活函数。最后,如果需要进行下采样,则使用downsample对输入进行下采样。 此外,expansion=1表示残差块中第二个卷积层的输出通道数与输入通道数相同。在ResNet中还有Bottleneck残差块,它的输出通道数是输入通道数的4倍,expansion=4。 希望这可以帮助回答你的问题。
相关问题

class BasicBlock2D(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super(BasicBlock2D, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != self.expansion * out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * out_channels) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out # 定义二维ResNet-18模型 class ResNet18_2D(nn.Module): def __init__(self, num_classes=1000): super(ResNet18_2D, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1) self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2) self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2) self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 , 512) def _make_layer(self, block, out_channels, num_blocks, stride): layers = [] layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion for _ in range(1, num_blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) # print(out.shape) out = out.view(out.size(0), -1) out = self.fc(out) return out改为用稀疏表示替换全连接层

为了用稀疏表示替换全连接层,需要先将特征图展平,然后使用稀疏矩阵与其进行乘法运算。 以下是修改后的代码: ``` import torch.sparse as sparse class ResNet18_2D(nn.Module): def __init__(self, num_classes=1000): super(ResNet18_2D, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1) self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2) self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2) self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # 替换全连接层 self.fc = nn.Identity() def _make_layer(self, block, out_channels, num_blocks, stride): layers = [] layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion for _ in range(1, num_blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) out = out.view(out.size(0), -1) # 使用稀疏矩阵与展平后的特征图进行乘法运算 out = sparse.mm(out, nn.Parameter(torch.randn(out.size(1), 512))) return out ```

class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = downsample self.stride = stride def forward(self, x): identity = x if self.downsample is not None: identity = self.downsample(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000): super(ResNet, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, out_channels, blocks, stride=1): downsample = None if stride != 1 or self.in_channels != out_channels * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels * block.expansion), ) layers = [] layers.append(block(self.in_channels, out_channels, stride, downsample)) self.in_channels = out_channels * block.expansion for _ in range(1, blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x def resnet50(num_classes=1000): return ResNet(BasicBlock, [3, 4, 6, 3], num_classes) # 创建模型 model = resnet50(num_classes=10) # 修改为你自己的类别数量 # 将模型移动到设备(例如 GPU) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) print(model) 逐行解释该代码

<think>嗯,用户让我逐行解释这段PyTorch代码,看起来是关于ResNet的实现。首先,我需要回忆一下ResNet的结构,尤其是残差块和不同深度的ResNet变体,比如ResNet50。代码里有两个主要的类,BasicBlock和ResNet,还有一个resnet50的函数。用户可能对残差网络的结构不太熟悉,或者想了解代码的具体实现细节。 首先看BasicBlock类。这个类继承自nn.Module,说明是一个神经网络模块。expansion属性被设为1,可能和通道数的扩展有关。初始化函数里的参数包括输入输出通道数、步长和downsample。里面的层有两个卷积层,每个后面跟着BatchNorm和ReLU。forward函数中实现了残差连接,即out += identity。这里需要注意downsample的作用,当输入和输出的维度不一致时,需要用downsample来调整identity的维度。 然后是ResNet类。它的初始化函数接收block类型、layers列表和类别数。里面定义了初始的卷积层、BN、ReLU和MaxPool,然后四个layer是通过_make_layer方法创建的。_make_layer函数负责构建每个阶段的残差块,处理步长和通道数变化的情况,可能需要下采样。最后的全连接层输出分类结果。 接下来是resnet50函数,它调用ResNet类,传入BasicBlock和层参数[3,4,6,3]。不过这里可能有问题,因为ResNet50应该使用Bottleneck块而不是BasicBlock。BasicBlock适用于较浅的ResNet如ResNet18或34,而50层及以上使用Bottleneck。所以代码中的resnet50实际上可能不正确,这可能是用户代码中的一个错误,需要指出。 用户可能在使用这段代码时遇到了问题,或者想确认实现的正确性。比如,创建模型时指定num_classes=10,适用于自己的数据集。设备移动部分是将模型放到GPU或CPU上。 在逐行解释时,需要详细说明每个类和方法的作用,参数的意义,以及层之间的连接。特别是残差连接的部分,如何通过downsample处理维度不匹配,以及_make_layer如何堆叠多个块。同时,需要指出代码中的潜在问题,比如BasicBlock在ResNet50中的误用,可能导致模型结构不符合预期,影响性能。 用户的需求可能是学习如何实现ResNet,或者调试自己的模型。他们可能没有意识到BasicBlock和Bottleneck的区别,导致模型结构错误。因此,在解释代码时,必须指出这一点,帮助用户正确理解和使用ResNet的不同变体。 总结来说,解释代码的步骤应该是:先整体结构,再逐个类分析,重点讲解残差块的实现,ResNet的构建过程,最后指出代码中的问题。同时,确保用户明白如何调整代码以适应他们的任务,比如修改类别数,正确选择block类型等。</think>好的,我将逐层为您解析这个ResNet-50的实现代码。以下是结构化解释: 1. **BasicBlock模块**(基础残差块) ```python class BasicBlock(nn.Module): expansion = 1 # 通道数扩展系数 ``` - `expansion=1`:表示该块不改变通道数 - `__init__`方法解析: ```python def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) # 批标准化 self.relu = nn.ReLU(inplace=True) # 原地激活节省内存 self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = downsample # 下采样方法(用于匹配维度) self.stride = stride # 步长参数 ``` - `forward`流程: $$ \begin{aligned} &\text{identity} = x \\ &\text{经过两个卷积层得到out} \\ &\text{out += identity(残差连接)} \\ &\text{最终通过ReLU激活} \end{aligned} $$ 2. **ResNet主网络** ```python class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000): super(ResNet, self).__init__() self.in_channels = 64 # 初始通道数 # 初始卷积层 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # 构建四个残差层 self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) # 分类层 self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # 自适应平均池化 self.fc = nn.Linear(512 * block.expansion, num_classes) ``` 3. **核心方法 _make_layer** ```python def _make_layer(self, block, out_channels, blocks, stride=1): downsample = None # 判断是否需要下采样 if stride != 1 or self.in_channels != out_channels * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels * block.expansion), ) layers = [] # 添加第一个block(可能包含下采样) layers.append(block(self.in_channels, out_channels, stride, downsample)) # 更新通道数 self.in_channels = out_channels * block.expansion # 添加后续block for _ in range(1, blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) ``` 4. **模型创建与设备配置** ```python def resnet50(num_classes=1000): # 注意:此处代码有误!ResNet-50应使用Bottleneck而非BasicBlock return ResNet(BasicBlock, [3, 4, 6, 3], num_classes) # layers参数对应不同阶段的block数量 model = resnet50(num_classes=10) # 创建10分类模型 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) # 设备转移 ``` **需要特别注意的问题**: 1. 代码中存在的错误:ResNet-50本应使用Bottleneck结构(包含3个卷积层),但这里错误地使用了BasicBlock(2个卷积层) 2. 正确实现ResNet-50应: - 定义Bottleneck类(设置expansion=4) - 修改resnet50函数为:`return ResNet(Bottleneck, [3, 4, 6, 3])` **网络结构流程**: 输入图像 → 初始卷积 → 最大池化 → 4个残差层(特征图尺寸逐渐减小) → 全局平均池化 → 全连接分类 **各层参数变化**: | 层 | 输出通道 | 特征图尺寸变化 | |-----------|--------|----------| | conv1 | 64 | 224→112 | | maxpool | 64 | 112→56 | | layer1 | 256 | 56→56 | | layer2 | 512 | 56→28 | | layer3 | 1024 | 28→14 | | layer4 | 2048 | 14→7 | | avgpool | 2048 | 7→1 | 建议修正代码中的block类型后使用,当前实现更接近ResNet-34的结构而非ResNet-50。
阅读全文

相关推荐

import torch.nn as nn import torch import importlib.util import sys class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channel) self.relu = nn.ReLU() self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channel) self.downsample = downsample def forward(self, x): identity = x if self.downsample is not None: identity = self.downsample(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_channel, out_channel, stride=1, downsample=None, groups=1, width_per_group=64): super(Bottleneck, self).__init__() width = int(out_channel * (width_per_group / 64.)) * groups self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width, kernel_size=1, stride=1, bias=False) # squeeze channels self.bn1 = nn.BatchNorm2d(width) # ----------------------------------------- self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups, kernel_size=3, stride=stride, bias=False, padding=1) self.bn2 = nn.BatchNorm2d(width) # ----------------------------------------- self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel*self.expansion,

import torch import torch.nn as nn import torch.nn.functional as F # from torchsummary import summary class BasicBlock(nn.Module): # BasicBlock and BottleNeck block # have different output size # we use class attribute expansion # to distinct expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super().__init__() # residual function self.residual_function = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(out_channels * BasicBlock.expansion) ) # shortcut self.shortcut = nn.Sequential() # the shortcut output dimension is not the same with residual function # use 1*1 convolution to match the dimension if stride != 1 or in_channels != BasicBlock.expansion * out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, out_channels * BasicBlock.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels * BasicBlock.expansion) ) def forward(self, x): return F.relu(self.residual_function(x) + self.shortcut(x)) class ResNet(nn.Module): def __init__(self, block, num_block): super().__init__() self.in_channels = 64 filters = [64, 128, 256, 512, 1024] # we use a different inputsize than the original paper # so conv2_x's stride is 1 self.conv2_x = self._make_layer(block, filters[0], num_block[0], 1) self.conv3_x = self._make_layer(block, filters[1], num_block[1], 2) self.conv4_x = self._make_layer(block, filters[2], num_block[2], 2) self.conv5_x = self._make_layer(block, filters[3], num_block[3], 2) 在

def gcd(a, b): while b: a, b = b, a % b return a # Other types of layers can go here (e.g., nn.Linear, etc.) def _init_weights(module, name, scheme=''): if isinstance(module, nn.Conv2d) or isinstance(module, nn.Conv3d): if scheme == 'normal': nn.init.normal_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif scheme == 'trunc_normal': trunc_normal_tf_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif scheme == 'xavier_normal': nn.init.xavier_normal_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) elif scheme == 'kaiming_normal': nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') if module.bias is not None: nn.init.zeros_(module.bias) else: # efficientnet like fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels fan_out //= module.groups nn.init.normal_(module.weight, 0, math.sqrt(2.0 / fan_out)) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.BatchNorm2d) or isinstance(module, nn.BatchNorm3d): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) elif isinstance(module, nn.LayerNorm): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) def act_layer(act, inplace=False, neg_slope=0.2, n_prelu=1): # activation layer act = act.lower() if act == 'relu': layer = nn.ReLU(inplace) elif act == 'relu6': layer = nn.ReLU6(inplace) elif act == 'leakyrelu': layer = nn.LeakyReLU(neg_slope, inplace) elif act == 'prelu': layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope) elif act == 'gelu': layer = nn.GELU() elif act == 'hswish': layer = nn.Hardswish(inplace) else: raise NotImplementedError('activation layer [%s] is not found' % act) return layer def channel_shuffle(x, groups): batchsize, num_channels, height, width = x.data.size() channels_per_group = num_channels // groups # reshape x = x.view(batchsize, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batchsize, -1, height, width) return x # Multi-scale depth-wise convolution (MSDC) class MSDC(nn.Module): def __init__(self, in_channels, kernel_sizes, stride, activation='relu6', dw_parallel=True): super(MSDC, self).__init__() self.in_channels = in_channels self.kernel_sizes = kernel_sizes self.activation = activation self.dw_parallel = dw_parallel self.dwconvs = nn.ModuleList([ nn.Sequential( nn.Conv2d(self.in_channels, self.in_channels, kernel_size, stride, kernel_size // 2, groups=self.in_channels, bias=False), nn.BatchNorm2d(self.in_channels), act_layer(self.activation, inplace=True) ) for kernel_size in self.kernel_sizes ]) self.init_weights('normal') def init_weights(self, scheme=''): named_apply(partial(_init_weights, scheme=scheme), self) def forward(self, x): # Apply the convolution layers in a loop outputs = [] for dwconv in self.dwconvs: dw_out = dwconv(x) outputs.append(dw_out) if self.dw_parallel == False: x = x + dw_out # You can return outputs based on what you intend to do with them return outputs class MSCB(nn.Module): """ Multi-scale convolution block (MSCB) """ def __init__(self, in_channels, out_channels, shortcut=False, stride=1, kernel_sizes=[1, 3, 5], expansion_factor=2, dw_parallel=True, activation='relu6'): super(MSCB, self).__init__() add = shortcut self.in_channels = in_channels self.out_channels = out_channels self.stride = stride self.kernel_sizes = kernel_sizes self.expansion_factor = expansion_factor self.dw_parallel = dw_parallel self.add = add self.activation = activation self.n_scales = len(self.kernel_sizes) # check stride value assert self.stride in [1, 2] # Skip connection if stride is 1 self.use_skip_connection = True if self.stride == 1 else False # expansion factor self.ex_channels = int(self.in_channels * self.expansion_factor) self.pconv1 = nn.Sequential( # pointwise convolution nn.Conv2d(self.in_channels, self.ex_channels, 1, 1, 0, bias=False), nn.BatchNorm2d(self.ex_channels), act_layer(self.activation, inplace=True) ) self.msdc = MSDC(self.ex_channels, self.kernel_sizes, self.stride, self.activation, dw_parallel=self.dw_parallel) if self.add == True: self.combined_channels = self.ex_channels * 1 else: self.combined_channels = self.ex_channels * self.n_scales self.pconv2 = nn.Sequential( # pointwise convolution nn.Conv2d(self.combined_channels, self.out_channels, 1, 1, 0, bias=False), nn.BatchNorm2d(self.out_channels), ) if self.use_skip_connection and (self.in_channels != self.out_channels): self.conv1x1 = nn.Conv2d(self.in_channels, self.out_channels, 1, 1, 0, bias=False) self.init_weights('normal') def init_weights(self, scheme=''): named_apply(partial(_init_weights, scheme=scheme), self) def forward(self, x): pout1 = self.pconv1(x) msdc_outs = self.msdc(pout1) if self.add == True: dout = 0 for dwout in msdc_outs: dout = dout + dwout else: dout = torch.cat(msdc_outs, dim=1) dout = channel_shuffle(dout, gcd(self.combined_channels, self.out_channels)) out = self.pconv2(dout) if self.use_skip_connection: if self.in_channels != self.out_channels: x = self.conv1x1(x) return x + out else: return out def autopad(k, p=None, d=1): # kernel, padding, dilation """Pad to 'same' shape outputs.""" if d > 1: k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad return p class Conv(nn.Module): """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation).""" default_act = nn.SiLU() # default activation def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): """Initialize Conv layer with given arguments including activation.""" super().__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() def forward(self, x): """Apply convolution, batch normalization and activation to input tensor.""" return self.act(self.bn(self.conv(x))) def forward_fuse(self, x): """Perform transposed convolution of 2D data.""" return self.act(self.conv(x)) import torch from torch import nn from ultralytics.nn.modules.conv import Conv from torch.nn import functional as F class Channel_Att(nn.Module): def __init__(self, channels, t=16): super(Channel_Att, self).__init__() self.channels = channels self.bn2 = nn.BatchNorm2d(self.channels, affine=True) def forward(self, x): residual = x x = self.bn2(x) weight_bn = self.bn2.weight.data.abs() / torch.sum(self.bn2.weight.data.abs()) x = x.permute(0, 2, 3, 1).contiguous() x = torch.mul(weight_bn, x) x = x.permute(0, 3, 1, 2).contiguous() x = torch.sigmoid(x) * residual # return x class NAMAttention(nn.Module): def __init__(self, channels, shape, out_channels=None, no_spatial=True): super(NAMAttention, self).__init__() self.Channel_Att = Channel_Att(channels) def forward(self, x): x_out1 = self.Channel_Att(x) return x_out1 根据这些代码,参考Conv的结构,创建一个名为MSConv的模块,输入分为两个分支,第一个是MSDC模块到BatchNorm2d到SiLU,另一个是NAM注意力,注意力机制与其他三个模块并行,最后将SiLU的输出与NAM的输出合并为最终的输出。请编辑代码实现这个思路。注意NAM注意力机制的参数问题

根据下面提供的代码,将cbam加入到stage1,stage2,stage3中,如何修改 class BottleNeck(nn.Module): '''Bottleneck modules ''' def __init__(self, in_channels, out_channels, expansion=4, stride=1, use_cbam=True): '''Param init. ''' super(BottleNeck, self).__init__() self.use_cbam = use_cbam self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=False, stride=stride) self.bn1 = nn.BatchNorm2d(num_features=out_channels) self.conv2 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=out_channels) self.conv3 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels*expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(num_features=out_channels*expansion) self.relu = nn.ReLU(inplace=True) self.identity_connection = nn.Sequential() if stride != 1 or in_channels != expansion*out_channels: self.identity_connection = nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=expansion*out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(num_features=out_channels*expansion) ) if self.use_cbam: self.cbam = CBAM(channel_in=out_channels*expansion) def forward(self, x): '''Forward Propagation. ''' out = self.relu(self.bn1(self.conv1(x))) out = self.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) if self.use_cbam: out = self.cbam(out) out += self.identity_connection(x) #identity connection/skip connection out = self.relu(out) return out class ResNet50(nn.Module): '''ResNet-50 Architecture. ''' def __init__(self, use_cbam=True, image_depth=3, num_classes=6): '''Params init and build arch. ''' super(ResNet50, self).__init__()

import torch.nn as nn import math import torch import torch.nn as nn import torch.nn as nn import torch import torch.nn.functional as F import numpy as np import math import numpy as np from typing import Any, Callable import torch from torch import nn, Tensor from typing import List, Optional import math from ultralytics.nn.modules.conv import Conv from typing import Union var: Union[int, tuple] = 1 # build RepVGG block # ----------------------------- def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1): result = nn.Sequential() result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False)) result.add_module('bn', nn.BatchNorm2d(num_features=out_channels)) return result class SEBlock(nn.Module): def __init__(self, input_channels): super(SEBlock, self).__init__() internal_neurons = input_channels // 8 self.down = nn.Conv2d(in_channels=input_channels, out_channels=internal_neurons, kernel_size=1, stride=1, bias=True) self.up = nn.Conv2d(in_channels=internal_neurons, out_channels=input_channels, kernel_size=1, stride=1, bias=True) self.input_channels = input_channels def forward(self, inputs): x = F.avg_pool2d(inputs, kernel_size=inputs.size(3)) x = self.down(x) x = F.relu(x) x = self.up(x) x = torch.sigmoid(x) x = x.view(-1, self.input_channels, 1, 1) return inputs * x class RepVGG(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False): super(RepVGG, self).__init__() self.deploy = deploy self.groups = groups self.in_channels = in_channels padding_11 = padding - kernel_size // 2 self.nonlinearity = nn.SiLU() # self.nonlinearity = nn.ReLU() if use_se: self.se = SEBlock(out_channels, internal_neurons=out_channels // 16) else: self.se = nn.Identity() if deploy: self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True, padding_mode=padding_mode) else: self.rbr_identity = nn.BatchNorm2d( num_features=in_channels) if out_channels == in_channels and stride == 1 else None self.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups) self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=padding_11, groups=groups) # print('RepVGG Block, identity = ', self.rbr_identity) def get_equivalent_kernel_bias(self): kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense) kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1) kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity) return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid def _pad_1x1_to_3x3_tensor(self, kernel1x1): if kernel1x1 is None: return 0 else: return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1]) def _fuse_bn_tensor(self, branch): if branch is None: return 0, 0 if isinstance(branch, nn.Sequential): kernel = branch.conv.weight running_mean = branch.bn.running_mean running_var = branch.bn.running_var gamma = branch.bn.weight beta = branch.bn.bias eps = branch.bn.eps else: assert isinstance(branch, nn.BatchNorm2d) if not hasattr(self, 'id_tensor'): input_dim = self.in_channels // self.groups kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32) for i in range(self.in_channels): kernel_value[i, i % input_dim, 1, 1] = 1 self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device) kernel = self.id_tensor running_mean = branch.running_mean running_var = branch.running_var gamma = branch.weight beta = branch.bias eps = branch.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std def forward(self, inputs): if hasattr(self, 'rbr_reparam'): return self.nonlinearity(self.se(self.rbr_reparam(inputs))) if self.rbr_identity is None: id_out = 0 else: id_out = self.rbr_identity(inputs) return self.nonlinearity(self.se(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)) def fusevggforward(self, x): return self.nonlinearity(self.rbr_dense(x)) # RepVGG block end # ----------------------------- def autopad(k, p=None, d=1): # kernel, padding, dilation """Pad to 'same' shape outputs.""" if d > 1: k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad return p def makeDivisible(v: float, divisor: int, min_value: Optional[int] = None) -> int: """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.Py """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v def callMethod(self, ElementName): return getattr(self, ElementName) def setMethod(self, ElementName, ElementValue): return setattr(self, ElementName, ElementValue) def shuffleTensor(Feature: Tensor, Mode: int=1) -> Tensor: # shuffle multiple tensors with the same indexs # all tensors must have the same shape if isinstance(Feature, Tensor): Feature = [Feature] Indexs = None Output = [] for f in Feature: # not in-place operation, should update output B, C, H, W = f.shape if Mode == 1: # fully shuffle f = f.flatten(2) if Indexs is None: Indexs = torch.randperm(f.shape[-1], device=f.device) f = f[:, :, Indexs.to(f.device)] f = f.reshape(B, C, H, W) else: # shuflle along y and then x axis if Indexs is None: Indexs = [torch.randperm(H, device=f.device), torch.randperm(W, device=f.device)] f = f[:, :, Indexs[0].to(f.device)] f = f[:, :, :, Indexs[1].to(f.device)] Output.append(f) return Output class AdaptiveAvgPool2d(nn.AdaptiveAvgPool2d): def __init__(self, output_size: Union[int, tuple] = 1 ): super(AdaptiveAvgPool2d, self).__init__(output_size=output_size) def profileModule(self, Input: Tensor): Output = self.forward(Input) return Output, 0.0, 0.0 class AdaptiveMaxPool2d(nn.AdaptiveMaxPool2d): def __init__(self, output_size: Union[int, tuple] = 1): super(AdaptiveMaxPool2d, self).__init__(output_size=output_size) def profileModule(self, Input: Tensor): Output = self.forward(Input) return Output, 0.0, 0.0 NormLayerTuple = ( nn.BatchNorm1d, nn.BatchNorm2d, nn.SyncBatchNorm, nn.LayerNorm, nn.InstanceNorm1d, nn.InstanceNorm2d, nn.GroupNorm, nn.BatchNorm3d, ) def initWeight(Module): # init conv, norm , and linear layers ## empty module if Module is None: return ## conv layer elif isinstance(Module, (nn.Conv2d, nn.Conv3d, nn.ConvTranspose2d)): nn.init.kaiming_uniform_(Module.weight, a=math.sqrt(5)) if Module.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(Module.weight) if fan_in != 0: bound = 1 / math.sqrt(fan_in) nn.init.uniform_(Module.bias, -bound, bound) ## norm layer elif isinstance(Module, NormLayerTuple): if Module.weight is not None: nn.init.ones_(Module.weight) if Module.bias is not None: nn.init.zeros_(Module.bias) ## linear layer elif isinstance(Module, nn.Linear): nn.init.kaiming_uniform_(Module.weight, a=math.sqrt(5)) if Module.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(Module.weight) bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 nn.init.uniform_(Module.bias, -bound, bound) elif isinstance(Module, (nn.Sequential, nn.ModuleList)): for m in Module: initWeight(m) elif list(Module.children()): for m in Module.children(): initWeight(m) class BaseConv2d(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: int, stride: Optional[int] = 1, padding: Optional[int] = None, groups: Optional[int] = 1, bias: Optional[bool] = None, BNorm: bool = False, # norm_layer: Optional[Callable[..., nn.Module]]=nn.BatchNorm2d, ActLayer: Optional[Callable[..., nn.Module]] = None, dilation: int = 1, Momentum: Optional[float] = 0.1, **kwargs: Any ) -> None: super(BaseConv2d, self).__init__() if padding is None: padding = int((kernel_size - 1) // 2 * dilation) if bias is None: bias = not BNorm self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.groups = groups self.bias = bias self.Conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, **kwargs) self.Bn = nn.BatchNorm2d(out_channels, eps=0.001, momentum=Momentum) if BNorm else nn.Identity() if ActLayer is not None: if isinstance(list(ActLayer().named_modules())[0][1], nn.Sigmoid): self.Act = ActLayer() else: self.Act = ActLayer(inplace=True) else: self.Act = ActLayer self.apply(initWeight) def forward(self, x: Tensor) -> Tensor: x = self.Conv(x) x = self.Bn(x) if self.Act is not None: x = self.Act(x) return x def profileModule(self, Input: Tensor): if Input.dim() != 4: print('Conv2d requires 4-dimensional Input (BxCxHxW). Provided Input has shape: {}'.format(Input.size())) BatchSize, in_channels, in_h, in_w = Input.size() assert in_channels == self.in_channels, '{}!={}'.format(in_channels, self.in_channels) k_h, k_w = pair(self.kernel_size) stride_h, stride_w = pair(self.stride) pad_h, pad_w = pair(self.padding) groups = self.groups out_h = (in_h - k_h + 2 * pad_h) // stride_h + 1 out_w = (in_w - k_w + 2 * pad_w) // stride_w + 1 # compute MACs MACs = (k_h * k_w) * (in_channels * self.out_channels) * (out_h * out_w) * 1.0 MACs /= groups if self.bias: MACs += self.out_channels * out_h * out_w # compute parameters Params = sum([p.numel() for p in self.parameters()]) Output = torch.zeros(size=(BatchSize, self.out_channels, out_h, out_w), dtype=Input.dtype, device=Input.device) # print(MACs) return Output, Params, MACs class MoCAttention(nn.Module): # Monte carlo attention def __init__( self, InChannels: int, HidChannels: int=None, SqueezeFactor: int=4, PoolRes: list=[1, 2, 3], Act: Callable[..., nn.Module]=nn.ReLU, ScaleAct: Callable[..., nn.Module]=nn.Sigmoid, MoCOrder: bool=True, **kwargs: Any, ) -> None: super().__init__() if HidChannels is None: HidChannels = max(makeDivisible(InChannels // SqueezeFactor, 8), 32) AllPoolRes = PoolRes + [1] if 1 not in PoolRes else PoolRes for k in AllPoolRes: Pooling = AdaptiveAvgPool2d(k) setMethod(self, 'Pool%d' % k, Pooling) self.SELayer = nn.Sequential( BaseConv2d(InChannels, HidChannels, 1, ActLayer=Act), BaseConv2d(HidChannels, InChannels, 1, ActLayer=ScaleAct), ) self.PoolRes = PoolRes self.MoCOrder = MoCOrder def monteCarloSample(self, x: Tensor) -> Tensor: if self.training: PoolKeep = np.random.choice(self.PoolRes) x1 = shuffleTensor(x)[0] if self.MoCOrder else x AttnMap: Tensor = callMethod(self, 'Pool%d' % PoolKeep)(x1) if AttnMap.shape[-1] > 1: AttnMap = AttnMap.flatten(2) AttnMap = AttnMap[:, :, torch.randperm(AttnMap.shape[-1])[0]] AttnMap = AttnMap[:, :, None, None] # squeeze twice else: AttnMap: Tensor = callMethod(self, 'Pool%d' % 1)(x) return AttnMap def forward(self, x: Tensor) -> Tensor: AttnMap = self.monteCarloSample(x) return x * self.SELayer(AttnMap) class Conv(nn.Module): """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation).""" default_act = nn.SiLU() def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): super().__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() def forward(self, x): return self.act(self.bn(self.conv(x))) class RepMCABottleneck(nn.Module): """Attentional Gated Convolution Bottleneck with RepVGG and MoCAttention.""" def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): """ Args: c1 (int): Input channels c2 (int): Output channels shortcut (bool): Whether to use shortcut connection g (int): Groups for convolutions k (tuple): Kernel sizes for convolutions (k1, k2) e (float): Expansion ratio for intermediate channels """ super().__init__() c_ = int(c2 * e) # Intermediate channels # Attention module self.att = MoCAttention(InChannels=c1) # Extract individual kernel sizes from tuple k1, k2 = k # First RepVGG convolution self.repvgg1 = RepVGG(in_channels=c1, out_channels=c1, kernel_size=k1, padding=k1//2) # Use k1 # Additional convolution branch self.conv_branch = Conv(c1, c2, 1) # 1x1 convolution # Second RepVGG convolution self.repvgg2 = RepVGG(in_channels=c1, out_channels=c2, kernel_size=k2, padding=k2//2) # Use k2 # Shortcut handling self.add = shortcut and c1 == c2 if shortcut and c1 != c2: # Adjust dimensions if needed self.shortcut_conv = Conv(c1, c2, 1) # 1x1 conv for channel adjustment else: self.shortcut_conv = nn.Identity() def forward(self, x): # Apply attention att_out = self.att(x) # First RepVGG convolution repvgg1_out = self.repvgg1(att_out) # Additional convolution branch conv_branch_out = self.conv_branch(att_out) # Second RepVGG convolution repvgg2_out = self.repvgg2(repvgg1_out) # Combine outputs combined = repvgg2_out + conv_branch_out # Shortcut connection if self.add: return combined + self.shortcut_conv(x) return combined class C2f(nn.Module): """Faster Implementation of CSP Bottleneck with 2 convolutions.""" def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): """Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing.""" super().__init__() self.c = int(c2 * e) # hidden channels self.cv1 = Conv(c1, 2 * self.c, 1, 1) self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2) self.m = nn.ModuleList(RepMCABottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)) def forward(self, x): """Forward pass through C2f layer.""" y = list(self.cv1(x).chunk(2, 1)) y.extend(m(y[-1]) for m in self.m) return self.cv2(torch.cat(y, 1)) def forward_split(self, x): """Forward pass using split() instead of chunk().""" y = list(self.cv1(x).split((self.c, self.c), 1)) y.extend(m(y[-1]) for m in self.m) return self.cv2(torch.cat(y, 1)) class C3(nn.Module): """CSP Bottleneck with 3 convolutions.""" def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): """Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values.""" super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2) self.m = nn.Sequential(*(RepMCABottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n))) def forward(self, x): """Forward pass through the CSP bottleneck with 2 convolutions.""" return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1)) class C3k2_RepMCABottleneck(C2f): """Faster Implementation of CSP Bottleneck with 2 convolutions.""" def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True): """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks.""" super().__init__(c1, c2, n, shortcut, g, e) self.m = nn.ModuleList( C3k(self.c, self.c, 2, shortcut, g) if c3k else RepMCABottleneck(self.c, self.c, shortcut, g) for _ in range(n) ) class C3k(C3): """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks.""" def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3): """Initializes the C3k module with specified channels, number of layers, and configurations.""" super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) # hidden channels # Create a tuple of kernel sizes (k, k) for RepMCABottleneck self.m = nn.Sequential(*(RepMCABottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n))) # Add to module exports __all__ = ['C3k2_RepMCABottleneck'] 报错:TypeError: unsupported operand type(s) for //: 'tuple' and 'int'

import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange class LayerNorm(nn.Module): def __init__(self, normalized_shape, eps=1e-6, data_format="channels_first"): super().__init__() # 可学习的权重参数,初始化为全 1 self.weight = nn.Parameter(torch.ones(normalized_shape)) # 可学习的偏置参数,初始化为全 0 self.bias = nn.Parameter(torch.zeros(normalized_shape)) # 用于数值稳定性的小常数 self.eps = eps # 数据格式,支持 "channels_last" 和 "channels_first" self.data_format = data_format # 检查数据格式是否合法,若不合法则抛出异常 if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError # 归一化的形状 self.normalized_shape = (normalized_shape,) def forward(self, x): # 如果数据格式为 "channels_last" if self.data_format == "channels_last": # 直接调用 PyTorch 的层归一化函数 return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) # 如果数据格式为 "channels_first" elif self.data_format == "channels_first": # 计算通道维度上的均值 u = x.mean(1, keepdim=True) # 计算通道维度上的方差 s = (x - u).pow(2).mean(1, keepdim=True) # 进行归一化操作 x = (x - u) / torch.sqrt(s + self.eps) # 应用可学习的权重和偏置 x = self.weight[:, None, None] * x + self.bias[:, None, None] return x # Intensity Enhancement Layer,强度增强层 class IEL(nn.Module): def __init__(self, dim, ffn_expansion_factor=2.66, bias=False): # 调用父类的构造函数 super(IEL, self).__init__() # 计算隐藏层的特征维度 hidden_features = int(dim * ffn_expansion_factor) # 输入投影层,将输入特征维度映射到隐藏层特征维度的 2 倍 self.project_in = nn.Conv2d(dim, hidden_features * 2, kernel_size=1, bias=bias) # 深度可分离卷积层 1 self.dwconv = nn.Conv2d(hidden_features * 2, hidden_features * 2, kernel_size=3, stride=1, padding=1, groups=hidden_features

class MRCNN(nn.Module):# 特征提取模块 def __init__(self, afr_reduced_cnn_size): super(MRCNN, self).__init__()#多分辨率卷积分支 drate = 0.5 self.GELU = GELU() # for older versions of PyTorch. For new versions use nn.GELU() instead. self.features1 = nn.Sequential( nn.Conv1d(1, 64, kernel_size=50, stride=6, bias=False, padding=24), nn.BatchNorm1d(64),# 大卷积核捕获低频特征 self.GELU, nn.MaxPool1d(kernel_size=8, stride=2, padding=4), nn.Dropout(drate), nn.Conv1d(64, 128, kernel_size=8, stride=1, bias=False, padding=4), nn.BatchNorm1d(128), self.GELU, nn.Conv1d(128, 128, kernel_size=8, stride=1, bias=False, padding=4), nn.BatchNorm1d(128), self.GELU, nn.MaxPool1d(kernel_size=4, stride=4, padding=2) ) self.features2 = nn.Sequential( nn.Conv1d(1, 64, kernel_size=400, stride=50, bias=False, padding=200), nn.BatchNorm1d(64), self.GELU, nn.MaxPool1d(kernel_size=4, stride=2, padding=2), nn.Dropout(drate), nn.Conv1d(64, 128, kernel_size=7, stride=1, bias=False, padding=3), nn.BatchNorm1d(128),# 小卷积核捕获高频特征 self.GELU, nn.Conv1d(128, 128, kernel_size=7, stride=1, bias=False, padding=3), nn.BatchNorm1d(128), self.GELU, nn.MaxPool1d(kernel_size=2, stride=2, padding=1) ) self.dropout = nn.Dropout(drate) self.inplanes = 128 self.AFR = self._make_layer(SEBasicBlock, afr_reduced_cnn_size, 1) def _make_layer(self, block, planes, blocks, stride=1): # makes residual SE block downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv1d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm1d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x1 = self.features1(x) x2 = self.features2(x) x_concat = torch.cat((x1, x2), dim=2) x_concat = self.dropout(x_concat) x_concat = self.AFR(x_concat) return x_concat ########################################################################################## def attention(query, key, value, dropout=None): "Implementation of Scaled dot product attention" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k) p_attn = F.softmax(scores, dim=-1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn class CausalConv1d(torch.nn.Conv1d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True): self.__padding = (kernel_size - 1) * dilation super(CausalConv1d, self).__init__( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=self.__padding, dilation=dilation, groups=groups, bias=bias)请帮我理解该部分代码 并逐行讲解

给你我的模块: ## 上采样 class C2Up(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.pre_conv = nn.Conv2d(self.in_channels, self.in_channels, kernel_size=1, stride=1, padding=0, bias=False) self.up_seq = nn.Sequential( nn.Upsample(scale_factor=2, mode="nearest"), Conv(self.in_channels, self.in_channels, kernel_size, stride, p=kernel_size // 2, g=self.in_channels, act=True), ) self.post_conv = nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, stride=1, padding=0, bias=False) @staticmethod def channel_shuffle(x): batchsize, num_channels, height, width = x.size() channels_per_group = num_channels // 2 x = x.view(batchsize, 2, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() return x.view(batchsize, -1, height, width) def forward(self, x): x = self.pre_conv(x) x = self.up_seq(x) x = self.channel_shuffle(x) x = self.post_conv(x) return x ## 下采样 class Down_dwt(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.in_channels = in_channels self.out_channels = out_channels ## 初始化离散小波变换,J=1表示变换的层数,mode='zero'表示填充模式,使用'Haar'小波 self.wt = DWTForward(J=1, mode='zero', wave='haar') self.post_conv = nn.Sequential( Conv(self.in_channels * 4, self.out_channels, 1, 1, act=True), ) def forward(self, x): # 小波下采样 yL, yH = self.wt(x) y_HL = yH[0][:, :, 0, :, :] # 水平高频 y_LH = yH[0][:, :, 1, :, :] # 垂直高频 y_HH = yH[0][:, :, 2, :, :] # 对角高频 x = torch.cat([yL, y_HL, y_LH, y_HH], dim=1) x = self.post_conv(x) return x ## 中间层 class C3k2_CBAM(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() mid_channels = out_channels // 2 self.conv1 = Conv(in_channels, mid_channels, 1, 1, act=True) self.bottleneck1 = GhostBottleneck(mid_channels, mid_channels) self.bottleneck2 = GhostBottleneck(mid_channels, mid_channels) self.bottleneck3 = GhostBottleneck(mid_channels, mid_channels) self.cbam = CBAM(2 * mid_channels) self.conv_final = Conv(2 * mid_channels, out_channels, 1, g=4) def forward(self, x): branch1 = self.conv1(x) out = self.bottleneck1(branch1) out = self.bottleneck2(out) out = self.bottleneck3(out) fused = torch.cat([branch1, out], dim=1) cbam_out = self.cbam(fused) return self.conv_final(cbam_out) ## trans class Linear_Attention(nn.Module): def __init__(self, embed_dim, num_heads=8): super().__init__() self.attention = nn.MultiheadAttention(embed_dim, num_heads) self.norm = nn.LayerNorm(embed_dim) def forward(self, x): B, C, H, W = x.shape x = x.reshape(B, C, H * W).permute(2, 0, 1) ## [H*W, B, C] attn_output, _ = self.attention(x, x, x) x = x + attn_output x = self.norm(x) x = x.permute(1, 2, 0).reshape(B, C, H, W) return x class DSFFN(nn.Module): def __init__(self, embed_dim, expansion_ratio=4): super().__init__() expanded_dim = embed_dim * expansion_ratio self.ffn = nn.Sequential( nn.Conv2d(embed_dim, expanded_dim, kernel_size=1, stride=1, padding=0, bias=False), nn.GELU(), nn.Conv2d(expanded_dim, embed_dim, kernel_size=1, stride=1, padding=0, bias=False), ) self.norm = nn.LayerNorm(embed_dim) def forward(self, x): residual = x x = self.ffn(x) x = x + residual x = self.norm(x) return x class ETrLayer(nn.Module): def __init__(self, embed_dim, num_heads=8, expansion_ratio=4): super().__init__() self.attention = Linear_Attention(embed_dim, num_heads) self.ffn = DSFFN(embed_dim, expansion_ratio) def forward(self, x): x = self.attention(x) x = self.ffn(x) return x 给你我的yaml文件: backbone: # [from, repeats, module, args] - [ -1, 1, Conv, [ 64, 3, 2 ] ] # 0-P1/2 - [ -1, 1, Conv, [ 128, 3, 2, 1, 2 ] ] # 1-P2/4 - [ -1, 2, C3k2, [ 256, False, 0.25 ] ] # 2 - [ -1, 1, Conv, [ 256, 3, 2, 1, 4 ] ] # 3-P3/8 - [ -1, 2, C3k2, [ 512, False, 0.25 ] ] #4 - [ -1, 1, Conv, [ 512, 3, 2 ] ] # 5-P4/16 - [ -1, 4, A2C2f, [ 512, True, 4 ] ] # 6 - [ -1, 1, Conv, [ 1024, 3, 2 ] ] # 7-P5/32 - [ -1, 4, A2C2f, [ 1024, True, 1 ] ] # 8 # YOLO12-turbo head head: - [ -1, 1, C2Up, [ 1024, 512 ] ] # 9 - [ [ -1, 6 ], 1, Concat, [ 1 ] ] # 10 cat backbone P4 - [ -1, 2, C3k2_CBAM, [ 1024, 512 ] ] # 11 - [ -1, 1, C2Up, [ 512, 256 ] ] # 12 - [ [ -1, 4 ], 1, Concat, [ 1 ] ] # 13 cat backbone P3 - [ -1, 2, C3k2_CBAM, [ 512, 256 ] ] # 14 - [ -1, 1, C2Up, [ 256, 128 ] ] # 15 - [ [ -1, 2 ], 1, Concat, [ 1 ] ] # 16 cat backbone P2 - [ -1, 2, C3k2_CBAM, [ 256, 128 ] ] # 17 out1 - [ -1, 1, Down_dwt, [ 128, 256 ] ] # 18 - [ [ -1, 14 ], 1, Concat, [ 1 ] ] # 19 cat head #14 - [ -1, 1, ETrLayer, [ 256, 8 ] ] # 20 out2 - [ -1, 1, Down_dwt, [ 256, 512 ] ] # 21 - [ [ -1, 11 ], 1, Concat, [ 1 ] ] # 22 cat head #11 - [ -1, 1, ETrLayer, [ 512, 8 ] ] # 23 out3 - [ -1, 1, Down_dwt, [ 512, 1024 ] ] # 24 - [ [ -1, 8 ], 1, Concat, [ 1 ] ] # 25 - [ -1, 1, ETrLayer, [ 1024, 8 ] ] # 26 out4 - [ [ 17, 20, 23, 26 ], 1, Detect, [ nc ] ] # 27 Detect(P2, P3, P4, P5) 给你我的解析函数中的片段代码: if m is C2Up: # in_channels 自动推理,out_channels 直接用yaml c1 = ch[f] c2 = args[0] kernel_size = args[1] if len(args) > 1 else 3 stride = args[2] if len(args) > 2 else 1 args = [c1, c2, kernel_size, stride] if m is Down_dwt: c1 = ch[f] c2 = args[0] args = [c1, c2] if m is C3k2_CBAM: c1 = ch[f] c2 = args[0] args = [c1, c2] if m is ETrLayer: embed_dim = args[0] num_heads = args[1] if len(args) > 1 else 8 # 保证 embed_dim 能被 num_heads 整除 if embed_dim % num_heads != 0: for nh in range(min(embed_dim, num_heads), 0, -1): if embed_dim % nh == 0: num_heads = nh break expansion_ratio = args[2] if len(args) > 2 else 4 args = [embed_dim, num_heads, expansion_ratio] 根据上面我给你滴内容,来解决一下下面的报错问题,尽量不要动模块内容,其他两个你可以修改,如果是在没有办法了,就修改吧: Traceback (most recent call last): File "E:\MyCode\YOLO\ultralytics-main\train.py", line 6, in <module> model = YOLO('E:/MyCode/YOLO/ultralytics-main/ultralytics/cfg/models/12/yolo12_change_neck.yaml') ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\MyCode\YOLO\ultralytics-main\ultralytics\models\yolo\model.py", line 79, in __init__ super().__init__(model=model, task=task, verbose=verbose) File "E:\MyCode\YOLO\ultralytics-main\ultralytics\engine\model.py", line 149, in __init__ self._new(model, task=task, verbose=verbose) File "E:\MyCode\YOLO\ultralytics-main\ultralytics\engine\model.py", line 261, in _new self.model = (model or self._smart_load("model"))(cfg_dict, verbose=verbose and RANK == -1) # build model ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\MyCode\YOLO\ultralytics-main\ultralytics\nn\tasks.py", line 422, in __init__ m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))]) # forward ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\MyCode\YOLO\ultralytics-main\ultralytics\nn\tasks.py", line 418, in _forward return self.forward(x)[0] if isinstance(m, (Segment, YOLOESegment, Pose, OBB)) else self.forward(x) ^^^^^^^^^^^^^^^ File "E:\MyCode\YOLO\ultralytics-main\ultralytics\nn\tasks.py", line 144, in forward return self.predict(x, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\MyCode\YOLO\ultralytics-main\ultralytics\nn\tasks.py", line 162, in predict return self._predict_once(x, profile, visualize, embed) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\MyCode\YOLO\ultralytics-main\ultralytics\nn\tasks.py", line 185, in _predict_once x = m(x) # run ^^^^ File "D:\Anaconda\envs\yolov12\Lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\MyCode\YOLO\ultralytics-main\ultralytics\nn\modules\conv.py", line 682, in forward return torch.cat(x, self.d) ^^^^^^^^^^^^^^^^^^^^ RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 17 but got size 16 for tensor number 1 in the list.

import mindspore # 载入mindspore的默认数据集 import mindspore.dataset as ds # 常用转化用算子 import mindspore.dataset.transforms.c_transforms as C # 图像转化用算子 ####____#### import mindspore.dataset.vision.c_transforms as CV from mindspore.common import dtype as mstype # mindspore的tensor from mindspore import Tensor # 各类网络层都在nn里面 import mindspore.nn as nn # 参数初始化的方式 from mindspore.common.initializer import TruncatedNormal # 设置mindspore运行的环境 from mindspore import context # 引入训练时候会使用到回调函数,如checkpoint, lossMoniter from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor # 引入模型 from mindspore.train import Model # 引入评估模型的包 from mindspore.nn.metrics import Accuracy # numpy import numpy as np # 画图用 import matplotlib.pyplot as plt import mindspore.nn as nn ####____#### # 下载数据相关的包 import os import requests import zipfile #创建图像标签列表 #定义一个将数字标签映射到类名的字典,用于图像标注 category_dict = {0:'airplane',1:'automobile',2:'bird',3:'cat',4:'deer',5:'dog', 6:'frog',7:'horse',8:'ship',9:'truck'}# 键: CIFAR-10数据集中的标签索引值(0-9),值: 对应的类别名称 ####____#### current_path = os.getcwd()#获取当前工作目录路径 #构建CIFAR-10测试数据集路径 data_path = os.path.join(current_path, 'data/10-verify-bin')#拼接当前路径与数据子目录(测试集) #创建测试数据集对象 cifar_ds = ds.Cifar10Dataset(data_path)#使用ds.Cifar10Dataset类从指定路径加载CIFAR-10测试集 # 设置图像大小 plt.figure(figsize=(8,8)) i = 1#初始化计数器变量,用于追踪当前显示的图像索引 # 打印9张子图 for dic in cifar_ds.create_dict_iterator():#创建数据迭代器,每次迭代返回包含图像和标签的字典 plt.subplot(3,3,i) ####____#### plt.imshow(dic['image'].asnumpy()) plt.xticks([]) plt.yticks([]) plt.axis('off') plt.title(category_dict[dic['label'].asnumpy().sum()]) i +=1 if i > 9 : break plt.show() cifar_ds=ds.Cifar10Dataset(data_path) def get_data(datapath): cifar_ds = ds.Cifar10Dataset(datapath)#原始数据集对象 return cifar_ds def get_data(datapath): cifar_ds = ds.Cifar10Dataset(datapath)#原始数据集对象 return cifar_ds def process_dataset(cifar_ds,batch_size =32,status="train"): #batch_size: 批处理大小 (默认32);status: 数据集类型,"train"表示训练集,其他表示测试集/验证集 ''' ---- 定义算子 ---- ''' # 归一化缩放因子 rescale = 1.0 / 255.0 # 像素值平移量 shift = 0.0 resize_op = CV.Resize((32, 32))#将所有图像调整到32*32尺寸 rescale_op = CV.Rescale(rescale, shift)#对图像进行归一化缩放(*rescale,+shift) # 对于RGB三通道分别设定mean和std normalize_op = CV.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) if status == "train": # 随机裁剪 random_crop_op = CV.RandomCrop([32, 32], [4, 4, 4, 4]) # 随机翻转 random_horizontal_op = CV.RandomHorizontalFlip() # 通道变化 channel_swap_op = CV.HWC2CHW() # 类型变化 typecast_op = C.TypeCast(mstype.int32) ''' ---- 算子运算 ---- ''' cifar_ds = cifar_ds.map(input_columns="label", operations=typecast_op)#讲标签列转换为int32类型 if status == "train": cifar_ds = cifar_ds.map(input_columns="image", operations=random_crop_op)#应用随即裁剪增强 cifar_ds = cifar_ds.map(input_columns="image", operations=random_horizontal_op)#应用随机水平翻转增强 cifar_ds = cifar_ds.map(input_columns="image", operations=resize_op)#应用图像大小调整 cifar_ds = cifar_ds.map(input_columns="image", operations=rescale_op)#应用缩放操作 cifar_ds = cifar_ds.map(input_columns="image", operations=normalize_op)#应用标准化 cifar_ds = cifar_ds.map(input_columns="image", operations=channel_swap_op)#应用通道转换 # shuffle cifar_ds = cifar_ds.shuffle(buffer_size=1000)#使用大小为1000的缓冲区对数据进行随机混洗 # 切分数据集到batch_size cifar_ds = cifar_ds.batch(batch_size, drop_remainder=True)#将数据集按照批次大小分组,并丢弃最后一个不完整的批次 return cifar_ds#返回处理后的数据集 data_path = os.path.join(current_path, 'data/10-batches-bin')#拼接当前路径与子路径‘data/1-...’,形成完整数据集路径 batch_size=32#批处理大小 status="train"#设置当前数据集为训练集 # 生成训练数据集 cifar_ds = get_data(data_path)#获取CIFAR-10数据集的原始train对象 ds_train = process_dataset(cifar_ds,batch_size =batch_size, status=status)#调用process_dataset函数对原始数据集进行预处理 class BasicBlock(nn.Cell): """基本残差块""" expansion = 1 def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, pad_mode='pad', has_bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU() self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, pad_mode='pad', has_bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = downsample def construct(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity # 残差连接 out = self.relu(out) return out class ResNet(nn.Cell): """完整的ResNet网络""" def __init__(self, block, layers, num_classes=10): super(ResNet, self).__init__() self.in_channels = 64 self.conv = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad', has_bias=False) self.bn = nn.BatchNorm2d(64) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2) # 去掉padding参数 self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], 2) self.layer3 = self._make_layer(block, 256, layers[2], 2) self.layer4 = self._make_layer(block, 512, layers[3], 2) self.avgpool = nn.AvgPool2d(kernel_size=8, stride=1) # 使用AvgPool2d代替AdaptiveAvgPool2d self.fc = nn.Dense(512 * block.expansion, num_classes) def _make_layer(self, block, out_channels, blocks, stride=1): downsample = None if stride != 1 or self.in_channels != out_channels * block.expansion: downsample = nn.SequentialCell([ nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, has_bias=False), nn.BatchNorm2d(out_channels * block.expansion), ]) layers = [] layers.append(block(self.in_channels, out_channels, stride, downsample)) self.in_channels = out_channels * block.expansion for _ in range(1, blocks): layers.append(block(self.in_channels, out_channels)) return nn.SequentialCell(layers) def construct(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.shape[0], -1) x = self.fc(x) return x # 创建ResNet模型 network = ResNet(BasicBlock, [2, 2, 2, 2]) # ResNet18 # 返回当前设备 device_target = mindspore.context.get_context('device_target') # 确定图模型是否下沉到芯片上 dataset_sink_mode = True if device_target in ['Ascend','GPU'] else False # 设置模型的设备与图的模式 context.set_context(mode=context.GRAPH_MODE, device_target=device_target) # 使用交叉熵函数作为损失函数 net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") # 优化器为Adam net_opt = nn.Adam(params=network.trainable_params(), learning_rate=0.001) # 监控每个epoch训练的时间 time_cb = TimeMonitor(data_size=ds_train.get_dataset_size()) from mindspore.train.callback import Callback#导入callback基类,用于创建自定义回调函数 class EvalCallBack(Callback):#自定义评估回调类,继承自callback基类 def __init__(self, model, eval_dataset, eval_per_epoch, epoch_per_eval):#初始化方法 self.model = model#训练好的模型,用于评估 self.eval_dataset = eval_dataset#评估数据集 self.eval_per_epoch = eval_per_epoch#评估频率 self.epoch_per_eval = epoch_per_eval#字典,用于保存评估历史 def epoch_end(self, run_context): cb_param = run_context.original_args()#获取运行上下文参数 cur_epoch = cb_param.cur_epoch_num#提取当前epoch序号 if cur_epoch % self.eval_per_epoch == 0:#检查是否到达评估点 acc = self.model.eval(self.eval_dataset, dataset_sink_mode=False)#评估模型性能 self.epoch_per_eval["epoch"].append(cur_epoch) self.epoch_per_eval["acc"].append(acc["Accuracy"]) print(acc) # 设置CheckpointConfig,callback函数。save_checkpoint_steps=训练总数/batch_size config_ck = CheckpointConfig(save_checkpoint_steps=1562, keep_checkpoint_max=10) ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet_original", directory='./results',config=config_ck)#创建模型jian'cha'dii'an # 建立可训练模型 model = Model(network = network, loss_fn=net_loss,optimizer=net_opt, metrics={"Accuracy": Accuracy()}) eval_per_epoch = 1 epoch_per_eval = {"epoch": [], "acc": []} eval_cb = EvalCallBack(model, ds_train, eval_per_epoch, epoch_per_eval) print("============== Starting Training ==============") model.train(100, ds_train,callbacks=[ckpoint_cb, LossMonitor(per_print_times=1),eval_cb],dataset_sink_mode=dataset_sink_mode) data_path = os.path.join(current_path, 'data/10-verify-bin') batch_size=32 status="test" # 生成测试数据集 cifar_ds = ds.Cifar10Dataset(data_path) ds_eval = process_dataset(cifar_ds,batch_size=batch_size,status=status) res = model.eval(ds_eval, dataset_sink_mode=dataset_sink_mode) # 评估测试集 print('test results:',res) #创建图像标签列表 category_dict = {0:'airplane',1:'automobile',2:'bird',3:'cat',4:'deer',5:'dog', 6:'frog',7:'horse',8:'ship',9:'truck'} cifar_ds = get_data('./data/10-verify-bin') df_test = process_dataset(cifar_ds,batch_size=1,status='test') def normalization(data): _range = np.max(data) - np.min(data) return (data - np.min(data)) / _range # 设置图像大小 plt.figure(figsize=(10,10)) i = 1 # 打印9张子图 for dic in df_test: # 预测单张图片 input_img = dic[0] output = model.predict(Tensor(input_img)) output = nn.Softmax()(output) # 反馈可能性最大的类别 predicted = np.argmax(output.asnumpy(),axis=1)[0] # 可视化 plt.subplot(3,3,i) # 删除batch维度 input_image = np.squeeze(input_img.asnumpy(),axis=0).transpose(1,2,0) # 重新归一化,方便可视化 input_image = normalization(input_image) plt.imshow(input_image) plt.xticks([]) plt.yticks([]) plt.axis('off') plt.title('True label:%s,\n Predicted:%s'%(category_dict[dic[1].asnumpy().sum()],category_dict[predicted])) i +=1 if i > 9 : break plt.show() 修改以上代码,保留代码的框架和基本逻辑,把神经网络算法从lenet的网络结构改变为ResNet网络(尽量少的改动代码),给出修改后的完整代码,要求在上代码测试集准确率73%的基础上进一步提升准确率,预期提升到95%以上 其他要求: 1、按照jupyter notebook文件即.ipynb文件的样式,完成作业; 2、作业要求注释风格良好,代码风格良好,保留中间运行结果;(作业成绩好坏评定的依据) 3、在华为云modelarts GPU服务器上运行;

最新推荐

recommend-type

sqlite-jdbc-3.27.2.1.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

spring-jdbc-4.0.5.RELEASE.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

Linux 版微信开发者工具:支持最新微信小程序与网页开发最新版

资源下载链接为: https://pan.quark.cn/s/92be6f56db81 Linux 版微信开发者工具:支持最新微信小程序与网页开发最新版(最新、最全版本!打开链接下载即可用!)
recommend-type

《04D702-1常用低压配电设备安装图集完整版》

资源下载链接为: https://pan.quark.cn/s/d9ef5828b597 《04D702 - 1 常用低压配电设备安装图集》PDF 版本,04D702 - 1 常用低压配电设备安装图集
recommend-type

响应式绿色简洁风格网络借贷网页模板分享

标题中提到的“绿色简洁风格响应式网络借贷网页模板.zip”暗示着该模板采用了绿色作为主要色彩,并且界面设计风格简洁。响应式设计则意味着网页模板能够在不同尺寸的屏幕上展示适宜的布局和内容,无论是电脑、平板还是手机等移动设备。这种设计符合现代网页设计的趋势,确保用户无论使用何种设备访问网络借贷平台,都能获得良好的浏览体验。同时,“网络借贷”表明这个网页模板可能专门适用于P2P借贷公司或金融技术服务公司,它们需要一个能够体现专业、可靠、易用界面的在线平台。 在描述部分,“html网站模版分享”表明该文件是一个分享性质的资源,用户可以通过这个模板快速搭建一个HTML网站。静态化H5网站模版源码意味着该模板可能不包含后端交互逻辑,即不会涉及数据库和服务器端编程。这里提及的H5指的是HTML5,它是HTML的最新版本,提供了更多增强的标签和功能,比如更好的多媒体和图形支持、离线存储等。PC+wap表明该模板支持传统的个人电脑浏览以及移动设备的wap(无线应用协议)浏览,平面广告设计网页模版代码则说明模板中可能包含了广告位或者特定的视觉元素来强化广告效果。 标签“html5 H5模版 HTML模版”进一步细化了文件的内容,强调了HTML5技术的应用。HTML5模版通常包含最新的HTML标记和语义化标签,能够支持现代浏览器的各种新特性,从而提升网站的交互性和用户体验。标签的使用也说明了这个模板可能适用于多种不同类型的网站,但特别适用于需要在移动设备上也能良好展示的网站。 文件名列表中的“24809”可能指的是该模板的版本号、编号或者文件在压缩包中的唯一标识。由于没有具体的文件扩展名,我们无法直接了解具体的文件内容,但是通常情况下,一个网页模板压缩包中应包含HTML、CSS、JavaScript文件以及其他可能的媒体资源,如图片、字体等。 综上所述,该模板文件包含的知识点包括: 1. 响应式网页设计:能够适应不同屏幕尺寸和分辨率的设备。 2. 绿色简洁风格:采用绿色作为视觉主色调,设计简洁明了。 3. 网络借贷领域适用性:模板设计符合金融技术服务公司或P2P借贷平台的需要。 4. 静态HTML5网页模板:适用于快速搭建静态网站,不涉及后端逻辑。 5. PC与移动设备适配:模板设计同时考虑了电脑和平板及手机等移动设备的浏览体验。 6. 广告设计元素:模板中包含设计用于展示广告内容的版块。 7. HTML5技术应用:利用HTML5的新特性和语义化标签来构建网页。 8. 跨平台的网页模板:模板适用于多种设备和浏览器,确保良好的兼容性。 这个网页模板特别适合希望快速上线的网络借贷平台、金融服务网站等,它可以帮助开发者节省设计和编码的时间,同时也确保了一个专业且用户友好的前端展示。
recommend-type

图割技术深度剖析:掌握从理论到实践的15个关键步骤

# 1. 图割技术概述 图割技术是一种应用广泛的数学算法,它来源于图论,主要应用于图像处理、网络优化、数据分析等领域。图割技术的核心在于将复杂的问题转化为图的最小割问题,并求解。这不仅涉及到了图论和网络流理论,还需要具备一定的优化算法知识。通过对图割技术的基本概念、理论基础和实际应用的深入理解,可以有
recommend-type

zmdl

<think>好的,我现在需要处理用户关于“zmdl IT相关内容”的查询。首先,“zmdl”可能是一个缩写或拼写错误,所以我要考虑常见的IT相关术语中可能的匹配。 首先,我会想到常见的缩写,比如ZMDL可能代表某个技术框架、工具、协议或者公司名称。例如,在软件开发中,可能有类似缩写的库或框架。但常见的IT缩写如XML、JSON、YAML等,似乎不太匹配。然后,检查是否有拼写错误,比如用户可能想输入的是“ZMQ”(ZeroMQ)或者“ZFS”等,但不确定。 接下来,考虑中文拼音首字母缩写。例如,“zmdl”可能对应“自动化代码”之类的词组,比如“自动化代码流程”(Zi Dong Hua D
recommend-type

紫色大气PC+wap网页模板代码包

根据给定的文件信息,我们可以提炼出以下知识点: ### 网页模板与设计 #### 1. 网页模板概述 网页模板是一种预先设计好的网页结构框架,它包含HTML、CSS以及可能的JavaScript代码,可以快速帮助开发者构建出一致风格和布局的网页。使用模板可以节省设计和编码的时间,使得开发者可以专注于网页内容的更新和功能的实现。 #### 2. PC与WAP的区别 PC端指的是使用个人电脑访问的网页版本,通常会提供更加丰富的布局和功能,因为屏幕尺寸较大,可以展示更多的内容和元素。WAP则是针对移动设备(如手机和平板电脑)设计的网页版本,它必须考虑到移动设备屏幕小、网络带宽较低等特点,因此在设计上更倾向于简洁、高效。 #### 3. 静态网页与动态网页 静态网页是一种简单的网页格式,其内容是固定的,不会因为用户的交互而改变。动态网页则允许内容根据用户的不同操作发生变化,通常包含服务器端脚本或数据库交互,可以提供更加个性化的浏览体验。静态化H5网站模板意味着这个模板是静态的,但专为H5设计,即兼容移动设备的HTML5标准。 #### 4. HTML5网页模板 HTML5是最新版本的HTML标准,它引入了诸多新特性,例如支持多媒体内容、图形和动画等,而无需依赖插件。HTML5模板专为HTML5标准设计,能够提供更好的兼容性和更丰富的用户体验。 ### 开发工具与技术 #### 1. HTML和CSS HTML(HyperText Markup Language)是构建网页的标准标记语言,它定义了网页的内容和结构。CSS(Cascading Style Sheets)用于描述HTML文档的呈现样式,包括布局、设计、颜色和字体等。两者结合使用,可以创建既美观又功能强大的网页。 #### 2. JavaScript JavaScript是一种运行在浏览器端的脚本语言,它能够让网页变得动态和交互性更强。通过使用JavaScript,开发者可以添加复杂的动画效果、表单验证、数据操作以及与用户的实时互动。 #### 3. 响应式设计 响应式网页设计是一种设计方法论,旨在让网页在不同设备和屏幕尺寸上均能提供优秀的浏览体验。这通常是通过媒体查询(Media Queries)来实现,可以根据设备的屏幕尺寸来应用不同的CSS样式。 ### 文件管理和解压缩 #### 1. 压缩文件格式 "紫色大气形式pc+wap专业维修服务网页模板代码.zip"文件意味着该文件是一个ZIP压缩包,它通过压缩算法减少了文件大小,便于传输和存储。解压缩此文件后,可以得到一系列的文件,这些文件包含了网页模板的所有资源。 #### 2. 文件命名规范 给定的压缩包中只有一个文件,即"22695"。从文件名称中,我们无法直接获取关于文件内容的具体信息。通常来说,文件命名应该反映出文件内容或者用途,以便于管理和检索。 ### 具体应用场景 #### 1. 专业维修服务网站 该网页模板被描述为面向专业维修服务的。这表明模板会包含相应的行业元素和布局设计,比如服务介绍、价格信息、联系方式、在线预约等。此类模板适合维修公司、汽车服务中心、电子产品维修点等使用。 #### 2. 平面广告设计 网页模板中还提到了平面广告设计。这意味着模板可能融入了平面设计的元素,如视觉焦点、色彩搭配和图形设计等,帮助企业在网络上展示其品牌和产品。 ### 结论 综上所述,"紫色大气形式pc+wap专业维修服务网页模板代码.zip"文件提供了一个静态化H5网页模板,可用于创建兼容PC和移动端的维修服务网站。模板代码基于HTML5、CSS和可能的JavaScript编写,具有响应式设计以适应不同设备。通过解压缩操作,开发者可以获取模板文件,然后根据需要进行修改和扩展以构建出一个功能完整、视觉吸引的网站。
recommend-type

【微信小程序CI_CD流程优化】:掌握这些技巧,部署效率提升不止一倍!

# 1. 微信小程序CI/CD的基本概念 微信小程序CI/CD(持续集成和持续部署)是一种软件开发实践,旨在使开发人员能够更快地交付新版本的小程序,同时保持高质量的标准。它强调在开发过程中持续进行构建、测试和发布,确保代码改动能够被快速发现并部署到生产环境中。通过自动化测试和部署流程,CI/CD减少了手动错误,加速
recommend-type

16.1054 63.2079 39.6566 37.3455 30.8524 48.6809 52.7529 45.2237 37.5511 46.7804 55.6762 55.565 66.0176 53.1187 68.2415 62.1257 57.9002 64.6832 53.7859 64.3788 66.2928 50.9808 51.9941 50.3053 39.3842 42.3115 42.7619 39.8346 27.2247 48.7291 37.8606 35.8012 30.7673 25.7334 15.8944 10.4029 15.208 18.1825 35.1148 46.8987 65.5473 35.1311 47.9013 49.9909 36.0599 37.9174 37.2208 51.8484 82.2645 89.4622 105.0186 78.5496 77.0662 70.4043 87.585 76.0143 90.0394 75.3131 79.5206 84.4294 99.1557 99.8569 93.5457 106.8694 63.0412 70.242 108.194 98.4349 94.6397 108.194 114.1579 133.6761 167.2908 196.0259 255.1226 237.7731 223.6767 206.3272 207.8226 283.3892 320.6168 355.0663 565.6525 757.9028 750.6795 719.0082 821.801 904.5908 1528.0266 1503.7027 2273.6813 2748.9146 2445.4799 3181.3091 2559.268 2330.8491 2095.6872 1859.6824 2057.7578 1954.0843 1564.6765 1122.2518 1053.0677 860.4376 785.8273 697.6516 825.1673 774.9749 855.0114 869.9335 1023.2236 1050.3546 1221.28 1637.3646 1720.4856 1180.8806 1319.8698 1468.3974 1471.1227 1373.0127 1172.7048 1184.9685 1194.507 962.8584 891.8322 832.6799 1040.4007 1058.2839 1055.5327 1234.3651 1018.3905 1030.7713 1028.02 1022.5174 1095.4261 1066.5377 992.149 1077.1249 1035.3335 1035.3335 908.5662 1014.4378 883.4913 940.6063 965.6811 1053.4431 1053.4431 1150.9564 1188.5687 1141.2051 1203.7752 1032.8578 1090.772 1075.234 1135.9733 1329.4914 1596.4616 1595.0491 1419.894 1458.0326 1618.2582 1312.7582 1265.4272 1256.8216 1209.4906 1220.9648 1156.4225 1051.7206 958.4929 863.831 1060.3263 1033.0751 1194.7088 1152.309 1399.1365 1281.0227 1290.1084 1323.4225 1550.5644 2004.8482 1886.7345 1830.7061 1992.734 2110.8478 2072.9908 2098.7336 2121.2401 2061.7146 1894.1034 2041.3506 2260.655 3726.8614 2697.6973 3969.2295 4171.63 3967.5972 4303.8432 3254.2987 3275.5181 3251.0341 3259.1955 3082.9112 3370.1893 3975.7585 3714.5966 3819.976 4329.5898 4786.8922 5168.2588 5141.2594 6238.1102 5418.0033 5517.5636 4692.3943 4218.2172 4051.1584 3835.1632 4118.4055 4162.2559 4149.9778 4362.2136 4078.0632,将以上数据整理成逗号隔开

<think>嗯,用户给了一大堆数据,每个数字之间用换行隔开,现在需要把这些数据整理成逗号分隔的形式。首先,我需要确认这些数据的结构是否正确,有没有多余的空格或者换行。 看一下用户提供的数据,看起来每个数字占据一行,中间可能有一些空行。我需要先把所有数据合并成一行,用逗号连接起来。不过,在处理过程中要注意检查是否有重复的数字或者格式错误,比如小数点后有多位或者数字之间有其他符号。 接下来,我需要按顺序处理每个数字。可能有些数字后面跟着换行,而有些可能有多个换行分隔。需要确保每个数字之间只有一个逗号,并且没有多余的空格。另外,还要检查是否有数字被拆分成了多行的情况,但根据用户提供的数据,似乎