def parse_opt(): """ weights: 要转换的权重文件pt地址 默认='../weights/best.pt' img-size: 输入模型的图片size=(height, width) 默认=[640, 640] batch-size: batch大小 默认=1 device: 模型运行设备 cuda device, i.e. 0 or 0,1,2,3 or cpu 默认=cpu include: 要将pt文件转为什么格式 可以为单个原始也可以为list 默认=['torchscript', 'onnx', 'coreml'] half: 是否使用半精度FP16export转换 默认=False inplace: 是否set YOLOv5 Detect() inplace=True 默认=False train: 是否开启model.train() mode 默认=True coreml转换必须为True optimize: TorchScript转化参数 是否进行移动端优化 默认=False dynamic: ONNX转换参数 dynamic_axes ONNX转换是否要进行批处理变量 默认=False simplify: ONNX转换参数 是否简化onnx模型 默认=False opset-version: ONNX转换参数 设置版本 默认=10 """ parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='../weights/best.pt', help='weights path') parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image (height, width)') parser.add_argument('--batch-size', type=int, default=1, help='batch size') parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats') parser.add_argument('--half', action='store_true', help='FP16 half-precision export') parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True') parser.add_argument('--train', default="True", action='store_true', help='model.train() mode') parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile') parser.add_argument('--dynamic', action='store_true', help='ONNX: dynamic axes') parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model') parser.add_argument('--opset-version', type=int, default=10, help='ONNX: opset version') opt = parser.parse_args() return opt 解析

时间: 2025-03-31 18:05:18 浏览: 38
<think>好的,用户让我解析一个名为parse_opt的Python函数,看起来是关于参数解析的,特别是针对模型转换的选项。首先,我需要仔细阅读用户提供的代码和注释,理解每个参数的作用以及整个函数的结构。 首先,用户给出的代码是使用argparse模块来解析命令行参数的函数。这个函数定义了一些参数,比如权重文件路径、图片尺寸、批处理大小等,这些参数用于模型转换的不同方面,比如导出为TorchScript、ONNX或CoreML格式。用户可能希望了解这个函数的具体功能、每个参数的意义,以及可能的使用场景或问题。 接下来,我需要检查用户的问题是否还有其他隐含需求。例如,用户可能在使用这个函数时遇到了问题,或者需要进一步优化参数设置,或者对某些参数的具体作用不太清楚。比如,注释中提到coreml转换必须将train设置为True,但代码中default="True",而action='store_true',这里可能存在矛盾,因为action='store_true'通常意味着默认是False,除非在命令行中指定。用户可能在这里有疑问,或者这是一个错误,需要指出。 另外,用户提供的代码中有一些参数设置可能需要进一步解释,例如--include参数接受列表,而默认值是一个包含多种格式的列表。需要说明如何正确使用这个参数,比如在命令行中输入时的格式。同时,像--half参数使用action='store_true',意味着它是一个标志,不需要额外值,用户可能需要知道如何启用FP16半精度转换。 还要注意参数的类型和默认值是否符合预期,例如--img-size的参数类型是int,nargs='+'表示可以接受多个值,但默认是[640,640],这对应图片的高度和宽度。需要确认用户是否理解nargs的作用,以及如何正确传递这个参数。 此外,用户可能希望了解如何调用这个函数,如何处理解析后的参数对象opt,以及这些参数如何被后续的模型转换代码使用。可能需要提供一个使用示例,比如在命令行中运行脚本时如何指定各个参数,或者如何在Python脚本中传递这些参数。 最后,用户可能希望得到一些常见问题的解答,比如参数冲突、默认值是否合理,或者某些参数在不同格式转换中的必要性。例如,为什么CoreML转换需要train=True,或者动态轴(dynamic)在ONNX转换中的作用是什么。 总结来说,用户需要这个函数的详细解析,包括每个参数的意义、使用方法、可能的注意事项以及代码中的潜在问题。同时,可能需要指出代码中的问题,比如--train参数的默认值设置是否正确,并给出修正建议。此外,提供使用示例和常见问题解答会更有帮助,确保用户能够正确应用这个函数进行模型转换。</think>以下是对 `def parse_opt():` 函数的逐行解析与功能说明: --- ### **函数功能概述** 此函数用于**解析命令行参数**,主要用于将YOLOv5模型(或其他PyTorch模型)转换为多种格式(如TorchScript、ONNX、CoreML等)。它是模型导出工具的核心参数配置模块。 --- ### **参数详解** #### **1. 基础参数** - **`--weights`** - **类型**:`str` - **默认值**:`'../weights/best.pt'` - **作用**:指定要转换的模型权重文件路径(`.pt`文件)。 - **示例**:`python export.py --weights ./yolov5s.pt` - **`--img-size`** - **类型**:`int`(接受多个值) - **默认值**:`[640, 640]` - **作用**:定义输入模型的图像尺寸,格式为 `[height, width]`。 - **注意**:使用 `nargs='+'` 允许输入多个值,例如:`--img-size 640 640`。 - **`--batch-size`** - **类型**:`int` - **默认值**:`1` - **作用**:设置批量推理时的批次大小。 - **`--device`** - **类型**:`str` - **默认值**:`'cpu'` - **作用**:指定模型运行的设备,支持CPU或CUDA设备(如 `--device 0` 表示使用第一块GPU)。 --- #### **2. 格式转换控制** - **`--include`** - **类型**:`list`(接受多个值) - **默认值**:`['torchscript', 'onnx', 'coreml']` - **作用**:指定要导出的模型格式,支持多选。 - **可选值**:`torchscript`, `onnx`, `coreml`, `tflite`等(需代码支持)。 - **示例**:`--include onnx coreml` 仅导出ONNX和CoreML格式。 - **`--half`** - **类型**:`布尔标志`(无需值) - **默认**:`False` - **作用**:启用FP16半精度导出,可减少模型大小并提升推理速度(需硬件支持)。 - **启用示例**:`--half` --- #### **3. 模型结构优化参数** - **`--inplace`** - **类型**:`布尔标志` - **默认**:`False` - **作用**:设置YOLOv5的 `Detect()` 层 `inplace=True`,优化内存占用(可能影响某些导出格式兼容性)。 - **`--train`** - **类型**:`布尔标志` - **默认**:`True`(代码中实际默认值存在问题,见下文“注意事项”) - **作用**:保持模型处于训练模式(`model.train()`),CoreML导出时必须为 `True`。 - **冲突说明**:若导出为推理格式(如ONNX),通常需设置为 `False`。 --- #### **4. 格式专属参数** - **`--optimize`**(TorchScript专用) - **类型**:`布尔标志` - **默认**:`False` - **作用**:对TorchScript模型进行移动端优化(如算子融合)。 - **`--dynamic`**(ONNX专用) - **类型**:`布尔标志` - **默认**:`False` - **作用**:允许ONNX输入尺寸动态变化(如动态批次大小),适用于可变输入场景。 - **示例**:`--dynamic` 允许批处理维度动态调整。 - **`--simplify`**(ONNX专用) - **类型**:`布尔标志` - **默认**:`False` - **作用**:使用ONNX Simplifier工具简化模型结构,移除冗余算子。 - **`--opset-version`**(ONNX专用) - **类型**:`int` - **默认**:`10` - **作用**:指定导出的ONNX版本,不同版本影响算子兼容性(如ONNX Runtime版本需匹配)。 --- ### **代码问题与注意事项** 1. **`--train` 参数默认值错误** - **问题**:代码中 `default="True"` 与 `action='store_true'` 冲突。 - **解释**:`action='store_true'` 表示参数默认为 `False`,仅在命令行显式指定时才为 `True`。 - **修复建议**:删除 `default="True"`,直接写 `action='store_true'`。 2. **CoreML导出强制要求 `--train=True`** - 若导出CoreML格式,需在命令行显式添加 `--train`,否则可能报错。 3. **动态批处理与ONNX** - 若启用 `--dynamic`,需确保推理框架(如TensorRT)支持动态形状。 --- ### **使用示例** ```bash # 导出ONNX和TorchScript模型,使用GPU且启用半精度 python export.py \ --weights ../weights/best.pt \ --img-size 640 640 \ --device 0 \ --include onnx torchscript \ --half \ --dynamic \ --simplify ``` --- ### **关键参数组合场景** | **场景** | **参数组合** | |------------------------|---------------------------------------------| | 移动端部署TorchScript | `--include torchscript --optimize` | | 服务端ONNX动态批处理 | `--include onnx --dynamic --batch-size 16` | | iOS CoreML导出 | `--include coreml --train` | 通过合理配置参数,可适配不同硬件和部署环境需求。
阅读全文

相关推荐

"""Exports a YOLOv5 *.pt model to ONNX formats Usage: $ copy export_onnx.py to yolov5-face $ export PYTHONPATH="$PWD" && python export.py --weights ./weights/yolov5s-face.pt --img_size 640 """ import sys sys.path.append('./') # to run '$ python *.py' files in subdirectories import torch import torch.nn as nn from models.experimental import attempt_load import onnx import argparse import time import types def export_forward(self, x): z = [] # inference output for i in range(self.nl): x[i] = self.m[i](x[i]) # conv z.append(x[i]) return z def run(weights='yolov5s-face.pt', img_size=(640, 640)): t = time.time() model = attempt_load(weights, map_location=torch.device('cpu')) # load FP32 model model.eval() # model model.model[-1].forward = types.MethodType(export_forward, model.model[-1]) print(f'starting export {weights} to onnx...') save_path = weights.replace(".pt", ".onnx") model.fuse() # only for ONNX output_names = ['output0'] img = torch.zeros(1, 3, img_size[0], img_size[1]) torch.onnx.export( model, # --dynamic only compatible with cpu img, save_path, verbose=False, opset_version=12, do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False input_names=['images'], output_names=output_names) # Checks onnx_model = onnx.load(save_path) # load onnx model onnx.checker.check_model(onnx_model) # check onnx model print('ONNX export success, saved as %s' % save_path) # Finish print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t)) def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='yolov5s.pt', help='model.pt path(s)') parser.add_argument('--img_size', nargs='+', type=int, default=[640, 640]) opt = parser.parse_args() return opt if __name__ == '__main__': args = parse_opt() args.img_size *= 2 if len(args.img_size) == 1 else 1 # expand run(args.weights, args.img_size) 这样的代码能实现把yolov5模型导出为onnx嘛

def setOPT(): # 文件配置 # ******************************************************* parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='D:/py/FaceRecognition/weights/last.pt', help='model.pt path') parser.add_argument('--source', type=str, default='C:/Users/lieweiai/Desktop/26321934-1-192.mp4', help='source') # file/folder, 0 for webcam parser.add_argument('--output', type=str, default='../inference/output', help='output folder') # output folder parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS') parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='display results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--classes', nargs='+', type=int, help='filter by class') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--facenet-model-path',type=str,default='D:/code_data/facenet/20180402-114759',help='miss facenet-model') parser.add_argument('--svc-path', type=str, default='D:/code_data/face_recognition/pkl/SVCmodel.pkl', help='miss svc') parser.add_argument('--database-path', type=str, default='D:/code_data/face_recognition/npz/Database.npz', help='miss database') opt = parser.parse_args() opt.img_size = check_img_size(opt.img_size) print(opt) return opt # ******************************************************* if __name__ == "__main__": # weights = 'D:/py/FaceRecognition/weights/last.pt' #yolov5权重 # output = '../inference/output' #输出文件保存位置 # source = "D:/py/FaceRecognition/inference/images/0.jpg" #输入检测文件 # source = "C:/Users/lieweiai/Desktop/26321934-1-192.mp4" # 输入检测文件 picture_path = "D:/code_data/face_recognition/images" #用户图片数据 model_path = "D:/code_data/facenet/20180402-114759" #facenet模型权重 database_path = "D:/code_data/face_recognition/npz/Database.npz" #打包成npz文件 SVCpath = "D:/code_data/face_recognition/pkl/SVCmodel.pkl" #通过SVM训练保存到pkl # face2database(picture_path,model_path,database_path) #step1 # ClassifyTrainSVC(database_path,SVCpath) #step2 # recognition_img(model_path, SVCpath, database_path,weights,source,output) #step3 detect(setOPT()) # step3 这些代码中是不是有重复的arg参数输入?

def setOPT(): # 文件配置 # ******************************************************* parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='D:/py/FaceRecognition/weights/last.pt', help='model.pt path') parser.add_argument('--source', type=str, default='C:/Users/lieweiai/Desktop/video/26321934-1-192.mp4', help='source') # file/folder, 0 for webcam parser.add_argument('--output', type=str, default='../inference/output', help='output folder') # output folder parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS') parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='display results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--classes', nargs='+', type=int, help='filter by class') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--facenet-model-path',type=str,default='D:/code_data/facenet/20180402-114759',help='miss facenet-model') parser.add_argument('--svc-path', type=str, default='D:/code_data/face_recognition/pkl/SVCmodel.pkl', help='miss svc') parser.add_argument('--database-path', type=str, default='D:/code_data/face_recognition/npz/Database.npz', help='miss database') opt = parser.parse_args() opt.img_size = check_img_size(opt.img_size) print(opt) return opt 这一段代码什么意思

super(Ui_MainWindow, self).__init__(parent) parser_car_det = argparse.ArgumentParser() # parser.add_argument('--weights', type=str, default='weights-s/best1.pt', help='model.pt path') parser_car_det.add_argument('--weights', type=str, default='weights-s/best1.pt', help='model.pt path') parser_car_det.add_argument('--source', type=str, default='input/3.mp4', help='source') # file/folder, 0 for webcam # parser.add_argument('--source', type=str, default='rtsp://admin:[email protected]:554//Streaming/Channels/101', help='source') # file/folder, 0 for webcam parser_car_det.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder parser_car_det.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') parser_car_det.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold') parser_car_det.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS') parser_car_det.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)') parser_car_det.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser_car_det.add_argument('--view-img', action='store_true', help='display results') parser_car_det.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser_car_det.add_argument('--classes', nargs='+', type=int, help='filter by class') parser_car_det.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser_car_det.add_argument('--augment', action='store_true', help='augmented inference') parser_car_det.add_argument('--idx', default='2', help='idx') self.opt_car_det = parser_car_det.parse_args() self.opt_car_det.img_size = check_img_size(self.opt_car_det.img_size) half = 0 source_car_det, weights_car_det, view_img_car_det, save_txt_car_det, imgsz_car_det = self.opt_car_det.source, self.opt_car_det.weights, self.opt_car_det.view_img, self.opt_car_det.save_txt, self.opt_car_det.img_size self.device_car_det = torch_utils.select_device(self.opt_car_det.device) self.half_car_det = 0 # half precision only supported on CUDA cudnn.benchmark = True

请帮我翻译每一句代码:def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default='D://Net//pytorch//yolov5-master//yolov5-master//runs//train//exp3//weights//best.pt', help='model path or triton URL') parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)') parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path') parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[480], help='inference size h,w') parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='show results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') parser.add_argument('--nosave', action='store_true', help='do not save images/videos') parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--visualize', action='store_true', help='visualize features')

解释parser.add_argument( "-r", "--resume", default=None, help="weights path for resume") parser.add_argument( "--slim_config", default=None, type=str, help="Configuration file of slim method.") parser.add_argument( "--enable_ce", type=bool, default=False, help="If set True, enable continuous evaluation job." "This flag is only used for internal test.") parser.add_argument( "--fp16", action='store_true', default=False, help="Enable mixed precision training.") parser.add_argument( "--fleet", action='store_true', default=False, help="Use fleet or not") parser.add_argument( "--use_vdl", type=bool, default=False, help="whether to record the data to VisualDL.") parser.add_argument( '--vdl_log_dir', type=str, default="vdl_log_dir/scalar", help='VisualDL logging directory for scalar.') parser.add_argument( '--save_prediction_only', action='store_true', default=False, help='Whether to save the evaluation results only') args = parser.parse_args() return args def run(FLAGS, cfg): # init fleet environment if cfg.fleet: init_fleet_env() else: # init parallel environment if nranks > 1 init_parallel_env() if FLAGS.enable_ce: set_random_seed(0) # build trainer trainer = Trainer(cfg, mode='train') # load weights if FLAGS.resume is not None: trainer.resume_weights(FLAGS.resume) elif 'pretrain_weights' in cfg and cfg.pretrain_weights: trainer.load_weights(cfg.pretrain_weights) # training trainer.train(FLAGS.eval) def main(): FLAGS = parse_args() cfg = load_config(FLAGS.config) cfg['fp16'] = FLAGS.fp16 cfg['fleet'] = FLAGS.fleet cfg['use_vdl'] = FLAGS.use_vdl cfg['vdl_log_dir'] = FLAGS.vdl_log_dir cfg['save_prediction_only'] = FLAGS.save_prediction_only merge_config(FLAGS.opt) place = paddle.set_device('gpu' if cfg.use_gpu else 'cpu') if 'norm_type' in cfg and cfg['norm_type'] == 'sync_bn' and not cfg.use_gpu: cfg['norm_type'] = 'bn' if FLAGS.slim_config: cfg = build_slim_model(cfg, FLAGS.slim_config) check.check_config(cfg) check.check_gpu(cfg.use_gpu) check.check_version() run(FLAGS, cfg)

start running... -- [I] Get key devices success. -- [I] [Default CommListener] Release device /dev/ttyS0 for program use -- [I] [Default CommListener] exit success Received: w -- [I] load cvimodel from: /root/my_wuliao/model_183042.cvimodel -- [I] model info: type: yolov5 input type: rgb mean:0.000000 0.000000 0.000000 scale:0.003922 0.003922 0.003922 labels num: 3 anchors:10.00 13.00 16.00 30.00 33.00 23.00 30.00 61.00 62.00 45.00 59.00 119.00 116.00 90.00 156.00 198.00 373.00 326.00 input size: 224x224 [SAMPLE_COMM_SNS_ParseIni]-2191: Parse /mnt/data/sensor_cfg.ini [parse_source_devnum]-1784: devNum = 1 [parse_sensor_name]-1865: sensor = GCORE_GC4653_MIPI_4M_30FPS_10BIT [parse_sensor_busid]-1894: bus_id = 4 [parse_sensor_i2caddr]-1905: sns_i2c_addr = 29 [parse_sensor_mipidev]-1916: mipi_dev = 0 [parse_sensor_laneid]-1927: Lane_id = 4, 3, 2, -1, -1 [parse_sensor_pnswap]-1938: pn_swap = 0, 0, 0, 0, 0 [parse_sensor_mclken]-1960: mclk_en = 1 [parse_sensor_mclk]-1971: mclk = 1 [SAMPLE_COMM_SNS_ParseIni]-2191: Parse /mnt/data/sensor_cfg.ini [parse_source_devnum]-1784: devNum = 1 [parse_sensor_name]-1865: sensor = GCORE_GC4653_MIPI_4M_30FPS_10BIT [parse_sensor_busid]-1894: bus_id = 4 [parse_sensor_i2caddr]-1905: sns_i2c_addr = 29 [parse_sensor_mipidev]-1916: mipi_dev = 0 [parse_sensor_laneid]-1927: Lane_id = 4, 3, 2, -1, -1 [parse_sensor_pnswap]-1938: pn_swap = 0, 0, 0, 0, 0 [parse_sensor_mclken]-1960: mclk_en = 1 [parse_sensor_mclk]-1971: mclk = 1 try release sys ok [_mmf_init]-1144: maix multi-media version:67a90e2-musl_riscv64 maix multi-media init ok try release vio ok try release venc ok ISP Vipipe(0) Allocate pa(0x8ace3000) va(0x0x3fb2d83000) size(291424) stSnsrMode.u16Width 2560 stSnsrMode.u16Height 1440 25.000000 wdrMode 0 pstSnsObj 0x3fb616ed18 ############# [cmos_set_image_mode][1176] fps:25.000000 [SAMPLE_COMM_VI_StartMIPI]-494: sensor 0 stDevAttr.devno 0 awbInit ver 6.9@2021500 0 R:1400 B:3100 CT:2850 1 R:1500 B:2500 CT:3900 2 R:

代码解释 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)') parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='display results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--nosave', action='store_true', help='do not save images/videos') parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--update', action='store_true', help='update all models') parser.add_argument('--project', default='runs/detect', help='save results to project/name') parser.add_argument('--name', default='exp', help='save results to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--no-trace', action='store_true', help='dont trace model') opt = parser.parse_args() print(opt) #check_requirements(exclude=('pycocotools', 'thop'))

[06/01/2023-16:46:00] [I] TensorRT version: 8.2.1 [06/01/2023-16:46:01] [I] [TRT] [MemUsageChange] Init CUDA: CPU +323, GPU +0, now: CPU 335, GPU 1071 (MiB) [06/01/2023-16:46:01] [I] [TRT] [MemUsageSnapshot] Begin constructing builder kernel library: CPU 335 MiB, GPU 1067 MiB [06/01/2023-16:46:01] [I] [TRT] [MemUsageSnapshot] End constructing builder kernel library: CPU 470 MiB, GPU 1101 MiB [06/01/2023-16:46:01] [I] Start parsing network model [06/01/2023-16:46:01] [I] [TRT] ---------------------------------------------------------------- [06/01/2023-16:46:01] [I] [TRT] Input filename: /opt/projects/ultralytics/runs/detect/train/weights/best.onnx [06/01/2023-16:46:01] [I] [TRT] ONNX IR version: 0.0.8 [06/01/2023-16:46:01] [I] [TRT] Opset version: 17 [06/01/2023-16:46:01] [I] [TRT] Producer name: pytorch [06/01/2023-16:46:01] [I] [TRT] Producer version: 2.0.0 [06/01/2023-16:46:01] [I] [TRT] Domain: [06/01/2023-16:46:01] [I] [TRT] Model version: 0 [06/01/2023-16:46:01] [I] [TRT] Doc string: [06/01/2023-16:46:01] [I] [TRT] ---------------------------------------------------------------- [06/01/2023-16:46:01] [W] [TRT] onnx2trt_utils.cpp:366: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32. [06/01/2023-16:46:01] [E] [TRT] ModelImporter.cpp:773: While parsing node number 263 [Conv -> "/model.28/cv2.3/cv2.3.2/Conv_output_0"]: [06/01/2023-16:46:01] [E] [TRT] ModelImporter.cpp:774: --- Begin node --- [06/01/2023-16:46:01] [E] [TRT] ModelImporter.cpp:775: input: "/model.28/cv2.3/cv2.3.1/act/Mul_output_0" input: "model.28.cv2.3.2.weight" input: "model.28.cv2.3.2.bias" output: "/model.28/cv2.3/cv2.3.2/Conv_output_0" name: "/model.28/cv2.3/cv2.3.2/Conv" op_type: "Conv" attribute { name: "dilations" ints: 1 ints: 1 type: INTS } attribute { name: "group" i: 1 type: INT } attribute { name: "kernel_shape" ints: 1 ints: 1 type: INTS } attribute { name: "pads" ints: 0 ints: 0 ints: 0 ints: 0 type: INTS } attribute { name: "strides" ints: 1 ints: 1 type: INTS } [06/01/2023-16:46:01] [E] [TRT] ModelImporter.cpp:776: --- End node --- [06/01/2023-16:46:01] [E] [TRT] ModelImporter.cpp:779: ERROR: builtin_op_importers.cpp:647 In function importConv: [8] Assertion failed: inputs.at(2).is_weights() && "The bias tensor is required to be an initializer for the Conv operator." [06/01/2023-16:46:01] [E] Failed to parse onnx file

YOLOV8基于Opset-12导出的ONNX模型,使用TensorRT-8.2.1.8转换模型时,提示以下错误,请问如何修复这个错误?: [06/01/2023-17:17:23] [I] TensorRT version: 8.2.1 [06/01/2023-17:17:23] [I] [TRT] [MemUsageChange] Init CUDA: CPU +323, GPU +0, now: CPU 335, GPU 1027 (MiB) [06/01/2023-17:17:24] [I] [TRT] [MemUsageSnapshot] Begin constructing builder kernel library: CPU 335 MiB, GPU 1027 MiB [06/01/2023-17:17:24] [I] [TRT] [MemUsageSnapshot] End constructing builder kernel library: CPU 470 MiB, GPU 1058 MiB [06/01/2023-17:17:24] [I] Start parsing network model [06/01/2023-17:17:24] [I] [TRT] ---------------------------------------------------------------- [06/01/2023-17:17:24] [I] [TRT] Input filename: /opt/projects/ultralytics/runs/detect/train/weights/best.onnx [06/01/2023-17:17:24] [I] [TRT] ONNX IR version: 0.0.8 [06/01/2023-17:17:24] [I] [TRT] Opset version: 17 [06/01/2023-17:17:24] [I] [TRT] Producer name: pytorch [06/01/2023-17:17:24] [I] [TRT] Producer version: 2.0.0 [06/01/2023-17:17:24] [I] [TRT] Domain: [06/01/2023-17:17:24] [I] [TRT] Model version: 0 [06/01/2023-17:17:24] [I] [TRT] Doc string: [06/01/2023-17:17:24] [I] [TRT] ---------------------------------------------------------------- [06/01/2023-17:17:24] [W] [TRT] onnx2trt_utils.cpp:366: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32. [06/01/2023-17:17:24] [E] [TRT] ModelImporter.cpp:773: While parsing node number 267 [Range -> "/model.28/Range_output_0"]: [06/01/2023-17:17:24] [E] [TRT] ModelImporter.cpp:774: --- Begin node --- [06/01/2023-17:17:24] [E] [TRT] ModelImporter.cpp:775: input: "/model.28/Constant_9_output_0" input: "/model.28/Cast_output_0" input: "/model.28/Constant_10_output_0" output: "/model.28/Range_output_0" name: "/model.28/Range" op_type: "Range" [06/01/2023-17:17:24] [E] [TRT] ModelImporter.cpp:776: --- End node --- [06/01/2023-17:17:24] [E] [TRT] ModelImporter.cpp:779: ERROR: builtin_op_importers.cpp:3352 In function importRange: [8] Assertion failed: inputs.at(0).isInt32() && "For range operator with dynamic inputs, this version of TensorRT only supports INT32!" [06/01/2023-17:17:24] [E] Failed to parse onnx file [06/01/2023-17:17:24] [I] Finish parsing network model [06/01/2023-17:17:24] [E] Parsing model failed [06/01/2023-17:17:24] [E] Failed to create engine from model. [06/01/2023-17:17:24] [E] Engine set up failed

大家在看

recommend-type

C语言流程图生成工具

AutoFlowChart 自动生成流程图 AutoFlowchart 是一个极佳的根据源码生成流程图的工具 它生成的流程图支持展开 合拢 并且可以预定义流程图块的大小和间隔 移动和缩放流程图也很方便 你还可以把它导出到WORD文档或BMP文件 它可以帮助程序员更好地理解程序 制作文档和可视化代码 支持C C++ VC++ Visual C++ NET Delphi Object Pascal 主要功能 根据源程序生成流程图 导出流程图到WORD文档中 展开 合拢流程图 自动生成一个 TreeView显示所有函数 过程 同步显示对应块的源程序和流程图 自定义流程图的配色方案 自定义流程图的大小和间距 根据格式自动排列程序 自由缩小 放大 移动流程图 显示程序行号 支持清除当前流程图 导出流程图到 bmp文件 发展前瞻 ① 支持各种语言 已经完成Pascal C 待完成:Java FoxPro Basic Fortan等; ② 支持反向操作 可以动态修改流程图 并可根据流程图生成相应的语言代码; ③ 结合Delphi专家 嵌入IDE直接运行 已经完成详见主页 操作说明 ① 打开一个或多个文件; ② 双击一个If For While Case Repeat Try begin的起始行 你就可以看到流程图; ③ 双击流程图中相应的框 可以同步显示程序块位置;">AutoFlowChart 自动生成流程图 AutoFlowchart 是一个极佳的根据源码生成流程图的工具 它生成的流程图支持展开 合拢 并且可以预定义流程图块的大小和间隔 移动和缩放流程图也很方便 你还可以把它导出到WORD文档或BMP文件 [更多]
recommend-type

GPRS网络信令实例详解

抓取了GPRS各个接口信令,很详细的各类问题抓包,值得喜欢分析的人下载做为原材料
recommend-type

The GNU Toolchain for ARM targets HOWTO.pdf

英文原版的介绍怎样制作交叉编译工具的资料
recommend-type

高频双调谐谐振放大电路设计3MHz+电压200倍放大.zip

高频双调谐谐振放大电路设计3MHz+电压200倍放大.zip
recommend-type

中国地级市地图shp

中国地级市地图shp文件,希望对大家科研有帮助。

最新推荐

recommend-type

netty-all-4.1.23.Final.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

实现Struts2+IBatis+Spring集成的快速教程

### 知识点概览 #### 标题解析 - **Struts2**: Apache Struts2 是一个用于创建企业级Java Web应用的开源框架。它基于MVC(Model-View-Controller)设计模式,允许开发者将应用的业务逻辑、数据模型和用户界面视图进行分离。 - **iBatis**: iBatis 是一个基于 Java 的持久层框架,它提供了对象关系映射(ORM)的功能,简化了 Java 应用程序与数据库之间的交互。 - **Spring**: Spring 是一个开源的轻量级Java应用框架,提供了全面的编程和配置模型,用于现代基于Java的企业的开发。它提供了控制反转(IoC)和面向切面编程(AOP)的特性,用于简化企业应用开发。 #### 描述解析 描述中提到的“struts2+ibatis+spring集成的简单例子”,指的是将这三个流行的Java框架整合起来,形成一个统一的开发环境。开发者可以利用Struts2处理Web层的MVC设计模式,使用iBatis来简化数据库的CRUD(创建、读取、更新、删除)操作,同时通过Spring框架提供的依赖注入和事务管理等功能,将整个系统整合在一起。 #### 标签解析 - **Struts2**: 作为标签,意味着文档中会重点讲解关于Struts2框架的内容。 - **iBatis**: 作为标签,说明文档同样会包含关于iBatis框架的内容。 #### 文件名称列表解析 - **SSI**: 这个缩写可能代表“Server Side Include”,一种在Web服务器上运行的服务器端脚本语言。但鉴于描述中提到导入包太大,且没有具体文件列表,无法确切地解析SSI在此的具体含义。如果此处SSI代表实际的文件或者压缩包名称,则可能是一个缩写或别名,需要具体的上下文来确定。 ### 知识点详细说明 #### Struts2框架 Struts2的核心是一个Filter过滤器,称为`StrutsPrepareAndExecuteFilter`,它负责拦截用户请求并根据配置将请求分发到相应的Action类。Struts2框架的主要组件有: - **Action**: 在Struts2中,Action类是MVC模式中的C(控制器),负责接收用户的输入,执行业务逻辑,并将结果返回给用户界面。 - **Interceptor(拦截器)**: Struts2中的拦截器可以在Action执行前后添加额外的功能,比如表单验证、日志记录等。 - **ValueStack(值栈)**: Struts2使用值栈来存储Action和页面间传递的数据。 - **Result**: 结果是Action执行完成后返回的响应,可以是JSP页面、HTML片段、JSON数据等。 #### iBatis框架 iBatis允许开发者将SQL语句和Java类的映射关系存储在XML配置文件中,从而避免了复杂的SQL代码直接嵌入到Java代码中,使得代码的可读性和可维护性提高。iBatis的主要组件有: - **SQLMap配置文件**: 定义了数据库表与Java类之间的映射关系,以及具体的SQL语句。 - **SqlSessionFactory**: 负责创建和管理SqlSession对象。 - **SqlSession**: 在执行数据库操作时,SqlSession是一个与数据库交互的会话。它提供了操作数据库的方法,例如执行SQL语句、处理事务等。 #### Spring框架 Spring的核心理念是IoC(控制反转)和AOP(面向切面编程),它通过依赖注入(DI)来管理对象的生命周期和对象间的依赖关系。Spring框架的主要组件有: - **IoC容器**: 也称为依赖注入(DI),管理对象的创建和它们之间的依赖关系。 - **AOP**: 允许将横切关注点(如日志、安全等)与业务逻辑分离。 - **事务管理**: 提供了一致的事务管理接口,可以在多个事务管理器之间切换,支持声明式事务和编程式事务。 - **Spring MVC**: 是Spring提供的基于MVC设计模式的Web框架,与Struts2类似,但更灵活,且与Spring的其他组件集成得更紧密。 #### 集成Struts2, iBatis和Spring 集成这三种框架的目的是利用它们各自的优势,在同一个项目中形成互补,提高开发效率和系统的可维护性。这种集成通常涉及以下步骤: 1. **配置整合**:在`web.xml`中配置Struts2的`StrutsPrepareAndExecuteFilter`,以及Spring的`DispatcherServlet`。 2. **依赖注入配置**:在Spring的配置文件中声明Struts2和iBatis的组件,以及需要的其他bean,并通过依赖注入将它们整合。 3. **Action和SQL映射**:在Struts2中创建Action类,并在iBatis的SQLMap配置文件中定义对应的SQL语句,将Struts2的Action与iBatis的映射关联起来。 4. **事务管理**:利用Spring的事务管理功能来管理数据库操作的事务。 5. **安全和服务层**:通过Spring的AOP和IoC功能来实现业务逻辑的解耦合和事务的管理。 ### 结语 通过上述的整合,开发者可以有效地利用Struts2处理Web层的展示和用户交互,使用iBatis简化数据库操作,同时借助Spring强大的依赖注入和事务管理功能,创建一个结构良好、可维护性强的应用。这种集成方式在许多企业级Java Web应用中非常常见,是Java开发人员必须掌握的知识点。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

Waymo使用稀疏图卷积处理LiDAR点云,目标检测精度提升15%

<think>好的,用户让我介绍一下Waymo使用稀疏图卷积处理LiDAR点云,目标检测精度提升15%的具体情况。我需要先回忆之前提供的回答中提到的相关案例,然后深入展开。 首先,用户可能已经知道稀疏图卷积的基本概念,但需要更详细的应用案例。他们可能对Waymo如何具体应用该技术感兴趣,比如技术细节、实现方式、提升的具体指标等。需要确保回答结构清晰,分点说明,同时保持技术准确性。 要考虑到用户可能的背景,可能是研究或工程领域的,需要技术细节,但避免过于复杂的数学公式,除非必要。之前回答中提到了应用案例,现在需要扩展这个部分。需要解释为什么稀疏图卷积在这里有效,比如处理LiDAR点云的稀疏性
recommend-type

Dwr实现无刷新分页功能的代码与数据库实例

### DWR简介 DWR(Direct Web Remoting)是一个用于允许Web页面中的JavaScript直接调用服务器端Java方法的开源库。它简化了Ajax应用的开发,并使得异步通信成为可能。DWR在幕后处理了所有的细节,包括将JavaScript函数调用转换为HTTP请求,以及将HTTP响应转换回JavaScript函数调用的参数。 ### 无刷新分页 无刷新分页是网页设计中的一种技术,它允许用户在不重新加载整个页面的情况下,通过Ajax与服务器进行交互,从而获取新的数据并显示。这通常用来优化用户体验,因为它加快了响应时间并减少了服务器负载。 ### 使用DWR实现无刷新分页的关键知识点 1. **Ajax通信机制:**Ajax(Asynchronous JavaScript and XML)是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术。通过XMLHttpRequest对象,可以与服务器交换数据,并使用JavaScript来更新页面的局部内容。DWR利用Ajax技术来实现页面的无刷新分页。 2. **JSON数据格式:**DWR在进行Ajax调用时,通常会使用JSON(JavaScript Object Notation)作为数据交换格式。JSON是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。 3. **Java后端实现:**Java代码需要编写相应的后端逻辑来处理分页请求。这通常包括查询数据库、计算分页结果以及返回分页数据。DWR允许Java方法被暴露给前端JavaScript,从而实现前后端的交互。 4. **数据库操作:**在Java后端逻辑中,处理分页的关键之一是数据库查询。这通常涉及到编写SQL查询语句,并利用数据库管理系统(如MySQL、Oracle等)提供的分页功能。例如,使用LIMIT和OFFSET语句可以实现数据库查询的分页。 5. **前端页面设计:**前端页面需要设计成能够响应用户分页操作的界面。例如,提供“下一页”、“上一页”按钮,或是分页条。这些元素在用户点击时会触发JavaScript函数,从而通过DWR调用Java后端方法,获取新的分页数据,并动态更新页面内容。 ### 数据库操作的关键知识点 1. **SQL查询语句:**在数据库操作中,需要编写能够支持分页的SQL查询语句。这通常涉及到对特定字段进行排序,并通过LIMIT和OFFSET来控制返回数据的范围。 2. **分页算法:**分页算法需要考虑当前页码、每页显示的记录数以及数据库中记录的总数。SQL语句中的OFFSET计算方式通常为(当前页码 - 1)* 每页记录数。 3. **数据库优化:**在分页查询时,尤其是当数据量较大时,需要考虑到查询效率问题。可以通过建立索引、优化SQL语句或使用存储过程等方式来提高数据库操作的性能。 ### DWR无刷新分页实现的代码要点 1. **DWR配置:**在实现DWR无刷新分页时,首先需要配置DWR,以暴露Java方法给前端JavaScript调用。 2. **JavaScript调用:**编写JavaScript代码,使用DWR提供的API发起Ajax调用。这些调用将触发后端Java方法,并接收返回的分页数据。 3. **数据展示:**在获取到新的分页数据后,需要将这些数据显示在前端页面的相应位置。这通常需要操作DOM元素,将新数据插入到页面中。 ### 结论 通过结合上述知识点,可以使用DWR技术实现一个无刷新分页的动态Web应用。DWR简化了Ajax通信过程,让开发者可以专注于业务逻辑的实现。通过熟练掌握Java后端处理、数据库查询和前端页面设计的相关技术,便能高效地完成无刷新分页的开发任务。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为
recommend-type

缓存延迟双删的实际解决方案通常怎么实现

<think>嗯,用户问的是关于缓存延迟双删的最佳实践和实际解决方案。首先,我需要回忆一下延迟双删的基本概念。根据引用[1]和[2],延迟双删主要是为了解决数据库和缓存之间的数据不一致问题,尤其是在分布式系统中。核心步骤应该是先删除缓存,再更新数据库,然后延迟一段时间再次删除缓存。但具体怎么操作呢? 用户可能已经知道延迟双删的基本思想,但需要更详细的步骤和注意事项。比如,为什么要延迟?延迟多久合适?这些都需要解释清楚。引用[3]提到先更新数据库再删除缓存是推荐的方法,但延迟双删可能是在某些特定场景下的优化。 接下来,我得考虑实现延迟双删的具体步骤。首先,第一次删除缓存是为了避免旧数据被后续
recommend-type

企业内部文档管理平台使用Asp.net技术构建

标题和描述中提到的知识点相当丰富,涉及到多个层面的IT技术和管理机制,具体如下: 1. Asp.net技术框架:Asp.net是微软公司开发的一个用于构建动态网站和网络应用程序的服务器端技术。它基于.NET平台,支持使用C#、VB.NET等多种编程语言开发应用程序。Asp.net企业信息文档管理系统使用Asp.net框架,意味着它将利用这一技术平台的特性,比如丰富的类库、集成开发环境(IDE)支持和面向对象的开发模型。 2.TreeView控件:TreeView是一种常用的Web控件,用于在网页上显示具有层次结构的数据,如目录、文件系统或组织结构。该控件通常用于提供给用户清晰的导航路径。在Asp.net企业信息文档管理系统中,TreeView控件被用于实现树状结构的文档管理功能,便于用户通过树状目录快速定位和管理文档。 3.系统模块设计:Asp.net企业信息文档管理系统被划分为多个模块,包括类别管理、文档管理、添加文档、浏览文档、附件管理、角色管理和用户管理等。这些模块化的设计能够让用户根据不同的功能需求进行操作,从而提高系统的可用性和灵活性。 4.角色管理:角色管理是企业信息管理系统中非常重要的一个部分,用于定义不同级别的用户权限和职责。在这个系统中,角色可以进行添加、编辑(修改角色名称)、删除以及上下移动(改变排列顺序)。这些操作满足了对用户权限细分和动态调整的需求。 5.操作逻辑:描述中详细说明了角色管理的操作步骤,如通过按钮选择进行角色的移动、修改和删除,提供了明确的用户交互流程,体现了系统设计的直观性。 6.系统安全性:系统提供了默认的管理帐号和密码(均为51aspx),这通常是一种简便的部署时临时设置。但在实际部署过程中,出于安全考虑,这些默认信息需要立即更改,并定期更新密码以避免潜在的安全风险。 7.文件结构:文件名称列表揭示了系统的文件结构和主要组成部分,比如Global.asax负责应用程序级别的事件处理,Default.aspx和Default.aspx.cs分别对应于系统的默认页面和后台代码文件,Web.Config用于存储和配置应用程序的设置,DocumentManager.sln和DocumentManager.suo分别指出了解决方案文件和解决方案用户选项文件,表明这是一个完整的Visual Studio解决方案。 通过上述知识点的梳理,我们可以看出Asp.net企业信息文档管理系统是一个集成了多个模块,具有良好用户体验设计、清晰操作逻辑和基本安全措施的IT解决方案。它不仅可以提高企业文档管理的效率,还能通过角色的权限管理确保信息的安全性和访问控制的合理性。同时,该系统还遵循了一定的软件工程实践,如模块化设计和配置文件的使用,以保障系统的可维护性和可扩展性。
recommend-type

【制图技术】:甘肃高质量土壤分布TIF图件的成图策略

# 摘要 本文针对甘肃土壤分布数据的TIF图件制作进行了系统研究。首先概述了甘肃土壤的分布情况,接着介绍了TIF图件的基础知识,包括其格式特点、空间数据表达以及质量控制方法。随后,文中构建了成图策略的理论框架,分析了土壤分布图的信息需求与数据处理流程,并探讨了成图原则与标准。在实践操作部分,详细阐述了制图软
recommend-type

化学结构式手写识别的第三方 API

<think>好的,我需要帮助用户找到能够识别化学结构式手写输入的第三方API。首先,用户的需求是化学结构式的手写识别,这比一般的文字识别复杂,因为化学结构式包含复杂的图形和符号,比如环状结构、键线式等。我需要先了解有哪些API支持这种专门的识别功能。 首先,我应该回忆一下常见的OCR(光学字符识别)服务,比如Google Cloud Vision API、Microsoft Azure Computer Vision,但这些可能主要用于普通文字或简单图形的识别,可能无法处理化学结构式。需要更专业的工具。 接下来,考虑化学信息学或化学领域的特定工具。比如ChemDraw有强大的结构式识别功