怎么加载预训练的 MobileNet 模型,并设置模型的参数 num_classes=10,然后加载预训练权重?

时间: 2023-02-08 10:53:20 浏览: 417
在 Keras 中加载预训练的 MobileNet 模型并设置其参数 num_classes=10,可以这样做: ```python from keras.applications import MobileNet # 设置模型参数,注意 include_top=False 表示不包括最后一层全连接层 model = MobileNet(weights=None, input_shape=(224, 224, 3), classes=10, include_top=False) ``` 如果需要加载预训练权重,可以这样: ```python # 加载预训练权重 model.load_weights('path_to_weights.h5') ``` 其中'path_to_weights.h5' 是预训练权重的文件路径。如果你使用的是 tensorflow 2.x 的版本 ,将权重路径换成'path_to_weights.tf'即可.
相关问题

pytorch怎么加载预训练的 MobileNet 模型,并设置模型的参数 num_classes=10,然后加载预训练权重?

在 PyTorch 中,可以使用 torchvision.models 模块中的 `mobilenet_v2()` 方法来加载 MobileNet v2 模型。首先,我们需要导入 torchvision 模块: ```python import torchvision.models as models ``` 然后可以使用以下代码来加载预训练的 MobileNet 模型,并设置 num_classes 参数为 10: ```python model = models.mobilenet_v2(pretrained=True, num_classes=10) ``` 如果要使用预训练的权重,可以使用 torch.load() 方法来加载权重,并使用 model.load_state_dict() 方法将其应用到模型中: ```python weights = torch.load("path/to/weights.pth") model.load_state_dict(weights) ``` 注意,需要确保模型结构和权重文件匹配。

# -*- coding: utf-8 -*- # @Time : 2021/6/17 20:29 # @Author : dejahu # @Email : [email protected] # @File : train_mobilenet.py # @Software: PyCharm # @Brief : mobilenet模型训练代码,训练的模型会保存在models目录下,折线图会保存在results目录下 import tensorflow as tf import matplotlib.pyplot as plt from time import * # 数据集加载函数,指明数据集的位置并统一处理为imgheight*imgwidth的大小,同时设置batch def data_load(data_dir, test_data_dir, img_height, img_width, batch_size): # 加载训练集 train_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, label_mode='categorical', seed=123, image_size=(img_height, img_width), batch_size=batch_size) # 加载测试集 val_ds = tf.keras.preprocessing.image_dataset_from_directory( test_data_dir, label_mode='categorical', seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names # 返回处理之后的训练集、验证集和类名 return train_ds, val_ds, class_names # 构建mobilenet模型 # 模型加载,指定图片处理的大小和是否进行迁移学习 def model_load(IMG_SHAPE=(224, 224, 3), class_num=12): # 微调的过程中不需要进行归一化的处理 # 加载预训练的mobilenet模型 base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE, include_top=False, weights='imagenet') # 将模型的主干参数进行冻结 base_model.trainable = False model = tf.keras.models.Sequential([ # 进行归一化的处理 tf.keras.layers.experimental.preprocessing.Rescaling(1. / 127.5, offset=-1, input_shape=IMG_SHAPE), # 设置主干模型 base_model, # 对主干模型的输出进行全局平均池化 tf.keras.layers.GlobalAveragePooling2D(), # 通过全连接层映射到最后的分类数目上 tf.keras.layers.Dense(class_num, activation='softmax') ]) model.summary() # 模型训练的优化器为adam优化器,模型的损失函数为交叉熵损失函数 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model # 展示训练过程的曲线 def show_loss_acc(history): # 从h

<think>嗯,用户的问题是关于如何使用TensorFlow Keras中的MobileNetV2来训练自定义分类模型,特别是数据加载和预处理的部分。首先,我需要回忆一下MobileNetV2的结构和特点,记得它是轻量级的卷积神经网络,适合移动端和嵌入式设备。用户提到的是自定义数据集,所以数据加载和预处理是关键步骤。 首先,数据加载部分,用户可能需要将图像数据从文件夹中读取,并分成训练集和验证集。通常,TensorFlow的ImageDataGenerator或者使用tf.data.Dataset来处理。不过,Keras的ImageDataGenerator已经被弃用了,所以应该推荐使用tf.keras.utils.image_dataset_from_directory方法,直接从目录创建数据集。这样可以直接从文件夹结构生成带标签的数据集,比如每个类别的图片放在不同的子文件夹里。 接下来是数据预处理。MobileNetV2的输入需要特定的预处理,比如缩放像素值到[-1, 1]或者[0, 1]之间。记得MobileNetV2的预处理函数是tf.keras.applications.mobilenet_v2.preprocess_input,这个函数会自动处理输入的图像,比如归一化到[-1, 1]。同时,用户可能需要做数据增强,比如旋转、翻转、缩放等,以提高模型的泛化能力。数据增强可以通过tf.keras.Sequential层来添加,比如RandomFlip、RandomRotation等,或者在ImageDataGenerator中进行,但后者可能已经被取代。 然后是模型构建部分。用户需要使用迁移学习,也就是加载预训练的MobileNetV2模型,去掉顶部的全连接层,然后添加自定义的分类层。需要冻结基模型的层,只训练顶部的层。或者根据数据集的大小决定冻结多少层。如果自定义数据集比较小,可能需要冻结大部分层,只训练顶层;如果数据量大,可以解冻更多层进行微调。 数据集的划分也是一个重点。用户需要将数据分为训练集和验证集,可能还需要测试集。引用中提到使用train_test_split方法,但使用tf.data的话,可能需要用splitfolders库来处理,或者直接在加载时指定subset为'training'和'validation'。此外,还要注意数据集的平衡,确保每个类别的样本数量大致相当,避免类别不平衡的问题。 评估部分,用户可能需要在训练过程中监控验证集的准确率和损失,使用回调函数如ModelCheckpoint或EarlyStopping。训练完成后,使用evaluate方法在测试集上评估模型性能。 可能用户还会遇到批量大小、学习率调整、优化器选择等问题。比如使用Adam优化器,设置合适的学习率,以及在训练过程中解冻部分层进行微调时,降低学习率以避免破坏预训练的权重。 另外,数据预处理中的图像尺寸需要调整到MobileNetV2的默认输入大小,通常是224x224像素。如果用户的数据集图片尺寸不一,需要在加载时进行resize,或者在预处理步骤中使用tf.image.resize。 最后,生成相关问题的时候,需要考虑用户可能的后续问题,比如如何调整模型结构、优化训练速度、处理过拟合、部署模型等。这些都是用户在完成数据加载和预处理后可能遇到的下一步问题。 需要确保回答中正确引用提供的参考资料,比如引用[3]关于数据切分,引用[4]关于迁移学习的部分。同时,代码示例要准确,比如使用image_dataset_from_directory,添加数据增强层,构建模型,编译和训练步骤。确保LaTeX格式正确,变量用$符号包裹,独立公式用$$,但在这个问题中可能涉及的数学公式不多,不过如果有的话需要注意格式。</think>### TensorFlow Keras MobileNetV2 自定义分类模型训练指南 #### 一、数据加载与预处理 1. **数据集组织** - 按类别建立子目录结构: ``` dataset/ ├── class1/ ├── class2/ └── .../ ``` 2. **数据加载** 使用`tf.keras.utils.image_dataset_from_directory`创建带标签数据集: ```python batch_size = 32 img_size = (224, 224) train_ds = tf.keras.utils.image_dataset_from_directory( 'dataset', validation_split=0.2, subset="training", seed=42, image_size=img_size, batch_size=batch_size ) val_ds = tf.keras.utils.image_dataset_from_directory( 'dataset', validation_split=0.2, subset="validation", seed=42, image_size=img_size, batch_size=batch_size ) ``` (数据集自动按4:1比例切分训练集和验证集[^3]) 3. **数据增强** ```python data_augmentation = tf.keras.Sequential([ tf.keras.layers.RandomFlip("horizontal"), tf.keras.layers.RandomRotation(0.2), tf.keras.layers.RandomZoom(0.1) ]) ``` 4. **预处理** ```python preprocess_input = tf.keras.applications.mobilenet_v2.preprocess_input train_ds = train_ds.map(lambda x, y: (data_augmentation(x), y)) train_ds = train_ds.map(lambda x, y: (preprocess_input(x), y)) val_ds = val_ds.map(lambda x, y: (preprocess_input(x), y)) ``` #### 二、模型构建 1. **加载基础模型** ```python base_model = tf.keras.applications.MobileNetV2( input_shape=(224, 224, 3), include_top=False, weights='imagenet' ) base_model.trainable = False # 冻结基础模型 ``` 2. **构建分类头** ```python global_avg = tf.keras.layers.GlobalAveragePooling2D() dense = tf.keras.layers.Dense(128, activation='relu') prediction = tf.keras.layers.Dense(num_classes, activation='softmax') model = tf.keras.Sequential([ base_model, global_avg, dense, prediction ]) ``` #### 三、模型训练 ```python model.compile( optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) history = model.fit( train_ds, validation_data=val_ds, epochs=10 ) ``` (训练过程监控验证集准确率[^1]) #### 四、模型微调(可选) ```python base_model.trainable = True # 解冻最后10层 for layer in base_model.layers[:-10]: layer.trainable = False model.compile( optimizer=tf.keras.optimizers.Adam(1e-5), # 降低学习率 loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) ```
阅读全文

相关推荐

接下来我会给出一段代码,请理解这段代码的逻辑,并且仿照其将其改变为人类面部表情情绪分析分析 代码如下: from __future__ import print_function, division import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from torch.utils.data import Dataset from torchvision import transforms, datasets, models from Dataloader import DogCatDataSet # 配置参数 random_state = 1 torch.manual_seed(random_state) # 设置随机数种子,确保结果可重复 torch.cuda.manual_seed(random_state) torch.cuda.manual_seed_all(random_state) np.random.seed(random_state) # random.seed(random_state) epochs = 30 # 训练次数 batch_size = 16 # 批处理大小 num_workers = 4 # 多线程的数目 use_gpu = torch.cuda.is_available() # 对加载的图像作归一化处理, 并裁剪为[224x224x3]大小的图像 data_transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), ]) train_dataset = DogCatDataSet(img_dir="/mnt/d/深度学习1/train", transform=data_transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4) test_dataset = DogCatDataSet(img_dir="/mnt/d/深度学习1/test", transform=data_transform) test_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4) # 加载resnet18 模型, net = models.resnet18(pretrained=False) num_ftrs = net.fc.in_features net.fc = nn.Linear(num_ftrs, 2) if use_gpu: net = net.cuda() print(net) # 定义loss和optimizer cirterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.0001, momentum=0.9) # 开始训练 net.train() for epoch in range(epochs): running_loss = 0.0 train_correct = 0 train_total = 0 for i, data in enumerate(train_loader, 0): inputs, train_labels = data if use_gpu: inputs, labels = Variable(inputs.cuda()), Variable(train_labels.cuda()) else: inputs, labels = Variable(inputs), Variable(train_labels) # inputs, labels = Variable(inputs), Variable(train_labels)

import torch import torchvision from PIL.Image import Image from torchvision.models.detection import FasterRCNN from torchvision.models.detection.rpn import AnchorGenerator from torchvision.transforms import transforms # 加载预训练的分类模型 model = torchvision.models.mobilenet_v2(pretrained=True) backbone = model.backbone # 创建RPN(Region Proposal Network)锚点生成器 anchor_sizes = ((32,), (64,), (128,), (256,), (512,)) aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes) rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios) # 创建目标检测模型 model = FasterRCNN(backbone, num_classes=11, rpn_anchor_generator=rpn_anchor_generator) # 加载预训练的权重(可选) model.load_state_dict(torch.load("../models/light-model-2.pth")) # 对输入图像进行预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) # 加载图像 image = Image.open("../dataset/valid/Bacterial_spot/0afe3bbd-b18b-4c70-8fbd-072844e742a2___GCREC_Bact.Sp 3434.JPG") image = transform(image) image = image.unsqueeze(0) # 添加批次维度 # 检测目标 model.eval() with torch.no_grad(): predictions = model(image) # 处理预测结果 boxes = predictions[0]["boxes"] labels = predictions[0]["labels"] scores = predictions[0]["scores"] # 打印结果 for box, label, score in zip(boxes, labels, scores): print(f"Box: {box}, Label: {label}, Score: {score}") AttributeError: 'MobileNetV2' object has no attribute 'backbone'

将 pandas 导入为 PD 将 numpy 导入为 NP 将 Seaborn 导入为 SNS 将 matplotlib.pyplot 导入为 PLT %matplotlib 内联 将 TensorFlow 导入为 TF 导入随机 从 cv2 import 调整大小 from glob import glob 导入警告 warnings.filterwarnings(“ignore”)img_height = 244 img_width = 244 train_ds = tf.keras.utils.image_dataset_from_directory( 'D:/Faulty_solar_panel', validation_split=0.2, subset='training', image_size=(img_height, img_width), batch_size=32, seed=42, shuffle=True) val_ds = tf.keras.utils.image_dataset_from_directory( 'D:/Faulty_solar_panel', validation_split=0.2, subset='validation', image_size=(img_height, img_width), batch_size=32, seed=42, shuffle=True)class_names = train_ds.class_names 打印(class_names) train_dsbase_model = tf.keras.applications.VGG16( include_top=False、 weights='imagenet', input_shape=(img_height、img_width、3) ) base_model.trainable = False inputs = tf.keras.Input(shape=(img_height, img_width, 3)) x = tf.keras.applications.vgg16.preprocess_input(输入) x = base_model(x, training=False) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dropout(0.3)(x) 输出 = tf.keras.layers.Dense(90)(x) 模型 = tf.keras.Model(输入,输出) model.summary()model.compile(optimizer=tf.keras.optimizers.Adam(0.001), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])epoch = 15 model.fit(train_ds, validation_data=val_ds, epochs=纪元, 回调 = [ tf.keras.callbacks.EarlyStopping( monitor=“val_loss”, min_delta=1e-2, 耐心 = 3, verbose=1, restore_best_weights=真 ) ] )# 微调 base_model.trainable = 真 对于 base_model.layers[:14] 中的 layer: layer.trainable = 假 model.summary()model.compile(optimizer=tf.keras.optimizers.Adam(0.0001), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])epoch = 15 历史 = model.fit(train_ds, validation_data=val_ds, epochs=epoch, 回调 = [ tf.keras.callbacks.EarlyStopping( monitor=“val_loss”, min_delta=1e-2, 耐心 = 3, verbose=1, ) ] ) get_ac = history.history['准确性'] get_los = history.history['损失'] val_acc = history.history['val_accuracy'] val_loss = history.history['val_loss'] 纪元 = 范围(len(get_ac)) plt.plot(epochs, get_ac, 'g', label='训练数据的准确性') plt.plot(epochs, get_los, 'r', label='训练数据丢失') plt.title('训练数据准确性和损失') plt.legend(loc=0) plt.figure() plt.plot(epochs, get_ac, 'g', label='训练数据的准确性') plt.plot(epochs, val_acc, 'r', label='验证数据的准确性') plt.title('训练和验证准确性') plt.legend(loc=0) plt.figure() plt.plot(epochs, get_los, 'g', label='训练数据丢失') plt.plot(纪元, val_loss, 'r', label='验证数据丢失') plt.title('训练和验证损失') plt.legend(loc=0) plt.figure() plt.show()把这段代码使用的模型改为mobilenet模型并提升精度,给出修改后的完整代码

import tensorflow as tf import os import matplotlib.pyplot as plt from time import time # 定义标签字典(根据实际类别修改) label_dict = { 'electrodrill': 0, 'headphones': 1, 'keyboard': 2, 'mobile_phone': 3, 'monitor': 4, 'mouse': 5, 'multimeter': 6, 'number': 7, 'oscillograph': 8, 'pliers': 9, 'printer': 10, 'screwdriver': 11, 'soldering_iron': 12, 'speaker': 13, 'tape_measure': 14, 'wrench': 15 } def data_load(data_dir, test_data_dir, img_height, img_width, batch_size): def process_image(image_path): image = tf.io.read_file(image_path) image = tf.image.decode_jpeg(image, channels=3) image = tf.image.resize(image, [img_height, img_width]) image = (image / 127.5) - 1.0 # MobileNet标准化 return image def parse_path(path): # 转换为numpy字符串处理路径 path_str = path.numpy().decode('utf-8') # 获取类别文件夹名 class_name = tf.strings.split(path_str, os.path.sep)[-2].numpy().decode('utf-8') # 从预定义的字典获取标签索引 label_idx = label_dict.get(class_name, -1) # -1表示未知类别 if label_idx == -1: raise ValueError(f"未知类别: {class_name}") return process_image(path), label_idx def map_fn(path): # 使用py_function包装Python逻辑 image, label = tf.py_function( func=parse_path, inp=[path], Tout=[tf.float32, tf.int32] ) # 设置明确的Tensor形状 image.set_shape([img_height, img_width, 3]) label.set_shape([]) # 将标签转换为one-hot编码 label = tf.one_hot(label, depth=len(label_dict)) return image, label def load_dataset(directory): # 获取所有图片路径 dataset = tf.data.Dataset.list_files(directory + '/*/*.jpg', shuffle=True) # 应用处理函数 dataset = dataset.map( map_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE ) return dataset # 加载数据集 train_ds = load_dataset(data_dir) val_ds = load_dataset(test_data_dir) # 批处理和预取 train_ds = train_ds.batch(batch_size).prefetch(tf.data.experimental.AUTOTUNE) val_ds = val_ds.batch(batch_size).prefetch(tf.data.experimental.AUTOTUNE) # 验证数据预处理是否正确 for images, labels in train_ds.take(1): # 检查图像标准化是否正确 min_value = tf.reduce_min(images) max_value = tf.reduce_max(images) print(f"图像标准化检查: 最小值 = {min_value.numpy()}, 最大值 = {max_value.numpy()}") assert min_value >= -1 and max_value <= 1, "图像标准化错误,范围应为[-1, 1]" # 检查标签是否为one-hot编码且正确 print("标签示例:", labels[0].numpy()) # 应为one-hot如[0,0,1,...,0] assert tf.reduce_sum(labels[0]).numpy() == 1, "标签应该是one-hot编码,其中只有一个值为1,其余为0" return train_ds, val_ds def model_load(IMG_SHAPE=(224, 224, 3), class_num=16, learning_rate=0.01): # 添加learning_rate参数 base_model = tf.keras.applications.MobileNetV2( input_shape=IMG_SHAPE, include_top=False, weights='imagenet' ) base_model.trainable = False model = tf.keras.Sequential([ base_model, tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(class_num, activation='softmax') ]) # 显式设置学习率的优化器 optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) model.compile( optimizer=optimizer, # 使用自定义优化器 loss='categorical_crossentropy', metrics=['accuracy'] ) model.summary() return model def show_loss_acc(history): acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] plt.figure(figsize=(8, 8)) plt.subplot(2, 1, 1) plt.plot(acc, label='Training Accuracy') plt.plot(val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.ylabel('Accuracy') plt.ylim([min(plt.ylim()), 1]) plt.title('Training and Validation Accuracy') plt.subplot(2, 1, 2) plt.plot(loss, label='Training Loss') plt.plot(val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.ylabel('Cross Entropy') plt.title('Training and Validation Loss') plt.xlabel('epoch') plt.savefig('results/results_mobilenet.png', dpi=100) def train(epochs): begin_time = time() # 创建必要目录 os.makedirs("models", exist_ok=True) os.makedirs("results", exist_ok=True) try: print("加载数据集中...") train_ds, val_ds = data_load( "C:/Users/dll20/Desktop/vegetables_tf2.3-master/new_data/train", "C:/Users/dll20/Desktop/vegetables_tf2.3-master/new_data/val", 224, 224, 16 ) # 验证数据加载 for images, labels in train_ds.take(1): print(f"图像形状: {images.shape}, 标签形状: {labels.shape}") print(f"标签示例: {labels[0].numpy()}") print("类别数量:", len(label_dict)) print("类别映射:", label_dict) model = model_load(class_num=len(label_dict)) print("开始训练...") history = model.fit( train_ds, validation_data=val_ds, epochs=epochs, verbose=1 ) model.save("models/mobilenet_engineer.h5") show_loss_acc(history) except Exception as e: print(f"训练出错: {str(e)}") import traceback traceback.print_exc() finally: print(f"总耗时: {time() - begin_time:.2f}秒") if __name__ == '__main__': # 配置TensorFlow tf.config.run_functions_eagerly(False) physical_devices = tf.config.list_physical_devices('GPU') if physical_devices: tf.config.experimental.set_memory_growth(physical_devices[0], True) 图像标准化检查: 最小值 = -1.0, 最大值 = 1.0 标签示例: [0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.] 图像形状: (16, 224, 224, 3), 标签形状: (16, 16) 标签示例: [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] 类别数量: 16 类别映射: {'electrodrill': 0, 'headphones': 1, 'keyboard': 2, 'mobile_phone': 3, 'monitor': 4, 'mouse': 5, 'multimeter': 6, 'number': 7, 'oscillograph': 8, 'pliers': 9, 'printer': 10, 'screwdriver': 11, 'soldering_iron': 12, 'speaker': 13, 'tape_measure': 14, 'wrench': 15} Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= mobilenetv2_1.00_224 (Functi (None, 7, 7, 1280) 2257984 _________________________________________________________________ global_average_pooling2d (Gl (None, 1280) 0 _________________________________________________________________ dense (Dense) (None, 16) 20496 ================================================================= Total params: 2,278,480 Trainable params: 20,496 Non-trainable params: 2,257,984 _________________________________________________________________ 开始训练... Epoch 1/100 2025-05-17 20:14:57.943383: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cublas64_10.dll 2025-05-17 20:16:05.881342: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cudnn64_7.dll 2025-05-17 20:19:28.437448: W tensorflow/stream_executor/gpu/redzone_allocator.cc:314] Internal: Invoking GPU asm compilation is supported on Cuda non-Windows platforms only Relying on driver to perform ptx compilation. Modify $PATH to customize ptxas location. This message will be only logged once. 1024/1024 [==============================] - 53s 52ms/step - loss: 9.9016 - accuracy: 0.0606 - val_loss: 9.3069 - val_accuracy: 0.0701 Epoch 2/100 1024/1024 [==============================] - 77s 75ms/step - loss: 10.5672 - accuracy: 0.0642 - val_loss: 10.8782 - val_accuracy: 0.0718 Epoch 3/100 1024/1024 [==============================] - 80s 78ms/step - loss: 10.6035 - accuracy: 0.0639 - val_loss: 10.8998 - val_accuracy: 0.0658 Epoch 4/100 1024/1024 [==============================] - 78s 76ms/step - loss: 10.4597 - accuracy: 0.0658 - val_loss: 9.5053 - val_accuracy: 0.0581 Epoch 5/100 1024/1024 [==============================] - 77s 75ms/step - loss: 10.1673 - accuracy: 0.0596 - val_loss: 12.2643 - val_accuracy: 0.0620 Epoch 6/100 1024/1024 [==============================] - 81s 79ms/step - loss: 10.1886 - accuracy: 0.0628 - val_loss: 9.2048 - val_accuracy: 0.0641 Epoch 7/100 1024/1024 [==============================] - 78s 76ms/step - loss: 10.2992 - accuracy: 0.0630 - val_loss: 10.0681 - val_accuracy: 0.0658 Epoch 8/100 1024/1024 [==============================] - 65s 63ms/step - loss: 10.2812 - accuracy: 0.0665 - val_loss: 12.2382 - val_accuracy: 0.0645 Epoch 9/100 1024/1024 [==============================] - 76s 74ms/step - loss: 11.4436 - accuracy: 0.0637 - val_loss: 9.5845 - val_accuracy: 0.0697 Epoch 10/100 1024/1024 [==============================] - 55s 54ms/step - loss: 10.2822 - accuracy: 0.0664 - val_loss: 9.9871 - val_accuracy: 0.0632 Epoch 11/100 1024/1024 [==============================] - 56s 55ms/step - loss: 10.9518 - accuracy: 0.0647 - val_loss: 12.8353 - val_accuracy: 0.0603 Epoch 12/100 1024/1024 [==============================] - 57s 55ms/step - loss: 10.7480 - accuracy: 0.0646 - val_loss: 10.8068 - val_accuracy: 0.0607 Epoch 13/100 1024/1024 [==============================] - 56s 54ms/step - loss: 10.3040 - accuracy: 0.0618 - val_loss: 11.6900 - val_accuracy: 0.0628 Epoch 14/100 1024/1024 [==============================] - 54s 52ms/step - loss: 10.5912 - accuracy: 0.0630 - val_loss: 14.3563 - val_accuracy: 0.0778 Epoch 15/100 1024/1024 [==============================] - 53s 52ms/step - loss: 10.7772 - accuracy: 0.0635 - val_loss: 11.0138 - val_accuracy: 0.0641 Epoch 16/100 1024/1024 [==============================] - 53s 52ms/step - loss: 10.1329 - accuracy: 0.0651 - val_loss: 11.0438 - val_accuracy: 0.0632 Epoch 17/100 1024/1024 [==============================] - 54s 52ms/step - loss: 10.4157 - accuracy: 0.0617 - val_loss: 11.4240 - val_accuracy: 0.0662 Epoch 18/100 1024/1024 [==============================] - 57s 55ms/step - loss: 10.4042 - accuracy: 0.0635 - val_loss: 11.6729 - val_accuracy: 0.0624 train(epochs=100) 我上述代码运行输出 一共16个类 正确率一直这么低 基本没变化 感觉就是没用上这个模型的感觉 不是微调的问题 我的目的是图像分类出16个种类 帮我检查这个代码 帮我找找原因

num_classes: 30 project_path: "D:/pychj/pythorch" train_data_path: "DataSet/final/train" val_data_path: "DataSet/final/valid" test_data_path: "DataSet/final/test" #图片可视化分析源路径 img_path: "DataSet/final/test/0002_人参/人参31.jpg" #训练伦次 epochs: 30 #选用设备 device: 'cuda:0' #训练批次大小,防止显存溢出 batch_size: 16 #加载的权重路径 weights_path: '' #迁移学习 fine_tuning: True #优化器的选择 opt_name: 'AdamW' #线程加载 nw: 2 #模型保存路径 #vgg模型 Model_VGG: 'Model/Model_VGG/weights/VGG16_43481362425_best_model.pt' Model_AlexNet: 'Model/Model_AlexNet/weights/AlexNet_43491884900_best_model.pt' Model_MobileNet: 'Model/Model_MobileNet/weights/MobileNet_V3_Small_43544276625_best_model.pt' Model_ResNet: 'Model/Model_ResNet/weights/ResNet50_43544327450_best_model.pt' #可视化测验调用模型路径 Web_Model: 'Model/Model_VGG/weights/VGG16_43481362425_best_model.pt' #端口号 Web_Port: 8017 #不同类别的名称列表 display_labels: - '三七' - '乌梅' - '人参' - '何首乌' - '党参' - '决明子' - '小茴香' - '板蓝根' - '枸杞子' - '柴胡' - '桑葚' - '槐花' - '沉香' - '灵芝' - '甘草' - '白芍' - '白花蛇舌草' - '百合' - '穿心莲' - '红花' - '罗汉果' - '艾叶' - '茯苓' - '莲子心' - '葛根' - '虫草' - '蝉蜕' - '金银花' - '阿胶' - '陈皮' #混淆矩阵显示具数值 show_figure: false #混淆矩阵结果归一化 normalization: true 找出这里面的超参数

使用深度学习框架TensorFlow训练了一个基于迁移学习的MobileNet V2网络。模型训练输入的图像尺寸均为224×224,为了方便模型调整,对模型做了归一化的处理,把像素值0~255统一处理到[-1~1]之间,减少各维度数据取值范围的差异而带来的干扰,归一化使不同的特征具有相似的尺度,有助于加快模型的收敛速度,并减少训练过程中数值计算的不稳定性,减少训练过程中损失值波动。将初始学习率learning rate设置为0.001以防止梯度爆炸;为了训练出分类能力更好的模型,设置非冻结批次unfreeze epoch为30个epoch,单次训练样本batch size为16,合理的batch size可以确保模型的稳定性,又可以减少计算资源的需求,保证模型的训练速度更快。模型的损失函数采用交叉熵损失函数,本次实验 MobileNet模型训练过程中使用Adam优化器,Adam优化器是一种自适应优化算法,可以根据历史梯度信息自适应地调整学习率,可以加快训练速度实现更高效的网络训练。 在本实验项目的结果中可以通过后面的图表看出确实Adam优化器的下降函数曲线更快也更平稳。MobileNet的训练过程中采用了迁移学习的思想,训练过程中采用了MobileNet V2的特征层,对主干模型的输出进行全局平均池化通过全局平均池来代替全连接是一个有效减少参数数量和防止过拟合的方法,然后通过全连接层映射到最后的分类目录上。

大家在看

recommend-type

C语言流程图生成工具

AutoFlowChart 自动生成流程图 AutoFlowchart 是一个极佳的根据源码生成流程图的工具 它生成的流程图支持展开 合拢 并且可以预定义流程图块的大小和间隔 移动和缩放流程图也很方便 你还可以把它导出到WORD文档或BMP文件 它可以帮助程序员更好地理解程序 制作文档和可视化代码 支持C C++ VC++ Visual C++ NET Delphi Object Pascal 主要功能 根据源程序生成流程图 导出流程图到WORD文档中 展开 合拢流程图 自动生成一个 TreeView显示所有函数 过程 同步显示对应块的源程序和流程图 自定义流程图的配色方案 自定义流程图的大小和间距 根据格式自动排列程序 自由缩小 放大 移动流程图 显示程序行号 支持清除当前流程图 导出流程图到 bmp文件 发展前瞻 ① 支持各种语言 已经完成Pascal C 待完成:Java FoxPro Basic Fortan等; ② 支持反向操作 可以动态修改流程图 并可根据流程图生成相应的语言代码; ③ 结合Delphi专家 嵌入IDE直接运行 已经完成详见主页 操作说明 ① 打开一个或多个文件; ② 双击一个If For While Case Repeat Try begin的起始行 你就可以看到流程图; ③ 双击流程图中相应的框 可以同步显示程序块位置;">AutoFlowChart 自动生成流程图 AutoFlowchart 是一个极佳的根据源码生成流程图的工具 它生成的流程图支持展开 合拢 并且可以预定义流程图块的大小和间隔 移动和缩放流程图也很方便 你还可以把它导出到WORD文档或BMP文件 [更多]
recommend-type

GPRS网络信令实例详解

抓取了GPRS各个接口信令,很详细的各类问题抓包,值得喜欢分析的人下载做为原材料
recommend-type

The GNU Toolchain for ARM targets HOWTO.pdf

英文原版的介绍怎样制作交叉编译工具的资料
recommend-type

高频双调谐谐振放大电路设计3MHz+电压200倍放大.zip

高频双调谐谐振放大电路设计3MHz+电压200倍放大.zip
recommend-type

中国地级市地图shp

中国地级市地图shp文件,希望对大家科研有帮助。

最新推荐

recommend-type

Twitter平台完整数据压缩包文件下载

资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 小米手机安装 Twitter 时若出现闪退,多与缺失 OBB 扩展文件有关。Google Play 为突破 APK 体积上限,允许把游戏或大型应用的高清资源打包成 main.<包名>.obb,存于 /Android/obb/ 目录。小米系统因权限或优化策略,可能无法自动放置该文件,导致 Twitter 启动即崩溃。 解决思路: 改用整合 APK 与 OBB 的 XAPK 包,借助 XAPK 安装器一键解压到正确路径; 手动把 obb 文件移至 /Android/obb/com.twitter.android/,确认应用有读写存储权限; 若仍失败,关闭 MIUI 优化、检查剩余空间或更新系统与客户端。 下载 XAPK 时务必选择可信来源,避免恶意软件。
recommend-type

Web2.0新特征图解解析

Web2.0是互联网发展的一个阶段,相对于早期的Web1.0时代,Web2.0具有以下显著特征和知识点: ### Web2.0的定义与特点 1. **用户参与内容生产**: - Web2.0的一个核心特征是用户不再是被动接收信息的消费者,而是成为了内容的生产者。这标志着“读写网络”的开始,用户可以在网络上发布信息、评论、博客、视频等内容。 2. **信息个性化定制**: - Web2.0时代,用户可以根据自己的喜好对信息进行个性化定制,例如通过RSS阅读器订阅感兴趣的新闻源,或者通过社交网络筛选自己感兴趣的话题和内容。 3. **网页技术的革新**: - 随着技术的发展,如Ajax、XML、JSON等技术的出现和应用,使得网页可以更加动态地与用户交互,无需重新加载整个页面即可更新数据,提高了用户体验。 4. **长尾效应**: - 在Web2.0时代,即使是小型或专业化的内容提供者也有机会通过互联网获得关注,这体现了长尾理论,即在网络环境下,非主流的小众产品也有机会与主流产品并存。 5. **社交网络的兴起**: - Web2.0推动了社交网络的发展,如Facebook、Twitter、微博等平台兴起,促进了信息的快速传播和人际交流方式的变革。 6. **开放性和互操作性**: - Web2.0时代倡导开放API(应用程序编程接口),允许不同的网络服务和应用间能够相互通信和共享数据,提高了网络的互操作性。 ### Web2.0的关键技术和应用 1. **博客(Blog)**: - 博客是Web2.0的代表之一,它支持用户以日记形式定期更新内容,并允许其他用户进行评论。 2. **维基(Wiki)**: - 维基是另一种形式的集体协作项目,如维基百科,任何用户都可以编辑网页内容,共同构建一个百科全书。 3. **社交网络服务(Social Networking Services)**: - 社交网络服务如Facebook、Twitter、LinkedIn等,促进了个人和组织之间的社交关系构建和信息分享。 4. **内容聚合器(RSS feeds)**: - RSS技术让用户可以通过阅读器软件快速浏览多个网站更新的内容摘要。 5. **标签(Tags)**: - 用户可以为自己的内容添加标签,便于其他用户搜索和组织信息。 6. **视频分享(Video Sharing)**: - 视频分享网站如YouTube,用户可以上传、分享和评论视频内容。 ### Web2.0与网络营销 1. **内容营销**: - Web2.0为内容营销提供了良好的平台,企业可以通过撰写博客文章、发布视频等内容吸引和维护用户。 2. **社交媒体营销**: - 社交网络的广泛使用,使得企业可以通过社交媒体进行品牌传播、产品推广和客户服务。 3. **口碑营销**: - 用户生成内容、评论和分享在Web2.0时代更易扩散,为口碑营销提供了土壤。 4. **搜索引擎优化(SEO)**: - 随着内容的多样化和个性化,SEO策略也必须适应Web2.0特点,注重社交信号和用户体验。 ### 总结 Web2.0是对互联网发展的一次深刻变革,它不仅仅是一个技术变革,更是人们使用互联网的习惯和方式的变革。Web2.0的时代特征与Web1.0相比,更加注重用户体验、社交互动和信息的个性化定制。这些变化为网络营销提供了新的思路和平台,也对企业的市场策略提出了新的要求。通过理解Web2.0的特点和应用,企业可以更好地适应互联网的发展趋势,实现与用户的深度互动和品牌的有效传播。
recommend-type

【C++编程新手必看】:一步步带你制作出风靡全球的“别踩白块儿”游戏

# 摘要 本文全面介绍C++编程在游戏开发中的应用,涵盖了从基础概念到具体实现的多个方面。首先,文章提供了游戏开发环境的搭建指南,包括编译器配置和开发工具的选择。随后,重点介绍了游戏主循环和基本框架的构建,强调了事件处理和渲染技术。在游戏逻辑和交互设计方面,本文阐述了界面布局、事件响应和游戏状态管理的核心实现。为了提升游戏体验,本文还探讨了添加音效和背景音乐以及开发高级游戏特性的方法。最后,文章介绍了性能优化和跨平台发布的过程,包括游戏的打包和针对不同平台的发布策略。本文旨在为C++游戏开发者提供一个实用的开发指南,帮助他们从零开始构建出性能优化、跨平台兼容的游戏。 # 关键字 C++编程;
recommend-type

使用scikit-learn训练模型来预测鸢尾花种类

<think>我们使用scikit-learn库来训练一个分类模型预测鸢尾花种类。鸢尾花数据集是scikit-learn内置的经典数据集,包含三种鸢尾花的四个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)和对应的类别标签。步骤:1.导入必要的库和数据集2.数据探索(可选,但建议了解数据)3.数据预处理(如划分训练集和测试集、标准化等)4.选择模型(例如KNN、随机森林等)5.训练模型6.模型评估7.使用模型进行预测下面以KNN(K近邻)算法为例,展示完整流程。</think>### 使用 scikit-learn 训练鸢尾花分类模型 以下是基于 scikit-learn 训练鸢尾花分类模型的
recommend-type

WWF工作流设计器C#源码解析及演示

### WWF工作流设计器控件C#源码知识点 #### 1. WWF(Windows Workflow Foundation)概述 WWF是微软公司推出的一个工作流框架,作为.NET Framework的一部分。它提供了一套丰富的API,用于设计、执行和管理工作流。工作流可以用于各种应用程序,包括Web应用、服务和桌面应用,使得开发者能够将复杂的业务逻辑以工作流的形式表现出来,简化业务流程自动化和管理。 #### 2. 工作流设计器控件(Workflow Designer Control) 工作流设计器控件是WWF中的一个组件,主要用于提供可视化设计工作流的能力。它允许用户通过拖放的方式在界面上添加、配置和连接工作流活动,从而构建出复杂的工作流应用。控件的使用大大降低了工作流设计的难度,并使得设计工作流变得直观和用户友好。 #### 3. C#源码分析 在提供的文件描述中提到了两个工程项目,它们均使用C#编写。下面分别对这两个工程进行介绍: - **WorkflowDesignerControl** - 该工程是工作流设计器控件的核心实现。它封装了设计工作流所需的用户界面和逻辑代码。开发者可以在自己的应用程序中嵌入这个控件,为最终用户提供一个设计工作流的界面。 - 重点分析:控件如何加载和显示不同的工作流活动、控件如何响应用户的交互、控件状态的保存和加载机制等。 - **WorkflowDesignerExample** - 这个工程是演示如何使用WorkflowDesignerControl的示例项目。它不仅展示了如何在用户界面中嵌入工作流设计器控件,还展示了如何处理用户的交互事件,比如如何在设计完工作流后进行保存、加载或执行等。 - 重点分析:实例程序如何响应工作流设计师的用户操作、示例程序中可能包含的事件处理逻辑、以及工作流的实例化和运行等。 #### 4. 使用Visual Studio 2008编译 文件描述中提到使用Visual Studio 2008进行编译通过。Visual Studio 2008是微软在2008年发布的集成开发环境,它支持.NET Framework 3.5,而WWF正是作为.NET 3.5的一部分。开发者需要使用Visual Studio 2008(或更新版本)来加载和编译这些代码,确保所有必要的项目引用、依赖和.NET 3.5的特性均得到支持。 #### 5. 关键技术点 - **工作流活动(Workflow Activities)**:WWF中的工作流由一系列的活动组成,每个活动代表了一个可以执行的工作单元。在工作流设计器控件中,需要能够显示和操作这些活动。 - **活动编辑(Activity Editing)**:能够编辑活动的属性是工作流设计器控件的重要功能,这对于构建复杂的工作流逻辑至关重要。 - **状态管理(State Management)**:工作流设计过程中可能涉及保存和加载状态,例如保存当前的工作流设计、加载已保存的工作流设计等。 - **事件处理(Event Handling)**:处理用户交互事件,例如拖放活动到设计面板、双击活动编辑属性等。 #### 6. 文件名称列表解释 - **WorkflowDesignerControl.sln**:解决方案文件,包含了WorkflowDesignerControl和WorkflowDesignerExample两个项目。 - **WorkflowDesignerControl.suo**:Visual Studio解决方案用户选项文件,该文件包含了开发者特有的个性化设置,比如窗口布局、断点位置等。 - **Thumbs.db**:缩略图缓存文件,由Windows自动生成,用于存储文件夹中的图片缩略图,与WWF工作流设计器控件功能无关。 - **WorkflowDesignerExample**:可能是一个文件夹,包含了示例工程相关的所有文件,或者是示例工程的可执行文件。 - **EULA.txt**:最终用户许可协议文本文件,通常说明了软件的版权和使用许可条件。 综上所述,该文件集包含了WWF工作流设计器控件的完整C#源码以及相应的Visual Studio项目文件,开发者可以利用这些资源深入理解WWF工作流设计器控件的工作机制,并将其应用于实际的项目开发中,实现工作流的设计和管理功能。
recommend-type

CAD数据在ANSA中:完美修复几何数据的策略与方法

# 摘要 CAD数据的准确性和几何完整性对于产品设计和工程分析至关重要。本文首先强调了CAD数据和几何修复的重要性,随后介绍了ANSA软件在处理CAD数据中的角色。通过详细的分析,本文探讨了几何数据的常见问题,以及有效的手动和自动修复技术。文中还提供了几何修复在实际应用中的案例分析,并讨论了行业未来对几何修复技术的需求和新兴技术趋势。文章旨在为CAD数据几何修复提供全面的理论知识、诊断方法和修复策略,并
recommend-type

编写verilog代码实现以上的规格化功能

<think>我们有一个16位的二进制数,其格式如下:-a15:尾数符号位(1位)-a14-a5:尾数数值位(10位)-a4:指数符号位(1位)-a3-a0:指数数值位(4位)规格化的目标:确保尾数数值位的最高位a14为1(即尾数的绝对值在[0.5,1)范围内)。步骤:1.提取输入信号的各个部分:尾数符号位、尾数数值位、指数符号位、指数数值位。2.将尾数数值位(10位)视为无符号整数M(范围0到1023),我们需要通过左移操作使得M的最高位为1(即M>=512)。同时记录左移的位数(shift_count)。3.调整指数:新的指数=原指数-shift_count(因为尾数左移相当于乘以2^sh
recommend-type

探索ARM9 2410开发板与wince5.0系统的高级实验

标题中的“周立功ARM (magicarm2410) 高级实验”指明了文档内容涉及周立功品牌下的ARM9 2410开发板的高级使用实验。ARM9 2410是基于ARM920T内核的处理器,广泛应用于嵌入式系统开发。周立功是一家在电子与嵌入式系统领域内具有影响力的公司,提供嵌入式教学和开发解决方案。MagicARM2410是该公司的某型号开发板,可能专为教学和实验设计,携带了特定的实验内容,例如本例中的“eva例程”。 描述提供了额外的背景信息,说明周立功ARM9 2410开发板上预装有Windows CE 5.0操作系统,以及该开发板附带的EVA例程。EVA可能是用于实验教学的示例程序或演示程序。文档中还提到,虽然书店出售的《周立功 ARM9开发实践》书籍中没有包含EVA的源码,但该源码实际上是随开发板提供的。这意味着,EVA例程的源码并不在书籍中公开,而是需要直接从开发板上获取。这对于那些希望深入研究和修改EVA例程的学生和开发者来说十分重要。 标签中的“magicarm2410”和“周立功ARM”是对文档和开发板的分类标识。这些标签有助于在文档管理系统或资料库中对相关文件进行整理和检索。 至于“压缩包子文件的文件名称列表:新建文件夹”,这表明相关文件已经被打包压缩,但具体的文件内容和名称没有在描述中列出。我们仅知道压缩包内至少存在一个“新建文件夹”,这可能意味着用户需要进一步操作来查看或解压出文件夹中的内容。 综合以上信息,知识点主要包括: 1. ARM9 2410开发板:一款基于ARM920T内核的处理器的嵌入式开发板,适用于教学和项目实验。 2. Windows CE 5.0系统:这是微软推出的专为嵌入式应用设计的操作系统,提供了一个可定制、可伸缩的、实时的操作环境。 3. EVA例程:一个嵌入式系统开发的教学或实验示例程序。它可能被设计用于演示特定功能或技术,如显示、控制或通信。 4. 开发实践书籍与源码提供:《周立功 ARM9开发实践》一书可能详细介绍了ARM9 2410开发板的使用方法,但书中的内容不包含EVA例程的源码,源码需要通过其他途径获得。 5. 文件打包压缩:文档可能以压缩包的形式存在,包含了需要的内容,但具体内容未知,需要解压缩之后才能查看。 了解这些知识点后,对于从事嵌入式系统开发的工程师或者学生来说,可以更好地利用周立功 ARM9 2410开发板进行学习和实验,尤其是可以进行更深入的研究和实验设计,通过EVA例程的源码来理解嵌入式系统的运行机制和程序结构。同时,也能够使用Windows CE 5.0系统环境来开发相应的应用程序。
recommend-type

【ANSA网格生成手册】:创建高效高质量网格的6个技巧

# 摘要 ANSA软件作为一款强大的前处理工具,在工程仿真领域扮演着重要角色。本文首先概述了ANSA软件的基本功能以及网格生成技术的基础知识。接着深入探讨了不同网格类型的选择及其优缺点,同时强调了网格密度与质量控制的重要性。文中详细介绍了高级网格生成技巧,包括自适应网格技术和多重网格以及混合网格技术的应用。此外,本文还提供了网格生成在实际应用中的前处理
recommend-type

能否简单一点

<think>我们简化问题:统计从列表第一个字典开始,连续多少个字典的money字段为正数。注意:我们只关心从第一个开始的连续正数,一旦遇到非正数(包括0和负数)或者缺失money字段,就停止计数。简单实现思路:1.遍历列表中的每个字典(从第一个开始)2.对于每个字典,检查是否有'money'键,且其值大于0。3.如果满足条件,计数器加1;否则立即停止遍历并返回当前计数。代码实现:</think>### 简化版:统计连续正数 `money` 字段 #### 解决方案代码 ```python def count_positive_money(dict_list): count = 0