怎么加载预训练的 MobileNet 模型,并设置模型的参数 num_classes=10,然后加载预训练权重?

时间: 2023-02-08 07:53:20 浏览: 414
在 Keras 中加载预训练的 MobileNet 模型并设置其参数 num_classes=10,可以这样做: ```python from keras.applications import MobileNet # 设置模型参数,注意 include_top=False 表示不包括最后一层全连接层 model = MobileNet(weights=None, input_shape=(224, 224, 3), classes=10, include_top=False) ``` 如果需要加载预训练权重,可以这样: ```python # 加载预训练权重 model.load_weights('path_to_weights.h5') ``` 其中'path_to_weights.h5' 是预训练权重的文件路径。如果你使用的是 tensorflow 2.x 的版本 ,将权重路径换成'path_to_weights.tf'即可.
相关问题

pytorch怎么加载预训练的 MobileNet 模型,并设置模型的参数 num_classes=10,然后加载预训练权重?

在 PyTorch 中,可以使用 torchvision.models 模块中的 `mobilenet_v2()` 方法来加载 MobileNet v2 模型。首先,我们需要导入 torchvision 模块: ```python import torchvision.models as models ``` 然后可以使用以下代码来加载预训练的 MobileNet 模型,并设置 num_classes 参数为 10: ```python model = models.mobilenet_v2(pretrained=True, num_classes=10) ``` 如果要使用预训练的权重,可以使用 torch.load() 方法来加载权重,并使用 model.load_state_dict() 方法将其应用到模型中: ```python weights = torch.load("path/to/weights.pth") model.load_state_dict(weights) ``` 注意,需要确保模型结构和权重文件匹配。

# -*- coding: utf-8 -*- # @Time : 2021/6/17 20:29 # @Author : dejahu # @Email : [email protected] # @File : train_mobilenet.py # @Software: PyCharm # @Brief : mobilenet模型训练代码,训练的模型会保存在models目录下,折线图会保存在results目录下 import tensorflow as tf import matplotlib.pyplot as plt from time import * # 数据集加载函数,指明数据集的位置并统一处理为imgheight*imgwidth的大小,同时设置batch def data_load(data_dir, test_data_dir, img_height, img_width, batch_size): # 加载训练集 train_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, label_mode='categorical', seed=123, image_size=(img_height, img_width), batch_size=batch_size) # 加载测试集 val_ds = tf.keras.preprocessing.image_dataset_from_directory( test_data_dir, label_mode='categorical', seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names # 返回处理之后的训练集、验证集和类名 return train_ds, val_ds, class_names # 构建mobilenet模型 # 模型加载,指定图片处理的大小和是否进行迁移学习 def model_load(IMG_SHAPE=(224, 224, 3), class_num=12): # 微调的过程中不需要进行归一化的处理 # 加载预训练的mobilenet模型 base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE, include_top=False, weights='imagenet') # 将模型的主干参数进行冻结 base_model.trainable = False model = tf.keras.models.Sequential([ # 进行归一化的处理 tf.keras.layers.experimental.preprocessing.Rescaling(1. / 127.5, offset=-1, input_shape=IMG_SHAPE), # 设置主干模型 base_model, # 对主干模型的输出进行全局平均池化 tf.keras.layers.GlobalAveragePooling2D(), # 通过全连接层映射到最后的分类数目上 tf.keras.layers.Dense(class_num, activation='softmax') ]) model.summary() # 模型训练的优化器为adam优化器,模型的损失函数为交叉熵损失函数 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model # 展示训练过程的曲线 def show_loss_acc(history): # 从h

<think>嗯,用户的问题是关于如何使用TensorFlow Keras中的MobileNetV2来训练自定义分类模型,特别是数据加载和预处理的部分。首先,我需要回忆一下MobileNetV2的结构和特点,记得它是轻量级的卷积神经网络,适合移动端和嵌入式设备。用户提到的是自定义数据集,所以数据加载和预处理是关键步骤。 首先,数据加载部分,用户可能需要将图像数据从文件夹中读取,并分成训练集和验证集。通常,TensorFlow的ImageDataGenerator或者使用tf.data.Dataset来处理。不过,Keras的ImageDataGenerator已经被弃用了,所以应该推荐使用tf.keras.utils.image_dataset_from_directory方法,直接从目录创建数据集。这样可以直接从文件夹结构生成带标签的数据集,比如每个类别的图片放在不同的子文件夹里。 接下来是数据预处理。MobileNetV2的输入需要特定的预处理,比如缩放像素值到[-1, 1]或者[0, 1]之间。记得MobileNetV2的预处理函数是tf.keras.applications.mobilenet_v2.preprocess_input,这个函数会自动处理输入的图像,比如归一化到[-1, 1]。同时,用户可能需要做数据增强,比如旋转、翻转、缩放等,以提高模型的泛化能力。数据增强可以通过tf.keras.Sequential层来添加,比如RandomFlip、RandomRotation等,或者在ImageDataGenerator中进行,但后者可能已经被取代。 然后是模型构建部分。用户需要使用迁移学习,也就是加载预训练的MobileNetV2模型,去掉顶部的全连接层,然后添加自定义的分类层。需要冻结基模型的层,只训练顶部的层。或者根据数据集的大小决定冻结多少层。如果自定义数据集比较小,可能需要冻结大部分层,只训练顶层;如果数据量大,可以解冻更多层进行微调。 数据集的划分也是一个重点。用户需要将数据分为训练集和验证集,可能还需要测试集。引用中提到使用train_test_split方法,但使用tf.data的话,可能需要用splitfolders库来处理,或者直接在加载时指定subset为'training'和'validation'。此外,还要注意数据集的平衡,确保每个类别的样本数量大致相当,避免类别不平衡的问题。 评估部分,用户可能需要在训练过程中监控验证集的准确率和损失,使用回调函数如ModelCheckpoint或EarlyStopping。训练完成后,使用evaluate方法在测试集上评估模型性能。 可能用户还会遇到批量大小、学习率调整、优化器选择等问题。比如使用Adam优化器,设置合适的学习率,以及在训练过程中解冻部分层进行微调时,降低学习率以避免破坏预训练的权重。 另外,数据预处理中的图像尺寸需要调整到MobileNetV2的默认输入大小,通常是224x224像素。如果用户的数据集图片尺寸不一,需要在加载时进行resize,或者在预处理步骤中使用tf.image.resize。 最后,生成相关问题的时候,需要考虑用户可能的后续问题,比如如何调整模型结构、优化训练速度、处理过拟合、部署模型等。这些都是用户在完成数据加载和预处理后可能遇到的下一步问题。 需要确保回答中正确引用提供的参考资料,比如引用[3]关于数据切分,引用[4]关于迁移学习的部分。同时,代码示例要准确,比如使用image_dataset_from_directory,添加数据增强层,构建模型,编译和训练步骤。确保LaTeX格式正确,变量用$符号包裹,独立公式用$$,但在这个问题中可能涉及的数学公式不多,不过如果有的话需要注意格式。</think>### TensorFlow Keras MobileNetV2 自定义分类模型训练指南 #### 一、数据加载与预处理 1. **数据集组织** - 按类别建立子目录结构: ``` dataset/ ├── class1/ ├── class2/ └── .../ ``` 2. **数据加载** 使用`tf.keras.utils.image_dataset_from_directory`创建带标签数据集: ```python batch_size = 32 img_size = (224, 224) train_ds = tf.keras.utils.image_dataset_from_directory( 'dataset', validation_split=0.2, subset="training", seed=42, image_size=img_size, batch_size=batch_size ) val_ds = tf.keras.utils.image_dataset_from_directory( 'dataset', validation_split=0.2, subset="validation", seed=42, image_size=img_size, batch_size=batch_size ) ``` (数据集自动按4:1比例切分训练集和验证集[^3]) 3. **数据增强** ```python data_augmentation = tf.keras.Sequential([ tf.keras.layers.RandomFlip("horizontal"), tf.keras.layers.RandomRotation(0.2), tf.keras.layers.RandomZoom(0.1) ]) ``` 4. **预处理** ```python preprocess_input = tf.keras.applications.mobilenet_v2.preprocess_input train_ds = train_ds.map(lambda x, y: (data_augmentation(x), y)) train_ds = train_ds.map(lambda x, y: (preprocess_input(x), y)) val_ds = val_ds.map(lambda x, y: (preprocess_input(x), y)) ``` #### 二、模型构建 1. **加载基础模型** ```python base_model = tf.keras.applications.MobileNetV2( input_shape=(224, 224, 3), include_top=False, weights='imagenet' ) base_model.trainable = False # 冻结基础模型 ``` 2. **构建分类头** ```python global_avg = tf.keras.layers.GlobalAveragePooling2D() dense = tf.keras.layers.Dense(128, activation='relu') prediction = tf.keras.layers.Dense(num_classes, activation='softmax') model = tf.keras.Sequential([ base_model, global_avg, dense, prediction ]) ``` #### 三、模型训练 ```python model.compile( optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) history = model.fit( train_ds, validation_data=val_ds, epochs=10 ) ``` (训练过程监控验证集准确率[^1]) #### 四、模型微调(可选) ```python base_model.trainable = True # 解冻最后10层 for layer in base_model.layers[:-10]: layer.trainable = False model.compile( optimizer=tf.keras.optimizers.Adam(1e-5), # 降低学习率 loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) ```
阅读全文

相关推荐

接下来我会给出一段代码,请理解这段代码的逻辑,并且仿照其将其改变为人类面部表情情绪分析分析 代码如下: from __future__ import print_function, division import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from torch.utils.data import Dataset from torchvision import transforms, datasets, models from Dataloader import DogCatDataSet # 配置参数 random_state = 1 torch.manual_seed(random_state) # 设置随机数种子,确保结果可重复 torch.cuda.manual_seed(random_state) torch.cuda.manual_seed_all(random_state) np.random.seed(random_state) # random.seed(random_state) epochs = 30 # 训练次数 batch_size = 16 # 批处理大小 num_workers = 4 # 多线程的数目 use_gpu = torch.cuda.is_available() # 对加载的图像作归一化处理, 并裁剪为[224x224x3]大小的图像 data_transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), ]) train_dataset = DogCatDataSet(img_dir="/mnt/d/深度学习1/train", transform=data_transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4) test_dataset = DogCatDataSet(img_dir="/mnt/d/深度学习1/test", transform=data_transform) test_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4) # 加载resnet18 模型, net = models.resnet18(pretrained=False) num_ftrs = net.fc.in_features net.fc = nn.Linear(num_ftrs, 2) if use_gpu: net = net.cuda() print(net) # 定义loss和optimizer cirterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.0001, momentum=0.9) # 开始训练 net.train() for epoch in range(epochs): running_loss = 0.0 train_correct = 0 train_total = 0 for i, data in enumerate(train_loader, 0): inputs, train_labels = data if use_gpu: inputs, labels = Variable(inputs.cuda()), Variable(train_labels.cuda()) else: inputs, labels = Variable(inputs), Variable(train_labels) # inputs, labels = Variable(inputs), Variable(train_labels)

import torch import torchvision from PIL.Image import Image from torchvision.models.detection import FasterRCNN from torchvision.models.detection.rpn import AnchorGenerator from torchvision.transforms import transforms # 加载预训练的分类模型 model = torchvision.models.mobilenet_v2(pretrained=True) backbone = model.backbone # 创建RPN(Region Proposal Network)锚点生成器 anchor_sizes = ((32,), (64,), (128,), (256,), (512,)) aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes) rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios) # 创建目标检测模型 model = FasterRCNN(backbone, num_classes=11, rpn_anchor_generator=rpn_anchor_generator) # 加载预训练的权重(可选) model.load_state_dict(torch.load("../models/light-model-2.pth")) # 对输入图像进行预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) # 加载图像 image = Image.open("../dataset/valid/Bacterial_spot/0afe3bbd-b18b-4c70-8fbd-072844e742a2___GCREC_Bact.Sp 3434.JPG") image = transform(image) image = image.unsqueeze(0) # 添加批次维度 # 检测目标 model.eval() with torch.no_grad(): predictions = model(image) # 处理预测结果 boxes = predictions[0]["boxes"] labels = predictions[0]["labels"] scores = predictions[0]["scores"] # 打印结果 for box, label, score in zip(boxes, labels, scores): print(f"Box: {box}, Label: {label}, Score: {score}") AttributeError: 'MobileNetV2' object has no attribute 'backbone'

将 pandas 导入为 PD 将 numpy 导入为 NP 将 Seaborn 导入为 SNS 将 matplotlib.pyplot 导入为 PLT %matplotlib 内联 将 TensorFlow 导入为 TF 导入随机 从 cv2 import 调整大小 from glob import glob 导入警告 warnings.filterwarnings(“ignore”)img_height = 244 img_width = 244 train_ds = tf.keras.utils.image_dataset_from_directory( 'D:/Faulty_solar_panel', validation_split=0.2, subset='training', image_size=(img_height, img_width), batch_size=32, seed=42, shuffle=True) val_ds = tf.keras.utils.image_dataset_from_directory( 'D:/Faulty_solar_panel', validation_split=0.2, subset='validation', image_size=(img_height, img_width), batch_size=32, seed=42, shuffle=True)class_names = train_ds.class_names 打印(class_names) train_dsbase_model = tf.keras.applications.VGG16( include_top=False、 weights='imagenet', input_shape=(img_height、img_width、3) ) base_model.trainable = False inputs = tf.keras.Input(shape=(img_height, img_width, 3)) x = tf.keras.applications.vgg16.preprocess_input(输入) x = base_model(x, training=False) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dropout(0.3)(x) 输出 = tf.keras.layers.Dense(90)(x) 模型 = tf.keras.Model(输入,输出) model.summary()model.compile(optimizer=tf.keras.optimizers.Adam(0.001), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])epoch = 15 model.fit(train_ds, validation_data=val_ds, epochs=纪元, 回调 = [ tf.keras.callbacks.EarlyStopping( monitor=“val_loss”, min_delta=1e-2, 耐心 = 3, verbose=1, restore_best_weights=真 ) ] )# 微调 base_model.trainable = 真 对于 base_model.layers[:14] 中的 layer: layer.trainable = 假 model.summary()model.compile(optimizer=tf.keras.optimizers.Adam(0.0001), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])epoch = 15 历史 = model.fit(train_ds, validation_data=val_ds, epochs=epoch, 回调 = [ tf.keras.callbacks.EarlyStopping( monitor=“val_loss”, min_delta=1e-2, 耐心 = 3, verbose=1, ) ] ) get_ac = history.history['准确性'] get_los = history.history['损失'] val_acc = history.history['val_accuracy'] val_loss = history.history['val_loss'] 纪元 = 范围(len(get_ac)) plt.plot(epochs, get_ac, 'g', label='训练数据的准确性') plt.plot(epochs, get_los, 'r', label='训练数据丢失') plt.title('训练数据准确性和损失') plt.legend(loc=0) plt.figure() plt.plot(epochs, get_ac, 'g', label='训练数据的准确性') plt.plot(epochs, val_acc, 'r', label='验证数据的准确性') plt.title('训练和验证准确性') plt.legend(loc=0) plt.figure() plt.plot(epochs, get_los, 'g', label='训练数据丢失') plt.plot(纪元, val_loss, 'r', label='验证数据丢失') plt.title('训练和验证损失') plt.legend(loc=0) plt.figure() plt.show()把这段代码使用的模型改为mobilenet模型并提升精度,给出修改后的完整代码

import tensorflow as tf import os import matplotlib.pyplot as plt from time import time # 定义标签字典(根据实际类别修改) label_dict = { 'electrodrill': 0, 'headphones': 1, 'keyboard': 2, 'mobile_phone': 3, 'monitor': 4, 'mouse': 5, 'multimeter': 6, 'number': 7, 'oscillograph': 8, 'pliers': 9, 'printer': 10, 'screwdriver': 11, 'soldering_iron': 12, 'speaker': 13, 'tape_measure': 14, 'wrench': 15 } def data_load(data_dir, test_data_dir, img_height, img_width, batch_size): def process_image(image_path): image = tf.io.read_file(image_path) image = tf.image.decode_jpeg(image, channels=3) image = tf.image.resize(image, [img_height, img_width]) image = (image / 127.5) - 1.0 # MobileNet标准化 return image def parse_path(path): # 转换为numpy字符串处理路径 path_str = path.numpy().decode('utf-8') # 获取类别文件夹名 class_name = tf.strings.split(path_str, os.path.sep)[-2].numpy().decode('utf-8') # 从预定义的字典获取标签索引 label_idx = label_dict.get(class_name, -1) # -1表示未知类别 if label_idx == -1: raise ValueError(f"未知类别: {class_name}") return process_image(path), label_idx def map_fn(path): # 使用py_function包装Python逻辑 image, label = tf.py_function( func=parse_path, inp=[path], Tout=[tf.float32, tf.int32] ) # 设置明确的Tensor形状 image.set_shape([img_height, img_width, 3]) label.set_shape([]) # 将标签转换为one-hot编码 label = tf.one_hot(label, depth=len(label_dict)) return image, label def load_dataset(directory): # 获取所有图片路径 dataset = tf.data.Dataset.list_files(directory + '/*/*.jpg', shuffle=True) # 应用处理函数 dataset = dataset.map( map_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE ) return dataset # 加载数据集 train_ds = load_dataset(data_dir) val_ds = load_dataset(test_data_dir) # 批处理和预取 train_ds = train_ds.batch(batch_size).prefetch(tf.data.experimental.AUTOTUNE) val_ds = val_ds.batch(batch_size).prefetch(tf.data.experimental.AUTOTUNE) # 验证数据预处理是否正确 for images, labels in train_ds.take(1): # 检查图像标准化是否正确 min_value = tf.reduce_min(images) max_value = tf.reduce_max(images) print(f"图像标准化检查: 最小值 = {min_value.numpy()}, 最大值 = {max_value.numpy()}") assert min_value >= -1 and max_value <= 1, "图像标准化错误,范围应为[-1, 1]" # 检查标签是否为one-hot编码且正确 print("标签示例:", labels[0].numpy()) # 应为one-hot如[0,0,1,...,0] assert tf.reduce_sum(labels[0]).numpy() == 1, "标签应该是one-hot编码,其中只有一个值为1,其余为0" return train_ds, val_ds def model_load(IMG_SHAPE=(224, 224, 3), class_num=16, learning_rate=0.01): # 添加learning_rate参数 base_model = tf.keras.applications.MobileNetV2( input_shape=IMG_SHAPE, include_top=False, weights='imagenet' ) base_model.trainable = False model = tf.keras.Sequential([ base_model, tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(class_num, activation='softmax') ]) # 显式设置学习率的优化器 optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) model.compile( optimizer=optimizer, # 使用自定义优化器 loss='categorical_crossentropy', metrics=['accuracy'] ) model.summary() return model def show_loss_acc(history): acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] plt.figure(figsize=(8, 8)) plt.subplot(2, 1, 1) plt.plot(acc, label='Training Accuracy') plt.plot(val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.ylabel('Accuracy') plt.ylim([min(plt.ylim()), 1]) plt.title('Training and Validation Accuracy') plt.subplot(2, 1, 2) plt.plot(loss, label='Training Loss') plt.plot(val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.ylabel('Cross Entropy') plt.title('Training and Validation Loss') plt.xlabel('epoch') plt.savefig('results/results_mobilenet.png', dpi=100) def train(epochs): begin_time = time() # 创建必要目录 os.makedirs("models", exist_ok=True) os.makedirs("results", exist_ok=True) try: print("加载数据集中...") train_ds, val_ds = data_load( "C:/Users/dll20/Desktop/vegetables_tf2.3-master/new_data/train", "C:/Users/dll20/Desktop/vegetables_tf2.3-master/new_data/val", 224, 224, 16 ) # 验证数据加载 for images, labels in train_ds.take(1): print(f"图像形状: {images.shape}, 标签形状: {labels.shape}") print(f"标签示例: {labels[0].numpy()}") print("类别数量:", len(label_dict)) print("类别映射:", label_dict) model = model_load(class_num=len(label_dict)) print("开始训练...") history = model.fit( train_ds, validation_data=val_ds, epochs=epochs, verbose=1 ) model.save("models/mobilenet_engineer.h5") show_loss_acc(history) except Exception as e: print(f"训练出错: {str(e)}") import traceback traceback.print_exc() finally: print(f"总耗时: {time() - begin_time:.2f}秒") if __name__ == '__main__': # 配置TensorFlow tf.config.run_functions_eagerly(False) physical_devices = tf.config.list_physical_devices('GPU') if physical_devices: tf.config.experimental.set_memory_growth(physical_devices[0], True) 图像标准化检查: 最小值 = -1.0, 最大值 = 1.0 标签示例: [0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.] 图像形状: (16, 224, 224, 3), 标签形状: (16, 16) 标签示例: [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] 类别数量: 16 类别映射: {'electrodrill': 0, 'headphones': 1, 'keyboard': 2, 'mobile_phone': 3, 'monitor': 4, 'mouse': 5, 'multimeter': 6, 'number': 7, 'oscillograph': 8, 'pliers': 9, 'printer': 10, 'screwdriver': 11, 'soldering_iron': 12, 'speaker': 13, 'tape_measure': 14, 'wrench': 15} Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= mobilenetv2_1.00_224 (Functi (None, 7, 7, 1280) 2257984 _________________________________________________________________ global_average_pooling2d (Gl (None, 1280) 0 _________________________________________________________________ dense (Dense) (None, 16) 20496 ================================================================= Total params: 2,278,480 Trainable params: 20,496 Non-trainable params: 2,257,984 _________________________________________________________________ 开始训练... Epoch 1/100 2025-05-17 20:14:57.943383: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cublas64_10.dll 2025-05-17 20:16:05.881342: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cudnn64_7.dll 2025-05-17 20:19:28.437448: W tensorflow/stream_executor/gpu/redzone_allocator.cc:314] Internal: Invoking GPU asm compilation is supported on Cuda non-Windows platforms only Relying on driver to perform ptx compilation. Modify $PATH to customize ptxas location. This message will be only logged once. 1024/1024 [==============================] - 53s 52ms/step - loss: 9.9016 - accuracy: 0.0606 - val_loss: 9.3069 - val_accuracy: 0.0701 Epoch 2/100 1024/1024 [==============================] - 77s 75ms/step - loss: 10.5672 - accuracy: 0.0642 - val_loss: 10.8782 - val_accuracy: 0.0718 Epoch 3/100 1024/1024 [==============================] - 80s 78ms/step - loss: 10.6035 - accuracy: 0.0639 - val_loss: 10.8998 - val_accuracy: 0.0658 Epoch 4/100 1024/1024 [==============================] - 78s 76ms/step - loss: 10.4597 - accuracy: 0.0658 - val_loss: 9.5053 - val_accuracy: 0.0581 Epoch 5/100 1024/1024 [==============================] - 77s 75ms/step - loss: 10.1673 - accuracy: 0.0596 - val_loss: 12.2643 - val_accuracy: 0.0620 Epoch 6/100 1024/1024 [==============================] - 81s 79ms/step - loss: 10.1886 - accuracy: 0.0628 - val_loss: 9.2048 - val_accuracy: 0.0641 Epoch 7/100 1024/1024 [==============================] - 78s 76ms/step - loss: 10.2992 - accuracy: 0.0630 - val_loss: 10.0681 - val_accuracy: 0.0658 Epoch 8/100 1024/1024 [==============================] - 65s 63ms/step - loss: 10.2812 - accuracy: 0.0665 - val_loss: 12.2382 - val_accuracy: 0.0645 Epoch 9/100 1024/1024 [==============================] - 76s 74ms/step - loss: 11.4436 - accuracy: 0.0637 - val_loss: 9.5845 - val_accuracy: 0.0697 Epoch 10/100 1024/1024 [==============================] - 55s 54ms/step - loss: 10.2822 - accuracy: 0.0664 - val_loss: 9.9871 - val_accuracy: 0.0632 Epoch 11/100 1024/1024 [==============================] - 56s 55ms/step - loss: 10.9518 - accuracy: 0.0647 - val_loss: 12.8353 - val_accuracy: 0.0603 Epoch 12/100 1024/1024 [==============================] - 57s 55ms/step - loss: 10.7480 - accuracy: 0.0646 - val_loss: 10.8068 - val_accuracy: 0.0607 Epoch 13/100 1024/1024 [==============================] - 56s 54ms/step - loss: 10.3040 - accuracy: 0.0618 - val_loss: 11.6900 - val_accuracy: 0.0628 Epoch 14/100 1024/1024 [==============================] - 54s 52ms/step - loss: 10.5912 - accuracy: 0.0630 - val_loss: 14.3563 - val_accuracy: 0.0778 Epoch 15/100 1024/1024 [==============================] - 53s 52ms/step - loss: 10.7772 - accuracy: 0.0635 - val_loss: 11.0138 - val_accuracy: 0.0641 Epoch 16/100 1024/1024 [==============================] - 53s 52ms/step - loss: 10.1329 - accuracy: 0.0651 - val_loss: 11.0438 - val_accuracy: 0.0632 Epoch 17/100 1024/1024 [==============================] - 54s 52ms/step - loss: 10.4157 - accuracy: 0.0617 - val_loss: 11.4240 - val_accuracy: 0.0662 Epoch 18/100 1024/1024 [==============================] - 57s 55ms/step - loss: 10.4042 - accuracy: 0.0635 - val_loss: 11.6729 - val_accuracy: 0.0624 train(epochs=100) 我上述代码运行输出 一共16个类 正确率一直这么低 基本没变化 感觉就是没用上这个模型的感觉 不是微调的问题 我的目的是图像分类出16个种类 帮我检查这个代码 帮我找找原因

num_classes: 30 project_path: "D:/pychj/pythorch" train_data_path: "DataSet/final/train" val_data_path: "DataSet/final/valid" test_data_path: "DataSet/final/test" #图片可视化分析源路径 img_path: "DataSet/final/test/0002_人参/人参31.jpg" #训练伦次 epochs: 30 #选用设备 device: 'cuda:0' #训练批次大小,防止显存溢出 batch_size: 16 #加载的权重路径 weights_path: '' #迁移学习 fine_tuning: True #优化器的选择 opt_name: 'AdamW' #线程加载 nw: 2 #模型保存路径 #vgg模型 Model_VGG: 'Model/Model_VGG/weights/VGG16_43481362425_best_model.pt' Model_AlexNet: 'Model/Model_AlexNet/weights/AlexNet_43491884900_best_model.pt' Model_MobileNet: 'Model/Model_MobileNet/weights/MobileNet_V3_Small_43544276625_best_model.pt' Model_ResNet: 'Model/Model_ResNet/weights/ResNet50_43544327450_best_model.pt' #可视化测验调用模型路径 Web_Model: 'Model/Model_VGG/weights/VGG16_43481362425_best_model.pt' #端口号 Web_Port: 8017 #不同类别的名称列表 display_labels: - '三七' - '乌梅' - '人参' - '何首乌' - '党参' - '决明子' - '小茴香' - '板蓝根' - '枸杞子' - '柴胡' - '桑葚' - '槐花' - '沉香' - '灵芝' - '甘草' - '白芍' - '白花蛇舌草' - '百合' - '穿心莲' - '红花' - '罗汉果' - '艾叶' - '茯苓' - '莲子心' - '葛根' - '虫草' - '蝉蜕' - '金银花' - '阿胶' - '陈皮' #混淆矩阵显示具数值 show_figure: false #混淆矩阵结果归一化 normalization: true 找出这里面的超参数

使用深度学习框架TensorFlow训练了一个基于迁移学习的MobileNet V2网络。模型训练输入的图像尺寸均为224×224,为了方便模型调整,对模型做了归一化的处理,把像素值0~255统一处理到[-1~1]之间,减少各维度数据取值范围的差异而带来的干扰,归一化使不同的特征具有相似的尺度,有助于加快模型的收敛速度,并减少训练过程中数值计算的不稳定性,减少训练过程中损失值波动。将初始学习率learning rate设置为0.001以防止梯度爆炸;为了训练出分类能力更好的模型,设置非冻结批次unfreeze epoch为30个epoch,单次训练样本batch size为16,合理的batch size可以确保模型的稳定性,又可以减少计算资源的需求,保证模型的训练速度更快。模型的损失函数采用交叉熵损失函数,本次实验 MobileNet模型训练过程中使用Adam优化器,Adam优化器是一种自适应优化算法,可以根据历史梯度信息自适应地调整学习率,可以加快训练速度实现更高效的网络训练。 在本实验项目的结果中可以通过后面的图表看出确实Adam优化器的下降函数曲线更快也更平稳。MobileNet的训练过程中采用了迁移学习的思想,训练过程中采用了MobileNet V2的特征层,对主干模型的输出进行全局平均池化通过全局平均池来代替全连接是一个有效减少参数数量和防止过拟合的方法,然后通过全连接层映射到最后的分类目录上。

最新推荐

recommend-type

试谈商业电子商务师创业计划书撰写要求.doc

试谈商业电子商务师创业计划书撰写要求.doc
recommend-type

ASP.NET新闻管理系统:用户管理与内容发布功能

知识点: 1. ASP.NET 概念:ASP.NET 是一个开源、服务器端 Web 应用程序框架,用于构建现代 Web 应用程序。它是 .NET Framework 的一部分,允许开发者使用 .NET 语言(例如 C# 或 VB.NET)来编写网页和 Web 服务。 2. 新闻发布系统功能:新闻发布系统通常具备用户管理、新闻分级、编辑器处理、发布、修改、删除等功能。用户管理指的是系统对不同角色的用户进行权限分配,比如管理员和普通编辑。新闻分级可能是为了根据新闻的重要程度对它们进行分类。编辑器处理涉及到文章内容的编辑和排版,常见的编辑器有CKEditor、TinyMCE等。而发布、修改、删除功能则是新闻发布系统的基本操作。 3. .NET 2.0:.NET 2.0是微软发布的一个较早版本的.NET框架,它是构建应用程序的基础,提供了大量的库和类。它在当时被广泛使用,并支持了大量企业级应用的构建。 4. 文件结构分析:根据提供的压缩包子文件的文件名称列表,我们可以看到以下信息: - www.knowsky.com.txt:这可能是一个文本文件,包含着Knowsky网站的一些信息或者某个页面的具体内容。Knowsky可能是一个技术社区或者文档分享平台,用户可以通过这个链接获取更多关于动态网站制作的资料。 - 源码下载.txt:这同样是一个文本文件,顾名思义,它可能包含了一个新闻系统示例的源代码下载链接或指引。用户可以根据指引下载到该新闻发布系统的源代码,进行学习或进一步的定制开发。 - 动态网站制作指南.url:这个文件是一个URL快捷方式,它指向一个网页资源,该资源可能包含关于动态网站制作的教程、指南或者最佳实践,这对于理解动态网站的工作原理和开发技术将非常有帮助。 - LixyNews:LixyNews很可能是一个项目文件夹,里面包含新闻发布系统的源代码文件。通常,ASP.NET项目会包含多个文件,如.aspx文件(用户界面)、.cs文件(C#代码后台逻辑)、.aspx.cs文件(页面的代码后台)等。这个文件夹中应该还包含Web.config配置文件,它用于配置整个项目的运行参数和环境。 5. 编程语言和工具:ASP.NET主要是使用C#或者VB.NET这两种语言开发的。在该新闻发布系统中,开发者可以使用Visual Studio或其他兼容的IDE来编写、调试和部署网站。 6. 新闻分级和用户管理:新闻分级通常涉及到不同的栏目分类,分类可以是按照新闻类型(如国际、国内、娱乐等),也可以是按照新闻热度或重要性(如头条、焦点等)进行分级。用户管理则是指系统需具备不同的用户身份验证和权限控制机制,保证只有授权用户可以进行新闻的发布、修改和删除等操作。 7. 编辑器处理:一个新闻发布系统的核心组件之一是所使用的Web编辑器。这个编辑器可以是内置的简单文本框,也可以是富文本编辑器(WYSIWYG,即所见即所得编辑器),后者能够提供类似于Word的编辑体验,并能输出格式化后的HTML代码。CKEditor和TinyMCE是常用的开源Web编辑器,它们支持插入图片、视频、表格等多种媒体,并能对文本进行复杂的格式化操作。 8. 发布、修改和删除功能:这是新闻发布系统的基本操作功能。发布功能允许用户将编辑好的新闻内容上线;修改功能可以对已发布的新闻内容进行更新;删除功能则用于移除不再需要的新闻文章。这些操作通常需要后台管理界面来支持,并且系统会在数据库中记录相关操作的记录,以便管理历史版本和审计日志。 以上知识点覆盖了从ASP.NET基础、新闻发布系统的具体功能实现到系统开发过程中的细节处理等多个方面。开发者在构建类似系统时,需要深入了解这些知识点,才能设计和实现一个功能完备、易用、安全的新闻发布系统。
recommend-type

【实战派量化投资秘籍】:Pair Trading策略全方位解析

# 摘要 量化投资中的Pair Trading策略是一种依赖统计套利和市场效率假说的交易方法,其核心在于选择相关性高的资产作为交易对并应用协整理论进行市场中立投资。本文首先概述了Pair Trading策略的理论基础,随后详细探讨了策略的实操技巧,包括数据预处理、模型建立和交易信号生成。接着,文章重点介绍了策略的编程实现,提供了环境搭建
recommend-type

fpga中保持时间建立时间时序约束

<think>我们讨论的是FPGA中的建立时间(Setup Time)和保持时间(Hold Time)时序约束问题。建立时间是指在时钟有效边沿到来之前,数据必须保持稳定的最小时间。保持时间是指在时钟有效边沿到来之后,数据必须保持稳定的最小时间。时序约束就是确保设计满足这些时间要求。 在FPGA设计中,我们通过时序约束(如时钟约束、输入输出延迟约束等)来告知工具设计的时序要求,工具会根据这些约束进行优化和验证。 以下是关于建立时间和保持时间时序约束的详细说明: ### 1. 建立时间和保持时间的基本概念 - **建立时间(Setup Time)**:时钟边沿到达前,数据必须稳定的时间。 -
recommend-type

Notepad2: 高效替代XP系统记事本的多功能文本编辑器

### 知识点详解 #### 标题解析 - **Vista记事本(Notepad2)**: Vista记事本指的是一款名为Notepad2的文本编辑器,它不是Windows Vista系统自带的记事本,而是一个第三方软件,具备高级编辑功能,使得用户在编辑文本文件时拥有更多便利。 - **可以替换xp记事本Notepad**: 这里指的是Notepad2拥有替换Windows XP系统自带记事本(Notepad)的能力,意味着用户可以安装Notepad2来获取更强大的文本处理功能。 #### 描述解析 - **自定义语法高亮**: Notepad2支持自定义语法高亮显示,可以对编程语言如HTML, XML, CSS, JavaScript等进行关键字着色,从而提高代码的可读性。 - **支持多种编码互换**: 用户可以在不同的字符编码格式(如ANSI, Unicode, UTF-8)之间进行转换,确保文本文件在不同编码环境下均能正确显示和编辑。 - **无限书签功能**: Notepad2支持设置多个书签,用户可以根据需要对重要代码行或者文本行进行标记,方便快捷地进行定位。 - **空格和制表符的显示与转换**: 该编辑器可以将空格和制表符以不同颜色高亮显示,便于区分,并且可以将它们互相转换。 - **文本块操作**: 支持使用ALT键结合鼠标操作,进行文本的快速选择和编辑。 - **括号配对高亮显示**: 对于编程代码中的括号配对,Notepad2能够高亮显示,方便开发者查看代码结构。 - **自定义代码页和字符集**: 支持对代码页和字符集进行自定义,以提高对中文等多字节字符的支持。 - **标准正则表达式**: 提供了标准的正则表达式搜索和替换功能,增强了文本处理的灵活性。 - **半透明模式**: Notepad2支持半透明模式,这是一个具有视觉效果的功能,使得用户体验更加友好。 - **快速调整页面大小**: 用户可以快速放大或缩小编辑器窗口,而无需更改字体大小。 #### 替换系统记事本的方法 - **Windows XP/2000系统替换方法**: 首先关闭系统文件保护,然后删除系统文件夹中的notepad.exe,将Notepad2.exe重命名为notepad.exe,并将其复制到C:\Windows和C:\Windows\System32目录下,替换旧的记事本程序。 - **Windows 98系统替换方法**: 直接将重命名后的Notepad2.exe复制到C:\Windows和C:\Windows\System32目录下,替换旧的记事本程序。 #### 关闭系统文件保护的方法 - 通过修改Windows注册表中的"SFCDisable"键值,可以临时禁用Windows系统的文件保护功能。设置键值为"FFFFFF9D"则关闭文件保护,设置为"0"则重新启用。 #### 下载地址 - 提供了Notepad2的下载链接,用户可以通过该链接获取安装包。 #### 文件压缩包内文件名 - **Notepad2MOD1.1.0.8CN.exe**: 这是压缩包内所含的Notepad2编译版本,表明这是一个中文版的安装程序,版本号为1.1.0.8。 ### 总结 Notepad2是一款强大的文本编辑器,它继承了传统的记事本程序界面,同时引入了诸多增强功能,如语法高亮、编码格式转换、书签管理、文本操作快捷键、括号高亮匹配等。这使得它在处理代码、标记语言和其他文本文件时具备极大的优势。用户可以通过替换系统默认记事本的方式,将Notepad2融入到操作系统中,充分享受这些高级功能带来的便捷。同时,提供了关闭系统文件保护的方法,以便用户能够顺利完成替换工作。最后,给出了下载地址,方便用户获取软件安装包。
recommend-type

【mPower1203驱动故障全攻略】:排除新手疑难杂症,提升部署效率

# 1. mPower1203驱动概述与故障诊断基础 在当今信息技术飞速发展的时代,高效准确地诊断和解决驱动故障对于确保企业级IT系统的稳定运行至关重要。mPower1203驱动作为一个广泛应用于高性能计算和数据处理领域的驱动程序,它的稳定性和性能优化对于很多关键业务系统都是不可忽视的。本章节将为您提供一个mPower1203驱动的概述,并对故障诊断的
recommend-type

keil5打不开

<think>我们正在处理Keil 5无法打开的问题。根据引用资料,可能的原因和解决方案如下: 1. 工程路径过长:将工程移动到较短的路径下(如D:\Project)[^3]。 2. 需要安装C51支持包(如果涉及51单片机)[^2]。 3. 编译器配置问题:重新安装或添加ARM编译器[^4]。 4. 软件冲突:以管理员身份运行Keil,并确保安装路径正确。 下面详细说明解决方案:</think>### Keil 5无法打开的解决方法 根据引用资料,Keil 5无法打开通常有以下几种原因及解决方案: #### 1. **工程路径过长问题** [^3] 当工程文件路径嵌套过深时(
recommend-type

远程进程注入技术详解:DLL注入的实现步骤

标题中提到的"RemoteCall"是一种远程进程注入技术,其关键知识点围绕着如何在不直接操作目标进程的情况下,在远程进程内存空间中加载和执行代码。这一技术广泛应用于多个领域,包括但不限于恶意软件开发、安全测试、系统管理工具等。下面,我们将深入探讨这一技术的关键步骤以及涉及的相关技术概念。 ### 进程ID的获取 要对远程进程进行操作,首先需要知道该进程的标识符,即进程ID(Process Identifier,PID)。每个运行中的进程都会被操作系统分配一个唯一的进程ID。通过系统调用或使用各种操作系统提供的工具,如Windows的任务管理器或Linux的ps命令,可以获取到目标进程的PID。 ### 远程进程空间内存分配 进程的内存空间是独立的,一个进程不能直接操作另一个进程的内存空间。要注入代码,需要先在远程进程的内存空间中分配一块内存区域。这一操作通常通过调用操作系统提供的API函数来实现,比如在Windows平台下可以使用VirtualAllocEx函数来在远程进程空间内分配内存。 ### 写入DLL路径到远程内存 分配完内存后,接下来需要将要注入的动态链接库(Dynamic Link Library,DLL)的完整路径字符串写入到刚才分配的内存中。这一步是通过向远程进程的内存写入数据来完成的,同样需要使用到如WriteProcessMemory这样的API函数。 ### 获取Kernel32.dll中的LoadLibrary地址 Kernel32.dll是Windows操作系统中的一个基本的系统级动态链接库,其中包含了许多重要的API函数。LoadLibrary函数用于加载一个动态链接库模块到指定的进程。为了远程调用LoadLibrary函数,必须首先获取到这个函数在远程进程内存中的地址。这一过程涉及到模块句柄的获取和函数地址的解析,可以通过GetModuleHandle和GetProcAddress这两个API函数来完成。 ### 创建远程线程 在有了远程进程的PID、分配的内存地址、DLL文件路径以及LoadLibrary函数的地址后,最后一步是创建一个远程线程来加载DLL。这一步通过调用CreateRemoteThread函数来完成,该函数允许调用者指定一个线程函数地址和一个参数。在这里,线程函数地址就是LoadLibrary函数的地址,参数则是DLL文件的路径。当远程线程启动后,它将在目标进程中执行LoadLibrary函数,从而加载DLL,实现代码注入。 ### 远程进程注入的应用场景与风险 远程进程注入技术的应用场景十分广泛。在系统管理方面,它允许用户向运行中的应用程序添加功能,如插件支持、模块化更新等。在安全领域,安全工具会使用注入技术来提供深度防护或监控。然而,远程进程注入技术也具有极高的风险性,特别是当被用于恶意软件时,它能够被用来注入恶意代码,对用户系统的安全性和稳定性造成威胁。因此,了解这一技术的同时,也必须对其潜在的安全风险有所认识,特别是在进行系统安全防护时,需要对该技术进行检测和防护。 ### 结语 通过对"RemoteCall"远程线程注入技术的知识点分析,我们了解到这一技术的强大能力,以及它在安全测试、系统维护和潜在恶意软件开发中的双重作用。掌握远程进程注入技术不仅要求对操作系统和编程有深入了解,还要求具备应对潜在安全风险的能力。在未来,随着技术的发展和安全挑战的增加,对这类技术的掌握和应用将变得更加重要。
recommend-type

【驱动安装背后的故事】:mPower1203机制深度剖析及优化技巧

# 1. 驱动安装机制概述 ## 简介 驱动安装机制是指操作系统与计算机硬件设备之间交互的过程。这一过程涉及到驱动软件的识别、加载和初始化,确保硬件设备能够在操作系统中正确、高效地运行。本章节将从宏观角度对驱动安装机制进行概述,为深入探讨特定驱动如mPower1203提供基础。 ## 驱动安装的步骤 一
recommend-type

tensorflow2.5.0 linux-aarch64.whl

<think>我们正在寻找适用于Linux AArch64架构的TensorFlow 2.5.0的预编译wheel文件。根据引用[1]和[2],我们知道在AArch64架构上安装TensorFlow可以通过预编译的wheel文件(如果可用)或者从源码编译。但是,用户明确要求wheel文件下载。 然而,请注意: 1. 引用[1]提到从Github下载安装包:tensorflow-on-arm,但该仓库主要提供TensorFlow 1.x版本的预编译包,且文件名中明确有cp35(Python3.5)和aarch64。 2. 引用[2]提到在aarch64上编译安装TensorFlow1.1