import torch.nn as nn num_classes = 131 class FruitsClassificationModel(nn.Module): def __init__(self): super(FruitsClassificationModel, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=32), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer2 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=64), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer3 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, padding=2), nn.BatchNorm2d(num_features=128), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.fc = nn.Linear(in_features=18432, out_features=num_classes)

时间: 2023-11-22 18:04:56 浏览: 312
这段代码定义了一个卷积神经网络模型,用于水果图片的分类任务。该模型包含三个卷积层和一个全连接层,其中每个卷积层后面都跟着一个BatchNorm层和ReLU激活函数,然后是一个最大池化层,用于下采样。最后通过一个全连接层将卷积层输出的feature map映射到类别上。其中,输入图片是3通道的,输出类别数为131个。
相关问题

import torch import torch.nn as nn import torch.nn.functional as F __all__ = ["LMD_Loss"] def lmd_criterion( logits_student, logits_teacher, target, T, major_labels, ): bs = logits_student.size(0) gt_mask = _get_gt_mask(logits_student, target) label_mask = torch.zeros_like(logits_student).scatter_(1, major_labels.repeat(bs, 1), 1).bool() pred_t = F.softmax(logits_teacher / T - 1000 * label_mask - 1000 * gt_mask, dim=1) pred_s = F.log_softmax(logits_student / T - 1000 * gt_mask, dim=1) return nn.KLDivLoss(reduction="batchmean")(pred_s, pred_t) * (T ** 2) def _get_gt_mask(logits, target): target = target.reshape(-1) mask = torch.zeros_like(logits).scatter_(1, target.unsqueeze(1), 1).bool() return mask class LMD_Loss(nn.Module): def __init__(self, num_classes=10, tau=1, beta=1): super(LMD_Loss, self).__init__() self.CE = nn.CrossEntropyLoss() self.MSE = nn.MSELoss() self.KLDiv = nn.KLDivLoss(reduction="batchmean") self.num_classes = num_classes self.tau = tau self.beta = beta def forward(self, logits, targets, dg_logits, major_labels): ce_loss = self.CE(logits, targets) lmd_loss = lmd_criterion(logits, dg_logits, targets, self.tau, major_labels) loss = ce_loss + self.beta * lmd_loss return loss逐句解释这个代码块的内容

<think>好的,我现在需要逐句解释用户提供的这个PyTorch代码块。首先,我要理解整个代码的结构和功能。看起来这是一个自定义的损失函数模块,可能用于知识蒸馏或者类似的任务,因为涉及到学生和教师的logits处理。 首先,用户导入了一些PyTorch模块,包括torch、torch.nn和torch.nn.functional。然后定义了一个__all__变量,包含"LMD_Loss",说明这个模块主要暴露的是LMD_Loss类。 接下来是lmd_criterion函数。这个函数接受学生和教师的logits、目标标签、温度参数T和major_labels。我需要仔细看里面的每一步操作。比如,bs是batch size,然后gt_mask是通过_get_gt_mask函数生成的,这个函数的作用应该是创建真实标签的掩码。然后label_mask是通过scatter_方法生成的,这里可能是在将major_labels的位置设置为1,生成一个布尔掩码。 然后,计算pred_t和pred_s的时候,使用了softmax和log_softmax,并且减去了1000乘以两个掩码,这可能是为了在softmax时将这些位置的值压制到接近零,因为减去一个大数会让指数运算结果趋近于零。之后返回的是KL散度损失乘以T的平方,这和知识蒸馏中的温度缩放有关。 接下来是_get_gt_mask函数,它利用scatter_方法根据target生成一个布尔掩码,标记真实类别的位罝。 然后是LMD_Loss类,继承自nn.Module。初始化方法中定义了交叉熵损失、MSE、KL散度损失,还有一些参数如num_classes、tau和beta。前向传播函数中,计算了CE损失和lmd_loss,然后将它们加权相加得到总损失。 现在要逐句解释每个部分,可能需要拆解每一行代码的作用,尤其是那些涉及到张量操作的地方,比如scatter_的使用,以及如何生成掩码。同时,要解释为什么在计算pred_t和pred_s时要减去那些掩码,这可能涉及到抑制某些类别的输出,比如避免真实标签和主要标签的影响。 需要注意的是,用户可能希望了解这个损失函数的设计目的,比如LMD代表什么,可能是什么的缩写,比如可能是Logit Margin Distillation之类的。不过代码中没有明确说明,可能需要根据实现推测。 在解释过程中,要确保术语准确,比如logits、softmax、KL散度等,同时要说明每个参数的作用,比如T是温度参数,用于调整蒸馏的平滑程度,beta是平衡两个损失项的权重。 可能遇到的难点在于解释scatter_方法的具体作用,以及生成的掩码如何影响后续的概率计算。需要详细说明这些步骤,确保用户能够理解每一步的张量变换。 最后,要整理整个解释过程,保持结构清晰,分步骤说明每个函数和类的作用,以及它们在整体损失计算中的角色。</think>我将逐段解释这个基于PyTorch实现的LMD损失函数代码: ```python import torch import torch.nn as nn import torch.nn.functional as F ``` - 导入PyTorch框架的核心模块 - `nn`模块包含神经网络层和损失函数 - `F`模块包含函数形式的神经网络操作 ```python __all__ = ["LMD_Loss"] ``` - 声明模块的公开接口,表示外部只能访问`LMD_Loss`类 --- ### 核心函数`lmd_criterion` ```python def lmd_criterion( logits_student, logits_teacher, target, T, major_labels, ): bs = logits_student.size(0) ``` - 定义LMD损失的核心计算函数 - 参数说明: - `logits_student`: 学生模型的原始输出(未归一化) - `logits_teacher`: 教师模型的原始输出 - `target`: 真实标签 - `T`: 温度系数,用于软化概率分布 - `major_labels`: 主类别标签(需要特殊处理的类别) ```python gt_mask = _get_gt_mask(logits_student, target) ``` - 调用`_get_gt_mask`生成真实标签掩码 - 生成形状与logits相同的布尔矩阵,仅在真实标签位置为True ```python label_mask = torch.zeros_like(logits_student).scatter_(1, major_labels.repeat(bs, 1), 1).bool() ``` - 创建主类别掩码: - 1. 创建全零矩阵,形状同logits - 2. 使用`scatter_`在`major_labels`指定位置填充1 - 3. 转换为布尔型掩码 ```python pred_t = F.softmax(logits_teacher / T - 1000 * label_mask - 1000 * gt_mask, dim=1) ``` - 计算教师模型的软化概率: - 1. 用温度系数T缩放logits - 2. 通过`-1000 * mask`在softmax前压制指定位置的概率值 - 3. 得到归一化的概率分布 ```python pred_s = F.log_softmax(logits_student / T - 1000 * gt_mask, dim=1) ``` - 计算学生模型的log概率: - 仅压制真实标签位置的数值 - 使用`log_softmax`为后续KL散度计算做准备 ```python return nn.KLDivLoss(reduction="batchmean")(pred_s, pred_t) * (T ** 2) ``` - 计算KL散度损失: - `batchmean`表示按batch维度求均值 - 乘以$T^2$恢复温度缩放对梯度的影响 --- ### 辅助函数`_get_gt_mask` ```python def _get_gt_mask(logits, target): target = target.reshape(-1) mask = torch.zeros_like(logits).scatter_(1, target.unsqueeze(1), 1).bool() return mask ``` - 生成真实标签的one-hot掩码: - `scatter_`在指定位置填入1 - 将数值矩阵转换为布尔型 --- ### LMD_Loss类 ```python class LMD_Loss(nn.Module): def __init__(self, num_classes=10, tau=1, beta=1): super(LMD_Loss, self).__init__() self.CE = nn.CrossEntropyLoss() self.MSE = nn.MSELoss() self.KLDiv = nn.KLDivLoss(reduction="batchmean") self.num_classes = num_classes self.tau = tau self.beta = beta ``` - 继承`nn.Module`实现自定义损失 - 初始化参数: - `tau`: 温度系数(对应函数参数T) - `beta`: 损失权重系数 - 预定义三种损失函数 ```python def forward(self, logits, targets, dg_logits, major_labels): ce_loss = self.CE(logits, targets) lmd_loss = lmd_criterion(logits, dg_logits, targets, self.tau, major_labels) loss = ce_loss + self.beta * lmd_loss return loss ``` - 前向计算流程: 1. 计算标准交叉熵损失 2. 计算LMD定制损失 3. 加权合并两个损失项 --- ### 算法特点 1. **双损失结合**:交叉熵保证基础分类性能,LMD损失实现知识蒸馏 2. **掩码机制**: - `gt_mask`保护真实标签不被压制 - `label_mask`处理特定主类别 3. **温度缩放**:通过温度系数T控制分布软化程度 4. **梯度修正**:$T^2$项抵消温度缩放对梯度的影响 该实现适用于需要同时保持原始分类性能并进行知识转移的场景,常见于模型压缩、对抗训练等应用。

import torch import torch.nn as nn import torch.nn.functional as F import torchvision.models as models import os class FCNTransformerNet(nn.Module): def __init__(self, num_classes): super(FCNTransformerNet, self).__init__() self.fcn_backbone = models.segmentation.fcn_resnet50(pretrained=True).backbone self.fcn_backbone.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.transformer_layers = nn.TransformerEncoderLayer(d_model=2048, nhead=8) self.transformer_encoder = nn.TransformerEncoder(self.transformer_layers, num_layers=6) self.classification_head = nn.Sequential( nn.Linear(2048, 512), nn.ReLU(), nn.Linear(512, num_classes) ) def forward(self, x): fcn_output = self.fcn_backbone(x)['out'] fcn_output = fcn_output.view(fcn_output.size(0), fcn_output.size(1), -1) fcn_output = fcn_output.permute(2, 0, 1) transformer_output = self.transformer_encoder(fcn_output) transformer_output = transformer_output.permute(1, 2, 0) transformer_output = transformer_output.contiguous().view(transformer_output.size(0), -1, 1, 1) output = self.classification_head(transformer_output) return output FCNTransformerNet net = FCNTransformerNet(num_classes=2) input_batch = torch.randn(4, 3, 512, 512) output_batch = net(input_batch) print(output_batch.size()) # Should print: torch.Size([4, 2, 512, 512]) 运行这段代码,并改错

在这段代码中,有几个问题需要进行修正。 首先,你定义了一个名为 `FCNTransformerNet` 的类,但是没有在代码末尾实例化这个类。你需要添加 `()` 来实例化该类,将其赋值给变量 `net`。 其次,你需要将 `FCNTransformerNet` 类的定义放在 `if __name__ == "__main__":` 条件语句内部,以确保它只在主程序中运行,而不是在模块导入时运行。 最后,你的代码中缺少了一些必要的导入语句。你需要导入 `torch`, `torch.nn` 和 `torchvision.models`。 下面是修改后的代码: ```python import torch import torch.nn as nn import torchvision.models as models class FCNTransformerNet(nn.Module): def __init__(self, num_classes): super(FCNTransformerNet, self).__init__() self.fcn_backbone = models.segmentation.fcn_resnet50(pretrained=True).backbone self.fcn_backbone.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.transformer_layers = nn.TransformerEncoderLayer(d_model=2048, nhead=8) self.transformer_encoder = nn.TransformerEncoder(self.transformer_layers, num_layers=6) self.classification_head = nn.Sequential( nn.Linear(2048, 512), nn.ReLU(), nn.Linear(512, num_classes) ) def forward(self, x): fcn_output = self.fcn_backbone(x)['out'] fcn_output = fcn_output.view(fcn_output.size(0), fcn_output.size(1), -1) fcn_output = fcn_output.permute(2, 0, 1) transformer_output = self.transformer_encoder(fcn_output) transformer_output = transformer_output.permute(1, 2, 0) transformer_output = transformer_output.contiguous().view(transformer_output.size(0), -1, 1, 1) output = self.classification_head(transformer_output) return output if __name__ == "__main__": net = FCNTransformerNet(num_classes=2) input_batch = torch.randn(4, 3, 512, 512) output_batch = net(input_batch) print(output_batch.size()) # Should print: torch.Size([4, 2, 512, 512]) ``` 请注意,这段代码假设你已经正确安装了 `torch` 和 `torchvision` 库。如果出现任何错误,你可能需要检查这些库的安装情况。
阅读全文

相关推荐

模仿下面代码,生成一个用于诊断轴承故障类型的神经网络,要求输入信号为电流信号,输出结果要标注每一种故障类型的诊断概率,并在代码中表明数据输入的位置。import pip import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler class BearingDataset(Dataset): def __init__(self, features, labels): self.features = torch.tensor(features, dtype=torch.float32) self.labels = torch.tensor(labels, dtype=torch.long) def __len__(self): return len(self.labels) def __getitem__(self, idx): return self.features[idx], self.labels[idx] class BearingCNN(nn.Module): def __init__(self, num_classes): super(BearingCNN, self).__init__() self.conv1 = nn.Conv1d(1, 16, kernel_size=3, stride=1, padding=1) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv2 = nn.Conv1d(16, 32, kernel_size=3, stride=1, padding=1) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool1d(kernel_size=2, stride=2) self.fc1 = nn.Linear(32 * (len(data[0]) // 4), 128) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(128, num_classes) def forward(self, x): x = x.unsqueeze(1) # 添加通道维度 x = self.pool1(self.relu1(self.conv1(x))) x = self.pool2(self.relu2(self.conv2(x))) x = x.view(x.size(0), -1) x = self.relu3(self.fc1(x)) x = self.fc2(x) return x # 生成示例数据,假设每个样本有 100 个特征,共有 1000 个样本,分为 4 类故障 num_samples = 1000 num_features = 100 num_classes = 4 data = np.random.randn(num_samples, num_features) labels = np.random.randint(0, num_classes, num_samples) # 数据标准化 scaler = StandardScaler() data = scaler.fit_transform(data) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=42) # 创建数据集和数据加载器 train_dataset = BearingDataset(X_train, y_train) test_dataset = BearingDatase

下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).__init__() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

根据下面提供的代码,将cbam加入到stage1,stage2,stage3中,如何修改 class BottleNeck(nn.Module): '''Bottleneck modules ''' def __init__(self, in_channels, out_channels, expansion=4, stride=1, use_cbam=True): '''Param init. ''' super(BottleNeck, self).__init__() self.use_cbam = use_cbam self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=False, stride=stride) self.bn1 = nn.BatchNorm2d(num_features=out_channels) self.conv2 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(num_features=out_channels) self.conv3 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels*expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(num_features=out_channels*expansion) self.relu = nn.ReLU(inplace=True) self.identity_connection = nn.Sequential() if stride != 1 or in_channels != expansion*out_channels: self.identity_connection = nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=expansion*out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(num_features=out_channels*expansion) ) if self.use_cbam: self.cbam = CBAM(channel_in=out_channels*expansion) def forward(self, x): '''Forward Propagation. ''' out = self.relu(self.bn1(self.conv1(x))) out = self.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) if self.use_cbam: out = self.cbam(out) out += self.identity_connection(x) #identity connection/skip connection out = self.relu(out) return out class ResNet50(nn.Module): '''ResNet-50 Architecture. ''' def __init__(self, use_cbam=True, image_depth=3, num_classes=6): '''Params init and build arch. ''' super(ResNet50, self).__init__()

import torch import torch.nn as nn import torch.optim as optim import numpy as np import pandas as pd from sklearn.metrics import f1_score, roc_auc_score, recall_score, precision_score import os # 定义全局设备对象[5,7](@ref) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"当前使用设备:{device}") # 定义全连接神经网络模型(GPU适配版) class FullyConnectedNN(nn.Module): def __init__(self): super(FullyConnectedNN, self).__init__() self.fc1 = nn.Linear(11, 32) self.relu1 = nn.ReLU() self.dropout1 = nn.Dropout(0.5) self.fc2 = nn.Linear(32, 16) self.relu2 = nn.ReLU() self.dropout2 = nn.Dropout(0.5) self.fc3 = nn.Linear(16, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.fc1(x) x = self.relu1(x) x = self.dropout1(x) x = self.fc2(x) x = self.relu2(x) x = self.dropout2(x) x = self.fc3(x) x = self.sigmoid(x) return x # 从CSV文件中加载数据(GPU优化版) def load_data(file_path): data = pd.read_csv(file_path) X = torch.tensor(data.iloc[:, :11].values, dtype=torch.float32).to(device) y = torch.tensor(data.iloc[:, 11].values, dtype=torch.float32).view(-1, 1).to(device) return X, y # 训练模型(GPU加速版) def train_model(model, train_X, train_y, criterion, optimizer, num_epochs, batch_size=256): model.train() num_samples = len(train_X) # 数据预取优化[8](@ref) dataset = torch.utils.data.TensorDataset(train_X, train_y) dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=False) for epoch in range(num_epochs): running_loss = 0.0 for inputs, labels in dataloader: optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item()

import dgl import numpy as np import torch import torch.nn as nn import dgl.function as fn # 生成10个节点和15条边的图 g = dgl.rand_graph(10, 15) # 为每个节点随机生成一个特征向量 feat = np.random.rand(10, 5) # 为每条边随机生成一个特征向量 e_feat = np.random.rand(15, 3) # 将特征向量添加到图中 g.ndata['feat'] = torch.from_numpy(feat) g.edata['e_feat'] =torch.from_numpy(e_feat) # 随机给每个节点分配一个标签 labels = np.random.randint(0, 3, size=(10,)) g.ndata['label'] = torch.from_numpy(labels) class GraphSAGE(nn.Module): def __init__(self, in_feats, h_feats, num_classes): super(GraphSAGE, self).__init__() self.conv1 = dgl.nn.SAGEConv(in_feats, h_feats, 'mean') self.conv2 = dgl.nn.SAGEConv(h_feats, num_classes, 'mean') def forward(self, g, in_feat): h = self.conv1(g, in_feat) h = torch.relu(h) h = self.conv2(g, h) g.ndata['h'] = h hg = dgl.mean_nodes(g, 'h') return hg # 定义超参数 in_feats = 5 h_feats = 10 num_classes = 3 lr = 0.01 num_epochs = 20 # 创建模型和优化器 model = GraphSAGE(in_feats, h_feats, num_classes) optimizer = torch.optim.Adam(model.parameters(), lr=lr) # 训练模型 for epoch in range(num_epochs): logits = model(g, g.ndata['feat']) labels = g.ndata['label'] loss = nn.CrossEntropyLoss()(logits, labels) optimizer.zero_grad() loss.backward() optimizer.step() print('Epoch %d | Loss: %.4f' % (epoch, loss.item())) # 预测 model.eval() with torch.no_grad(): logits = model(g, g.ndata['feat']) pred = logits.argmax(1) print('Predicted labels:', pred) 报错:RuntimeError: expected scalar type Double but found Float

检查我的代码,数据库大小为408张,因为8类别最多到8-3-8,其余到x-6-8,代码如下:import os import pandas as pd import numpy as np import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from torchvision import transforms from PIL import Image from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split # ==================== # 数据预处理模块(无需CSV) # ==================== class FingerprintDataset(Dataset): def __init__(self, data_root, transform=None): self.data_root = data_root self.transform = transform or transforms.Compose([ transforms.Resize((64, 64)), # 统一缩放尺寸 transforms.Grayscale(), transforms.ToTensor() ]) # 自动扫描文件并解析标签 self.file_list = [] self.labels = [] self.label_encoder = LabelEncoder() # 遍历文件夹获取所有图片 for file_name in os.listdir(data_root): if file_name.lower().endswith(('.bmp', '.png', '.jpg')): # 从文件名解析标签(假设文件名为 1-1-1.bmp 格式) label_str = os.path.splitext(file_name)[0] self.file_list.append(os.path.join(data_root, file_name)) self.labels.append(label_str) # 生成标签编码 self.encoded_labels = self.label_encoder.fit_transform(self.labels) self.num_classes = len(self.label_encoder.classes_) def __len__(self): return len(self.file_list) def __getitem__(self, idx): img_path = self.file_list[idx] image = Image.open(img_path) if self.transform: image = self.transform(image) label = self.encoded_labels[idx] return image.view(-1), torch.tensor(label, dtype=torch.long) # ==================== # 忆阻器权重加载模块 # ==================== def load_memristor_weights(excel_path): df = pd.read_excel(excel_path) ltp = torch.tensor(df['LTP'].values, dtype=torch.float32) ltd = torch.tensor(df['LTD'].values, dtype=torch.float32) return ltp, ltd # ==============

import torch import os import torch.nn as nn import torch.optim as optim import numpy as np import random class Net(nn.Module): def init(self): super(Net, self).init() self.conv1 = nn.Conv2d(1, 16, kernel_size=3,stride=1) self.pool = nn.MaxPool2d(kernel_size=2,stride=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=3,stride=1) self.fc1 = nn.Linear(32 * 9 * 9, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 32 * 9 * 9) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) folder_path = 'random_matrices2' # 创建空的tensor x = torch.empty((40, 1, 42, 42)) # 遍历文件夹内的文件,将每个矩阵转化为tensor并存储 for j in range(40): for j in range(40): file_name = 'matrix_{}.npy'.format(j) file_path = os.path.join(folder_path, file_name) matrix = np.load(file_path) x[j] = torch.from_numpy(matrix).unsqueeze(0) #y = torch.cat((torch.zeros(20), torch.ones(20))) y = torch.cat((torch.zeros(20, dtype=torch.long), torch.ones(20, dtype=torch.long))) for epoch in range(10): running_loss = 0.0 for i in range(40): inputs = x[i] labels = y[i].unsqueeze(0) labels = nn.functional.one_hot(labels, num_classes=2) optimizer.zero_grad() outputs = net(inputs) #loss = criterion(outputs, labels) loss = criterion(outputs.unsqueeze(0), labels.float()) loss.backward() optimizer.step() running_loss += loss.item() print('[%d] loss: %.3f' % (epoch + 1, running_loss / 40)) print('Finished Training') 报错:RuntimeError: expected scalar type Long but found Float,怎么修改?

最新推荐

recommend-type

IOS-粉色系PPT模版.ppt

IOS-粉色系PPT模版.ppt
recommend-type

深入解析PetShop4.0电子商务架构与技术细节

标题和描述中提到的是PetShop4.0,这是一个由微软官方发布的示例电子商务应用程序,它使用ASP.NET构建,并且遵循三层架构的设计模式。在这个上下文中,“三层架构”指的是将应用程序分为三个基本的逻辑组件:表示层、业务逻辑层和数据访问层。 ### ASP.NET三层架构 ASP.NET是微软推出的一个用于构建动态网站、Web应用程序和Web服务的服务器端技术。ASP.NET能够运行在.NET框架上,为开发者提供了编写Web应用程序的丰富控件和库。 #### 表示层(用户界面层) 表示层是用户与应用程序交互的界面,通常包括Web页面。在PetShop4.0中,这包括了购物车界面、产品展示界面、用户登录和注册界面等。ASP.NET中的Web表单(.aspx文件)通常用于实现表示层。 #### 业务逻辑层(中间层) 业务逻辑层负责处理应用程序的业务规则和逻辑。在PetShop4.0中,这一层可能包括订单处理、产品管理、用户管理等功能。在ASP.NET中,业务逻辑通常被封装在类和方法中,可以通过Web服务(.asmx)或Web API(.asmx)暴露给客户端或前端。 #### 数据访问层 数据访问层负责与数据库进行交互,如执行SQL命令、存储过程等。PetShop4.0使用了数据访问组件来实现数据的读取、写入等操作。在.NET框架中,通常使用ADO.NET来实现数据访问层的功能,包括数据库连接、数据读取和写入等。 ### PetShop4.0技术详解 PetShop4.0的架构和技术实现是学习ASP.NET电子商务应用程序开发的理想案例,其技术特性如下: 1. **三层架构**:PetShop4.0清晰地展示了如何将应用程序分为三个层次,每一层都有清晰的职责。这为开发者提供了一个良好的架构模式,可以有效地组织代码,提高可维护性。 2. **ASP.NET Web Forms**:这一版本的PetShop使用ASP.NET Web Forms来构建用户界面。Web Forms允许开发者通过拖放服务器控件来快速开发网页,并处理回发事件。 3. **ADO.NET**:数据访问层使用ADO.NET来与数据库进行通信。ADO.NET提供了一套丰富的数据访问API,可以执行SQL查询和存储过程,以及进行数据缓存等高级操作。 4. **C# 编程语言**:PetShop4.0使用C#语言开发。C#是.NET框架的主要编程语言之一,它提供了面向对象、类型安全、事件驱动的开发能力。 5. **企业库(Enterprise Library)**:企业库是.NET框架中的一套设计良好的应用程序块集合,用于简化常见企业级开发任务,比如数据访问、异常管理等。PetShop4.0可能集成了企业库,用以提高代码的可靠性与易用性。 6. **LINQ(语言集成查询)**:在更高版本的.NET框架中,LINQ提供了一种将查询直接集成到C#等.NET语言中的方式,可以用来查询和操作数据。尽管PetShop4.0可能未直接使用LINQ,但是了解其如何工作对于理解数据访问层设计是非常有益的。 ### PetShop4.0安装和部署 通过标题中提到的文件名“Microsoft .NET Pet Shop 4.0.msi”,我们知道这是一个安装程序文件,用于将PetShop4.0安装到系统中。安装时,该安装包将引导用户完成必要的步骤,包括配置数据库连接(通常是SQL Server),并安装所需的.NET框架组件。 ### 学习PetShop4.0的意义 作为电子商务网站的开发人员,学习PetShop4.0可以带来以下好处: - **架构理解**:通过分析PetShop4.0的代码和架构,开发者可以深入理解三层架构模式的实际应用。 - **代码实践**:可以直接研究和修改源代码,了解ASP.NET应用程序的工作机制。 - **技术熟练**:通过部署和维护PetShop4.0,开发者能够提升在ASP.NET平台上的实际操作能力。 - **最佳实践**:作为一个示例项目,PetShop4.0展示了微软推荐的开发方法和模式,有助于遵循最佳实践。 总之,PetShop4.0不仅是一个电子商务应用的示例,它也是一个学习和练习ASP.NET开发技能的优秀平台。通过对这一范例的深入学习和研究,开发者能够掌握构建复杂的Web应用程序所需的架构设计、编程实践和系统维护等多方面知识。
recommend-type

【技术揭秘】:7步打造YOLOv8人员溺水检测告警监控系统

# 摘要 本论文详细介绍了YOLOv8人员溺水检测系统的构建与优化策略。首先概述了该系统的设计理念及理论基础,深入解析了YOLOv8模型的架构及其在溺水检测领域的应用。
recommend-type

stm32CAN总线

<think>我们正在处理一个关于STM32 CAN总线配置和使用的问题。用户要求提供配置和使用指南,因此我们需要系统地介绍CAN总线的配置步骤、关键参数设置以及常见使用场景。 根据引用内容,STM32的CAN总线配置主要涉及两个部分:CAN初始化和过滤器配置。我们将按照以下结构组织回答: 1. CAN总线基本概念(简要介绍) 2. CAN总线配置步骤(重点) a. CAN初始化结构体配置(包括工作模式、位时序、波特率等) b. CAN过滤器配置(标识符过滤规则) 3. 发送和接收消息的基本流程 4. 常见问题及解决方法 注意:引用中提供的代码片段是配置示例,我
recommend-type

毕业设计资料分享与学习方法探讨

标题和描述提供了两个主要线索:毕业设计和网上购物。结合标题和描述,我们可以推断出该毕业设计很可能是与网上购物相关的项目或研究。同时,请求指导和好的学习方法及资料也说明了作者可能在寻求相关领域的建议和资源。 【网上购物相关知识点】 1. 网上购物的定义及发展: 网上购物指的是消费者通过互联网进行商品或服务的浏览、选择、比较、下单和支付等一系列购物流程。它依托于电子商务(E-commerce)的发展,随着互联网技术的普及和移动支付的便捷性增加,网上购物已经成为现代人生活中不可或缺的一部分。 2. 网上购物的流程: 网上购物的基本流程包括用户注册、商品浏览、加入购物车、填写订单信息、选择支付方式、支付、订单确认、收货、评价等。了解这个流程对于设计网上购物平台至关重要。 3. 网上购物平台的构成要素: 网上购物平台通常由前端展示、后端数据库、支付系统、物流系统和客户服务等几大部分组成。前端展示需要吸引用户,并提供良好的用户体验;后端数据库需要对商品信息、用户数据进行有效管理;支付系统需要确保交易的安全性和便捷性;物流系统需要保证商品能够高效准确地送达;客户服务则需处理订单问题、退换货等售后服务。 4. 网上购物平台设计要点: 设计网上购物平台时需要注意用户界面UI(User Interface)和用户体验UX(User Experience)设计,保证网站的易用性和响应速度。此外,平台的安全性、移动适配性、搜索优化SEO(Search Engine Optimization)、个性化推荐算法等也都是重要的设计考量点。 5. 网上购物的支付方式: 目前流行的支付方式包括信用卡支付、电子钱包支付(如支付宝、微信支付)、银行转账、货到付款等。不同支付方式的特点和使用频率随着国家和地区的不同而有所差异。 6. 网上购物中的数据分析: 在设计网上购物平台时,数据分析能力至关重要。通过收集和分析用户的购买行为数据、浏览行为数据和交易数据,商家可以更好地理解市场趋势、用户需求、优化商品推荐,提高转化率和客户忠诚度。 7. 网上购物的法律法规: 网上购物平台运营需遵守相关法律法规,如《中华人民共和国电子商务法》、《消费者权益保护法》等。同时,还需了解《数据安全法》和《个人信息保护法》等相关隐私保护法律,确保用户信息的安全和隐私。 8. 网上购物的网络营销策略: 网络营销包括搜索引擎优化(SEO)、搜索引擎营销(SEM)、社交媒体营销、电子邮件营销、联盟营销、内容营销等。一个成功的网上购物平台往往需要多渠道的网络营销策略来吸引和维持客户。 9. 网上购物的安全问题: 网络安全是网上购物中一个非常重要的议题。这涉及到数据传输的加密(如SSL/TLS)、个人信息保护、交易安全、抗DDoS攻击等方面。安全问题不仅关系到用户的财产安全,也直接关系到平台的信誉和长期发展。 10. 毕业设计的选题方法和资料搜集: 在进行毕业设计时,可以围绕当前电子商务的发展趋势、存在的问题、未来的发展方向等来选题。资料搜集可以利用图书馆资源、网络学术资源、行业报告、相关书籍和专业论文等途径。同时,实际参与网上购物平台的使用、调查问卷、访谈等方式也是获取资料的有效途径。 根据标题、描述和文件名,可以认为毕业设计资料信息的内容可能围绕“网上购物”的相关概念、技术、市场和法律法规进行深入研究。上述知识点的总结不仅包括了网上购物的基础知识,也涵盖了设计和运营网上购物平台的多个关键方面,为有志于在这个领域的学生提供了理论和实践的参考。
recommend-type

模式识别期末复习精讲:87个问题的全面解析与策略

# 1. 模式识别基础概念与理论框架 ## 1.1 定义与应用范围 模式识别是一门关于如何使机器能够自动识别数据模式和规律的交叉学科。其核心在
recommend-type

import torch import numpy as np def a2t(): np_data = np.array([[1, 2],[3,4]]) #/********** Begin *********/ #将np_data转为对应的tensor,赋给变量torch_data torch_data = torch.tensor(np_data) #/********** End *********/ return(torch_data)

<think>我们正在处理用户关于PyTorch张量操作和与NumPy数组转换的代码检查请求。根据用户需求,我们需要: 1. 展示如何在PyTorch中将张量转换为NumPy数组,以及反向转换。 2. 提供一些常见的张量操作示例。 3. 对代码进行解释和检查。 注意:由于用户要求生成相关问题,我们将在回答后生成相关问题。 步骤: 1. 导入必要的库(torch和numpy)。 2. 创建示例张量。 3. 展示张量转NumPy数组(注意:共享内存问题,即修改一个可能影响另一个)。 4. 展示NumPy数组转张量(同样注意共享内存问题)。 5. 展示一些基本张量操作(如加减乘除、矩阵乘法、形状
recommend-type

电脑垃圾清理专家:提升系统运行效率

标题“电脑垃圾清理专家(精)”所指的知识点,是对一款以清理电脑垃圾文件为专项功能的软件的描述。在IT领域中,电脑垃圾清理是维护计算机系统性能和安全性的常规操作。这类软件通常被称作系统清理工具或优化工具。 1. **电脑垃圾的定义**:在计算机系统中,垃圾文件通常指那些无用的、过时的、临时的或损坏的文件。这些文件可能包括系统缓存、日志文件、临时文件、无用的程序安装文件、重复文件等。它们会占用磁盘空间,影响系统性能,并可能对系统安全构成潜在威胁。 2. **清理垃圾文件的目的**:清理这些垃圾文件有多重目的。首先,它可以释放被占用的磁盘空间,提升电脑运行速度;其次,它可以帮助系统更高效地运行,避免因为垃圾文件过多导致的系统卡顿和错误;最后,它还有助于维护数据安全,因为一些过时的临时文件可能会包含敏感信息。 3. **电脑垃圾清理方法**:电脑垃圾清理可以手动进行,也可以使用第三方的清理软件来自动执行。手动清理需要用户打开文件资源管理器,检查特定目录(如Windows临时文件夹、回收站、下载文件夹等),并手动删除不需要的文件。这通常较为繁琐,且容易出错。 4. **第三方清理软件的特点**:相较于手动清理,第三方电脑垃圾清理软件可以提供更为方便快捷的清理体验。这类软件通常具备用户友好的界面,能够自动扫描、识别并清除系统垃圾文件,有时还能对注册表、浏览器历史记录等进行清理。此外,一些高级的清理工具还可以提供系统优化、启动项管理、软件卸载和隐私保护等功能。 5. **清理软件的潜在风险**:虽然清理软件能够带来便利,但也存在潜在风险。不当的清理可能会误删重要文件,导致系统不稳定或某些应用程序无法正常工作。因此,使用这类软件需要用户具有一定的计算机知识,能够辨别哪些文件是安全可删除的。 6. **专业清理工具的优势**:标题中的“专家”二字暗示该软件可能具备一些高级功能。专业级的清理工具往往具备更复杂的算法和更广泛的清理范围,它们可以深入分析系统文件,甚至进行深度扫描,找到隐藏较深的无效文件和系统垃圾。它们还可能具备诸如智能判断、快速扫描、安全删除等功能,确保在高效清理的同时不会影响系统的正常运作。 从描述内容来看,该文件只重复了“电脑垃圾清理专家”这一关键词,没有提供其他具体信息。这可能是为了强调软件的功能定位或品牌口号。而从标签“电脑,垃圾,清理,专家”可以提炼出与电脑垃圾清理相关的关键点,如电脑维护、系统性能提升、安全隐私保护等。 在【压缩包子文件的文件名称列表】中,只有一个文件“电脑垃圾清理专家.exe”,这表明了该压缩文件包中仅包含一个可执行文件,即用户下载后可以直接运行的清理工具程序。 总结而言,电脑垃圾清理专家是帮助用户管理和清除电脑系统垃圾,提升电脑性能和安全性的实用软件。专业的清理工具通常能够提供更为全面和安全的清理服务,但用户在使用过程中需要小心谨慎,避免误删除重要文件。
recommend-type

模式识别期末复习必备:掌握87个知识点的速成秘籍

# 1. 模式识别基础概念 模式识别是计算机科学、人工智能和机器学习领域的一个重要分支,它的基本任务是识别数据模式。模式可以是任何事物,例如文字、图像、声音、基因序列等等。模式识别的主要应用包括:图像识别、语音识别、文本分类、数据挖掘等。 模式识别的基本步骤包括:数据预处理、特征提取、分类或回归、结果评估。在这个过程中,我们需要使用一些数学模型和算法来进行数据分析和决策。模式识别的关键在于找到正确的特征和合适的模型,这对
recommend-type

redis集群模式配置

<think>我们正在配置Redis集群模式。根据引用内容,配置Redis集群需要以下步骤: 1. **修改配置文件**:在每个Redis节点的配置文件中启用集群模式,并设置相关参数。 - `cluster-enabled yes`:启用集群模式。 - `cluster-config-file nodes-xxxx.conf`:指定集群配置文件(xxxx通常用端口号区分)。 - `cluster-node-timeout 15000`:设置集群节点超时时间(毫秒)。 - `appendonly yes`:启用AOF持久化(可选,但推荐)。 例如,对于端口637