Cell In[19], line 8 preds_valid = []for i in range(0, len(preds) - 102): ^ SyntaxError: invalid syntax错误怎么解决

时间: 2024-02-25 10:55:10 浏览: 113
这个错误是因为你在代码中使用了多行语句,但是没有使用换行符将它们分隔开。在 Python 中,多行语句需要使用换行符(\)将它们连接起来,或者将它们放在一对括号、中括号或花括号中。 具体地说,在这个代码中,你需要在第 8 行的末尾加上一个换行符,或者将第 7 行和第 8 行的语句放在一对中括号中。以下是两种修改方法的示例: 方法一,使用换行符: ``` preds_valid = [] for i in range(0, len(preds) - 102): a = preds[i:i+103].sum() b = a/103 preds_valid.append(b) rms = np.sqrt(np.mean(np.power((np.array(valid['close'])-preds_valid),2))) ``` 方法二,使用中括号: ``` preds_valid = [ (preds[i:i+103].sum() / 103) for i in range(0, len(preds) - 102) ] rms = np.sqrt(np.mean(np.power((np.array(valid['close'])-preds_valid),2))) ``` 请根据你的个人喜好和代码风格选择适合的修改方法。
相关问题

import numpy as np # define 'train' and 'valid' variables first # 将 preds_valid 转换为 NumPy 数组 preds_valid = np.array(preds_valid) # make predictions preds = [] for i in range(0,103): a = train['close'][len(train)-103+i:].sum() + sum(preds) b = a/103 preds.append(b) # calculate RMSE valid = [...] # define 'valid' variable first preds_np = np.array(preds) sum_preds = preds_np.sum() preds_valid = [] for i in range(0, len(preds) - 102): preds_slice = preds_np[i:i+103] sum_slice = preds_slice.sum() b = sum_slice / 103 preds_valid.append(b) rms = np.sqrt(np.mean(np.power((np.array(valid['close'])-preds_valid),2)))有错怎么解决

这个代码中的错误是由于 valid['close'] 和 preds_valid 都不是 NumPy 数组,因此无法进行计算。你需要将它们都转换为 NumPy 数组,或者使用 Pandas 数据框的 .values 属性来获取其 NumPy 数组形式。以下是两种解决方法: 1. 将 valid['close'] 和 preds_valid 都转换为 NumPy 数组: ```python import numpy as np # 将 valid['close'] 和 preds_valid 都转换为 NumPy 数组 close_np = np.array(valid['close']) preds_valid_np = np.array(preds_valid) # 计算均方根误差 rms = np.sqrt(np.mean(np.power((close_np - preds_valid_np), 2))) ``` 2. 使用 Pandas 数据框的 .values 属性来获取其 NumPy 数组形式: ```python import numpy as np # 计算均方根误差 rms = np.sqrt(np.mean(np.power((valid['close'].values - np.array(preds_valid)), 2))) ``` 以上两种方法都可以解决这个错误。

AttributeError Traceback (most recent call last) Cell In[28], line 10 8 preds_valid = [] 9 for i in range(0, len(preds) - 102): ---> 10 a = preds[i:i+103].sum() 11 b = a/103 12 preds_valid.append(b) AttributeError: 'list' object has no attribute 'sum'怎么解决

这个错误提示表明 `list` 对象没有 `sum` 属性。这是因为在 Python 2 中 `sum` 函数可以对 `list`、`tuple`、`set` 进行求和操作,但在 Python 3 中只有 `tuple` 和 `list` 可以进行求和操作。因此,如果你在 Python 3 中使用 `list` 对象调用 `sum` 函数,会出现上述错误。 解决这个问题的方法是将 `list` 对象转换为 `numpy` 数组,因为 `numpy` 数组具有 `sum` 属性。你可以使用 `numpy` 的 `array` 函数将 `list` 转换为 `numpy` 数组,然后再调用 `sum` 函数。例如: ```python import numpy as np preds = [1, 2, 3, 4, 5] preds_np = np.array(preds) sum_preds = preds_np.sum() ``` 这样就可以避免上述错误了。
阅读全文

相关推荐

final_valid_predictions = {} final_test_predictions = [] scores = [] log_losses = [] balanced_log_losses = [] weights = [] for fold in range(5): train_df = df[df['fold'] != fold] valid_df = df[df['fold'] == fold] valid_ids = valid_df.Id.values.tolist() X_train, y_train = train_df.drop(['Id', 'Class', 'fold'], axis=1), train_df['Class'] X_valid, y_valid = valid_df.drop(['Id', 'Class', 'fold'], axis=1), valid_df['Class'] lgb = LGBMClassifier(boosting_type='goss', learning_rate=0.06733232950390658, n_estimators = 50000, early_stopping_round = 300, random_state=42, subsample=0.6970532011679706, colsample_bytree=0.6055755840633003, class_weight='balanced', metric='none', is_unbalance=True, max_depth=8) lgb.fit(X_train, y_train, eval_set=(X_valid, y_valid), verbose=1000, eval_metric=lgb_metric) y_pred = lgb.predict_proba(X_valid) preds_test = lgb.predict_proba(test_df.drop(['Id'], axis=1).values) final_test_predictions.append(preds_test) final_valid_predictions.update(dict(zip(valid_ids, y_pred))) logloss = log_loss(y_valid, y_pred) balanced_logloss = balanced_log_loss(y_valid, y_pred[:, 1]) log_losses.append(logloss) balanced_log_losses.append(balanced_logloss) weights.append(1/balanced_logloss) print(f"Fold: {fold}, log loss: {round(logloss, 3)}, balanced los loss: {round(balanced_logloss, 3)}") print() print("Log Loss") print(log_losses) print(np.mean(log_losses), np.std(log_losses)) print() print("Balanced Log Loss") print(balanced_log_losses) print(np.mean(balanced_log_losses), np.std(balanced_log_losses)) print() print("Weights") print(weights)

def evaluate(model, loader, criterion): model.eval() total_loss = 0 all_labels, all_probs = [], [] with torch.no_grad(): for x, y in loader: x, y = x.to(device), y.to(device) outputs = model(x) loss = criterion(outputs, y) total_loss += loss.item() # 获取概率 probs = torch.softmax(outputs, dim=1) all_probs.extend(probs.cpu().numpy()) all_labels.extend(y.cpu().numpy()) all_labels = np.array(all_labels) all_probs = np.array(all_probs) n_classes = all_probs.shape[1] # 计算 AUROC if n_classes == 2: auroc = roc_auc_score(all_labels, all_probs[:, 1]) else: auroc = roc_auc_score( all_labels, all_probs, multi_class='ovr', average='weighted' ) # 计算 AUPRC if n_classes == 2: # 二分类:直接使用正类概率 auprc = average_precision_score(all_labels, all_probs[:, 1]) else: # 多分类:对每个类别计算 PR 曲线面积,再加权平均 from sklearn.preprocessing import label_binarize y_true_bin = label_binarize(all_labels, classes=np.arange(n_classes)) auprc_list = [] for i in range(n_classes): precision, recall, _ = precision_recall_curve( y_true_bin[:, i], all_probs[:, i] ) auprc_i = auc(recall, precision) # 注意顺序:recall在前,precision在后 auprc_list.append(auprc_i) # 按类别样本数加权平均 class_counts = np.sum(y_true_bin, axis=0) auprc = np.average(auprc_list, weights=class_counts) # 其他指标 all_preds = np.argmax(all_probs, axis=1) metrics = { 'accuracy': accuracy_score(all_labels, all_preds), 'f1': f1_score(all_labels, all_preds, average='weighted'), 'auroc': auroc, 'auprc': auprc } return total_loss / len(loader), metrics修改为将预测的结果输出到一个文件夹里

大家在看

recommend-type

密码::unlocked::sparkles::locked:创新,方便,安全的加密应用程序

隐身者 创新,方便,安全的加密应用程序。 加密无限位。 只记得一点。 Crypter是一款跨平台的加密应用程序,它使加密和解密变得很方便,同时仍然保持强大的安全性。 它解决了当今大多数安全系统中最弱的链接之一-弱密码。 它简化了安全密码的生成和管理,并且只需要记住一个位-MasterPass。 是一个加密应用程序,可以解密和加密包括文件和文件夹在内的任意数据。 该版本已发布,并针对macOS(OSX),Linux(适用于所有通过发行的发行版)和Windows(32和64位)进行了全面测试。 所有核心模块(提供核心功能的模块)都经过了全面测试。 会将MasterPass保存在操作系统的钥匙串中,因此您不必在每次打开应用程序时都输入它。 为了帮助加快开发速度,请发送PR剩下的内容做 如果您有任何建议,请打开一个问题,并通过PR进行改进! 还要签出 ( )一个分散的端到端加密消息传递应用程序。 链接到此自述文件: : 内容 安装 适用于所有主要平台的所有预构建二进制文件都可以在。 Crypter也适用于macOS的 。 因此,要安装它,只需在终端中运行以下命令:
recommend-type

mfc 打印机打印图片

mfc,小程序,关于打印机的操作 像文字输出,图片输出,设备管理
recommend-type

libusb资料

包含libusb驱动程序libusb-win32-bin-1.2.2.0以及delphi环境下的libusb使用的例子以及一篇libusb说明文档。
recommend-type

Kvaser CANLIB API.pdf

Kvaser CANLIB是Kvaser 的CAN测试设备提供的API
recommend-type

嵌入桌面的搜索工具

该程序的窗体是不规则,父窗口是桌面窗口(桌面实际上有3层的可视窗口)。点击 显示桌面,该窗口也不会被最小化。用C#实现,有代码。工程在VS 2008下建的,.NET Framework 为2.0。

最新推荐

recommend-type

wx群导航源码简单漂亮轻量级2.0.zip

wx群导航源码简单漂亮轻量级2.0
recommend-type

施工项目管理规范模板.doc

施工项目管理规范模板.doc
recommend-type

MATLAB工具箱以计算统计数据,PDF,CDF,逆CDF和广义卡方分布的随机数.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

canoscan lide 25 driver for mac

canoscan lide 25 driver for mac
recommend-type

易语言免杀处理工具(避免杀毒软件杀)

易语言免杀处理工具(避免杀毒软件杀)
recommend-type

模拟电子技术基础学习指导与习题精讲

模拟电子技术是电子技术的一个重要分支,主要研究模拟信号的处理和传输,涉及到的电路通常包括放大器、振荡器、调制解调器等。模拟电子技术基础是学习模拟电子技术的入门课程,它为学习者提供了电子器件的基本知识和基本电路的分析与设计方法。 为了便于学习者更好地掌握模拟电子技术基础,相关的学习指导与习题解答资料通常会包含以下几个方面的知识点: 1. 电子器件基础:模拟电子技术中经常使用到的电子器件主要包括二极管、晶体管、场效应管(FET)等。对于每种器件,学习指导将会介绍其工作原理、特性曲线、主要参数和使用条件。同时,还需要了解不同器件在电路中的作用和性能优劣。 2. 直流电路分析:在模拟电子技术中,需要掌握直流电路的基本分析方法,这包括基尔霍夫电压定律和电流定律、欧姆定律、节点电压法、回路电流法等。学习如何计算电路中的电流、电压和功率,以及如何使用这些方法解决复杂电路的问题。 3. 放大电路原理:放大电路是模拟电子技术的核心内容之一。学习指导将涵盖基本放大器的概念,包括共射、共基和共集放大器的电路结构、工作原理、放大倍数的计算方法,以及频率响应、稳定性等。 4. 振荡电路:振荡电路能够产生持续的、周期性的信号,它在模拟电子技术中非常重要。学习内容将包括正弦波振荡器的原理、LC振荡器、RC振荡器等类型振荡电路的设计和工作原理。 5. 调制与解调:调制是将信息信号加载到高频载波上的过程,解调则是提取信息信号的过程。学习指导会介绍调幅(AM)、调频(FM)、调相(PM)等调制方法的基本原理和解调技术。 6. 模拟滤波器:滤波器用于分离频率成分不同的信号。模拟滤波器一般可分为低通、高通、带通和带阻滤波器。学习指导会涉及到模拟滤波器的设计原理、特性曲线和应用。 7. 电源技术:电源电路是电子设备中不可或缺的部分,它主要为电子设备提供稳定的直流电压和电流。在模拟电子技术基础学习指导中,会讲解线性稳压电源和开关稳压电源的设计原理及其实现方法。 8. 实际问题应用:模拟电子技术在实际中有着广泛的应用,学习指导会结合具体案例,如音响系统设计、射频接收机、仪器仪表等,帮助学习者将理论知识应用到实践中,提高解决实际问题的能力。 9. 习题解答:为了帮助学习者巩固理论知识和分析问题的能力,相关习题解答资料将提供大量精选习题,并给出详细的解答步骤和答案。习题类型涵盖选择题、填空题、计算题和设计题,旨在帮助学习者全面掌握知识点。 学习模拟电子技术需要具备一定的数学、物理基础,尤其是对电路分析的理解。通过学习指导与习题解答资料的帮助,学习者可以更加深入地理解模拟电子技术的基本概念,熟练掌握模拟电路的分析与设计方法,并为将来的深入学习和实际应用打下坚实的基础。
recommend-type

【5G通信背后的秘密】:极化码与SCL译码技术的极致探索

# 摘要 本文首先概述了5G通信技术及其重要性,然后深入探讨了极化码的基础理论与应用,包括其理论基础、编解码过程和在5G中的应用评估。接着,文章详细解析了SCL译码技术的原理、改进方法以及实现和优化策略。在第四章中,分析了极化码与SCL译码技术在5G通信中的实践挑战、优化案例,以及未来的发展趋势。最后一章展望了极化码与S
recommend-type

谷歌浏览器中如何使用hackbar

<think>我们正在处理用户关于在Google Chrome浏览器中安装和使用HackBar插件的请求。根据引用[1]和引用[2]的信息,我们可以总结出安装步骤。注意,引用中提到了两种安装方法:一种是直接拖放crx文件(但可能会遇到问题),另一种是将crx文件改为rar格式再安装。同时,引用[2]还提到了Firefox的安装方法,但用户只关心Chrome。 由于Chrome浏览器对扩展程序的安全性要求提高,直接从第三方下载的crx文件可能会被阻止安装。因此,我们需要提供一种可行的安装方法。 根据引用[2]的步骤,我们可以这样安装: 1. 下载HackBar_v2.2.6插件(通常是一个c
recommend-type

一步搞定局域网共享设置的超级工具

在当前信息化高速发展的时代,局域网共享设置成为了企业、学校甚至家庭用户在资源共享、网络协同办公或学习中不可或缺的一部分。局域网共享不仅能够高效地在本地网络内部分发数据,还能够在保护网络安全的前提下,让多个用户方便地访问同一资源。然而,对于部分用户而言,局域网共享设置可能显得复杂、难以理解,这时一款名为“局域网共享设置超级工具”的软件应运而生,旨在简化共享设置流程,使得即便是对网络知识了解不多的用户也能够轻松配置。 ### 局域网共享知识点 #### 1. 局域网基础 局域网(Local Area Network,LAN)指的是在一个较小的地理范围内,如一座建筑、一个学校或者一个家庭内部,通过电缆或者无线信号连接的多个计算机组成的网络。局域网共享主要是指将网络中的某台计算机或存储设备上的资源(如文件、打印机等)对网络内其他用户开放访问权限。 #### 2. 工作组与域的区别 在Windows系统中,局域网可以通过工作组或域来组织。工作组是一种较为简单的组织方式,每台电脑都是平等的,没有中心服务器管理,各个计算机间互为对等网络,共享资源只需简单的设置。而域模式更为复杂,需要一台中央服务器(域控制器)进行集中管理,更适合大型网络环境。 #### 3. 共享设置的要素 - **共享权限:**决定哪些用户或用户组可以访问共享资源。 - **安全权限:**决定了用户对共享资源的访问方式,如读取、修改或完全控制。 - **共享名称:**设置的名称供网络上的用户通过网络邻居访问共享资源时使用。 #### 4. 共享操作流程 在使用“局域网共享设置超级工具”之前,了解传统手动设置共享的流程是有益的: 1. 确定需要共享的文件夹,并右键点击选择“属性”。 2. 进入“共享”标签页,点击“高级共享”。 3. 勾选“共享此文件夹”,可以设置共享名称。 4. 点击“权限”按钮,配置不同用户或用户组的共享权限。 5. 点击“安全”标签页配置文件夹的安全权限。 6. 点击“确定”,完成设置,此时其他用户可以通过网络邻居访问共享资源。 #### 5. 局域网共享安全性 共享资源时,安全性是一个不得不考虑的因素。在设置共享时,应避免公开敏感数据,并合理配置访问权限,以防止未授权访问。此外,应确保网络中的所有设备都安装了防病毒软件和防火墙,并定期更新系统和安全补丁,以防恶意软件攻击。 #### 6. “局域网共享设置超级工具”特点 根据描述,该软件提供了傻瓜式的操作方式,意味着它简化了传统的共享设置流程,可能包含以下特点: - **自动化配置:**用户只需简单操作,软件即可自动完成网络发现、权限配置等复杂步骤。 - **友好界面:**软件可能具有直观的用户界面,方便用户进行设置。 - **一键式共享:**一键点击即可实现共享设置,提高效率。 - **故障诊断:**可能包含网络故障诊断功能,帮助用户快速定位和解决问题。 - **安全性保障:**软件可能在设置共享的同时,提供安全增强功能,如自动更新密码、加密共享数据等。 #### 7. 使用“局域网共享设置超级工具”的注意事项 在使用该类工具时,用户应注意以下事项: - 确保安装了最新版本的软件以获得最佳的兼容性和安全性。 - 在使用之前,了解自己的网络安全政策,防止信息泄露。 - 定期检查共享设置,确保没有不必要的资源暴露在网络中。 - 对于不熟悉网络共享的用户,建议在专业人士的指导下进行操作。 ### 结语 局域网共享是实现网络资源高效利用的基石,它能大幅提高工作效率,促进信息共享。随着技术的进步,局域网共享设置变得更加简单,各种一键式工具的出现让设置过程更加快捷。然而,安全性依旧是不可忽视的问题,任何时候在享受便捷的同时,都要确保安全措施到位,防止数据泄露和网络攻击。通过合适的工具和正确的设置,局域网共享可以成为网络环境中一个强大而安全的资源。
recommend-type

PBIDesktop在Win7上的终极安装秘籍:兼容性问题一次性解决!

# 摘要 PBIDesktop作为数据可视化工具,其在Windows 7系统上的安装及使用备受企业关注。本文首先概述了PBIDesktop的安装过程,并从理论上探讨了其兼容性问题,包括问题类型、原因以及通用解决原则。通过具体