活动介绍

spark 绘制热力图

时间: 2023-07-05 15:33:08 浏览: 182
你可以使用 Apache Spark 中的 Spark SQL 和 DataFrame API 以及 Python 库 matplotlib 来绘制热力图。以下是一个简单的示例代码: ```python from pyspark.sql.functions import * import matplotlib.pyplot as plt # 创建一个 DataFrame data = spark.createDataFrame([(1, 2, 3), (2, 3, 4), (3, 4, 5)], ["x", "y", "value"]) # 使用 Spark SQL 聚合数据 agg_data = data.groupBy("x", "y").agg(sum("value").alias("total")) # 将 DataFrame 转换为 Pandas DataFrame,以便使用 matplotlib 绘制热力图 pandas_data = agg_data.toPandas() # 绘制热力图 plt.pcolor(pandas_data.pivot("x", "y", "total")) plt.colorbar() plt.show() ``` 这个示例代码将创建一个 DataFrame,包含三列数据 (x, y, value),使用 Spark SQL 聚合数据,然后将结果转换为 Pandas DataFrame,并使用 matplotlib 绘制热力图。你可以根据自己的数据和需求进行修改。
相关问题

基于spark的波士顿房价预测中,各个属性与房价的热力图代码

以下是基于Spark的波士顿房价预测中,各个属性与房价的热力图的代码: ```scala // 导入必要的库 import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.ml.linalg.Vectors import org.apache.spark.ml.regression.LinearRegression import org.apache.spark.sql.functions._ import org.apache.spark.sql.types.DoubleType // 读取数据集 val data = spark.read.format("csv") .option("header", "true") .option("inferSchema", "true") .load("boston_housing.csv") // 将数据集中的所有列转换为Double类型 val cols = data.columns val data2 = cols.foldLeft(data) { (tempData, colName) => tempData.withColumn(colName, col(colName).cast(DoubleType)) } // 将所有特征列合并为一个特征向量列 val assembler = new VectorAssembler() .setInputCols(cols.filter(_ != "medv")) .setOutputCol("features") val data3 = assembler.transform(data2) // 创建线性回归模型 val lr = new LinearRegression() .setLabelCol("medv") .setFeaturesCol("features") // 拟合模型 val model = lr.fit(data3) // 获取各个属性的系数 val coef = model.coefficients.toArray val colsWithCoef = cols.filter(_ != "medv").zip(coef) // 构造热力图所需的数据格式 val dataForHeatmap = colsWithCoef.map { case (colName, coefValue) => (colName, Vectors.dense(coefValue)) }.toSeq.toDF("feature", "coef") // 绘制热力图 import com.quantifind.charts.Highcharts._ heatmap(dataForHeatmap, "Heatmap of Feature Coefficients") ``` 运行以上代码,即可得到波士顿房价预测中,各个属性与房价的热力图。

用ide配置spark来对hdfs上的数据进行聚类分析、分层分析及热力图统计

在IDE(如IntelliJ IDEA或Eclipse)中配置Apache Spark对HDFS(Hadoop Distributed File System)上的数据进行聚类分析、分层分析和热力图统计,通常涉及以下几个步骤: 1. **安装Spark和Hadoop**: 首先,需要在你的开发环境中安装Spark和Hadoop。你可以从官方网站下载对应版本的二进制包,然后按照文档指示进行安装。 2. **设置环境变量**: 确保`SPARK_HOME`和`HADOOP_CONF_DIR`等环境变量指向正确的安装路径,以便Spark可以找到Hadoop的相关资源。 3. **创建Spark项目**: 在IDE中创建一个新的Spark项目,选择Maven或SBT作为构建工具,并添加Spark和相关的依赖库(如`spark-mllib`用于机器学习,`spark-graphx`如果涉及到图处理,`spark-viz`用于可视化)。 4. **读取HDFS数据**: 使用`sc.textFile("hdfs://<your_cluster_address>/<path_to_your_data>")`加载HDFS文件,这里`<your_cluster_address>`替换为你的Hadoop集群地址。 5. **数据预处理**: 对数据进行清洗和转换,例如,将文本数据转化为数值特征,适合于聚类分析和分层分析。 6. **聚类分析**: 使用`SparkMLlib`库中的`KMeans`或其他聚类算法进行数据聚类。例如: ```python from pyspark.ml.clustering import KMeans kmeans = KMeans().setK(<num_clusters>).setSeed(<random_seed>) model = kmeans.fit(data) clusters = model.transform(data) ``` 7. **分层分析**: 如果是指层次聚类(Hierarchical Clustering),同样使用`SparkMLlib`的`HierarchicalClustering`。它会返回一个树形结构,可以根据需要进行剪枝。 8. **热力图统计**: 对于结果可视化,你可以使用`pyspark.sql.functionscorr()`函数计算相关性矩阵,然后使用第三方库如`seaborn`或`matplotlib`绘制热力图。不过,在Spark上直接生成热力图可能会消耗大量内存,通常在本地完成计算后导出到图形文件,再在UI中查看。 9. **保存和展示结果**: 结果模型和图表可以保存到HDFS,也可以导出为CSV或JSON文件。对于复杂的数据可视化,还可以通过Databricks Notebook或者其他支持的前端工具呈现。
阅读全文

相关推荐

import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from pyspark.sql import SparkSession from pyspark.ml.feature import VectorAssembler, StringIndexer, OneHotEncoder from pyspark.ml import Pipeline from pyspark.ml.classification import LogisticRegression, DecisionTreeClassifier, RandomForestClassifier from pyspark.ml.evaluation import BinaryClassificationEvaluator, MulticlassClassificationEvaluator import joblib import os import time import warnings from io import BytesIO import platform from pathlib import Path def safe_path(path): “”“处理Windows长路径问题”“” if platform.system() == ‘Windows’: try: import ntpath return ntpath.realpath(path) except: return str(Path(path).resolve()) return path 忽略警告 warnings.filterwarnings(“ignore”) 设置中文字体 plt.rcParams[‘font.sans-serif’] = [‘SimHei’] plt.rcParams[‘axes.unicode_minus’] = False 页面设置 st.set_page_config( page_title=“精准营销系统”, page_icon=“📊”, layout=“wide”, initial_sidebar_state=“expanded” ) 自定义CSS样式 st.markdown(“”" <style> .stApp { background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%); font-family: 'Helvetica Neue', Arial, sans-serif; } .header { background: linear-gradient(90deg, #1a237e 0%, #283593 100%); color: white; padding: 1.5rem; border-radius: 0.75rem; box-shadow: 0 4px 12px rgba(0,0,0,0.1); margin-bottom: 2rem; } .card { background: white; border-radius: 0.75rem; padding: 1rem; margin-bottom: 1.5rem; box-shadow: 0 4px 12px rgba(0,0,0,0.08); transition: transform 0.3s ease; } .card:hover { transform: translateY(-5px); box-shadow: 0 6px 16px rgba(0,0,0,0.12); } .stButton button { background: linear-gradient(90deg, #3949ab 0%, #1a237e 100%) !important; color: white !important; border: none !important; border-radius: 0.5rem; padding: 0.75rem 1.5rem; font-size: 1rem; font-weight: 600; transition: all 0.3s ease; width: 100%; } .stButton button:hover { transform: scale(1.05); box-shadow: 0 4px 8px rgba(57, 73, 171, 0.4); } .feature-box { background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%); border-radius: 0.75rem; padding: 1.5rem; margin-bottom: 1.5rem; } .result-box { background: linear-gradient(135deg, #e8f5e9 0%, #c8e6c9 100%); border-radius: 0.75rem; padding: 1.5rem; margin-top: 1.5rem; } .model-box { background: linear-gradient(135deg, #fff3e0 0%, #ffe0b2 100%); border-radius: 0.75rem; padding: 1.5rem; margin-top: 1.5rem; } .stProgress > div > div > div { background: linear-gradient(90deg, #2ecc71 0%, #27ae60 100%) !important; } .metric-card { background: white; border-radius: 0.75rem; padding: 1rem; text-align: center; box-shadow: 0 4px 8px rgba(0,0,0,0.06); } .metric-value { font-size: 1.8rem; font-weight: 700; color: #1a237e; } .metric-label { font-size: 0.9rem; color: #5c6bc0; margin-top: 0.5rem; } .highlight { background: linear-gradient(90deg, #ffeb3b 0%, #fbc02d 100%); padding: 0.2rem 0.5rem; border-radius: 0.25rem; font-weight: 600; } .stDataFrame { border-radius: 0.75rem; box-shadow: 0 4px 8px rgba(0,0,0,0.06); } .convert-high { background-color: #c8e6c9 !important; color: #388e3c !important; font-weight: 700; } .convert-low { background-color: #ffcdd2 !important; color: #c62828 !important; font-weight: 600; } </style> “”", unsafe_allow_html=True) 创建Spark会话 def create_spark_session(): return SparkSession.builder .appName(“TelecomPrecisionMarketing”) .config(“spark.driver.memory”, “4g”) .config(“spark.executor.memory”, “4g”) .getOrCreate() 数据预处理函数 - 修改后 def preprocess_data(df): “”" 数据预处理函数 参数: df: 原始数据 (DataFrame) 返回: 预处理后的数据 (DataFrame) “”" # 1. 选择关键特征 - 使用实际存在的列名 available_features = [col for col in df.columns if col in [ ‘AGE’, ‘GENDER’, ‘ONLINE_DAY’, ‘TERM_CNT’, ‘IF_YHTS’, ‘MKT_STAR_GRADE_NAME’, ‘PROM_AMT_MONTH’, ‘is_rh_next’ # 目标变量 ]] # 确保目标变量存在 if 'is_rh_next' not in available_features: st.error("错误:数据集中缺少目标变量 'is_rh_next'") return df # 只保留需要的列 df = df[available_features].copy() # 2. 处理缺失值 # 数值特征用均值填充 numeric_cols = ['AGE', 'ONLINE_DAY', 'TERM_CNT', 'PROM_AMT_MONTH'] for col in numeric_cols: if col in df.columns: mean_val = df[col].mean() df[col].fillna(mean_val, inplace=True) # 分类特征用众数填充 categorical_cols = ['GENDER', 'MKT_STAR_GRADE_NAME', 'IF_YHTS'] for col in categorical_cols: if col in df.columns: mode_val = df[col].mode()[0] df[col].fillna(mode_val, inplace=True) # 3. 异常值处理(使用IQR方法) def handle_outliers(series): Q1 = series.quantile(0.25) Q3 = series.quantile(0.75) IQR = Q3 - Q1 lower_bound = Q1 - 1.5 * IQR upper_bound = Q3 + 1.5 * IQR return series.clip(lower_bound, upper_bound) for col in numeric_cols: if col in df.columns: df[col] = handle_outliers(df[col]) return df 标题区域 st.markdown(“”" 精准营销系统 基于机器学习的单宽转融预测 """, unsafe_allow_html=True) 页面布局 col1, col2 = st.columns([1, 1.5]) 左侧区域 - 图片和简介 with col1: st.markdown(“”" 📱 智能营销系统 预测单宽带用户转化为融合套餐用户的可能性 “”", unsafe_allow_html=True) # 使用在线图片作为占位符 st.image("https://images.unsplash.com/photo-1551836022-d5d88e9218df?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=1200&q=80", caption="精准营销系统示意图", width=600) st.markdown(""" 📈 系统功能 用户转化可能性预测 高精度机器学习模型 可视化数据分析 精准营销策略制定 """, unsafe_allow_html=True) 右侧区域 - 功能选择 with col2: st.markdown(“”" 📋 请选择操作类型 您可以选择数据分析或使用模型进行预测 “”", unsafe_allow_html=True) # 功能选择 option = st.radio("", ["📊 数据分析 - 探索数据并训练模型", "🔍 预测分析 - 预测用户转化可能性"], index=0, label_visibility="hidden") # 数据分析部分 if "数据分析" in option: st.markdown(""" 数据分析与模型训练 上传数据并训练预测模型 </极客时间> """, unsafe_allow_html=True) # 上传训练数据 train_file = st.file_uploader("上传数据集 (CSV格式, GBK编码)", type=["csv"]) if train_file is not None: try: # 读取数据 train_data = pd.read_csv(train_file, encoding='GBK') # 显示数据预览 with st.expander("数据预览", expanded=True): st.dataframe(train_data.head()) col1, col2 = st.columns(2) col1.metric("总样本数", train_data.shape[0]) col2.metric("特征数量", train_data.shape[1] - 1) # 数据预处理 st.subheader("数据预处理") with st.spinner("数据预处理中..."): processed_data = preprocess_data(train_data) st.success("✅ 数据预处理完成") # 可视化数据分布 st.subheader("数据分布分析") # 目标变量分布 st.markdown("**目标变量分布 (is_rh_next)**") fig, ax = plt.subplots(figsize=(8, 5)) sns.countplot(x='is_rh_next', data=processed_data, palette='viridis') plt.title('用户转化分布 (0:未转化, 1:转化)') plt.xlabel('是否转化') plt.ylabel('用户数量') st.pyplot(fig) # 数值特征分布 st.markdown("**数值特征分布**") numeric_cols = ['AGE', 'ONLINE_DAY', 'TERM_CNT', 'PROM_AMT_MONTH'] # 动态计算子图布局 num_features = len(numeric_cols) if num_features > 0: ncols = 2 nrows = (num_features + ncols - 1) // ncols # 向上取整 fig, axes = plt.subplots(nrows, ncols, figsize=(14, 4*nrows)) # 将axes展平为一维数组 if nrows > 1 or ncols > 1: axes = axes.flatten() else: axes = [axes] # 单个子图时确保axes是列表 for i, col in enumerate(numeric_cols): if col in processed_data.columns and i < len(axes): sns.histplot(processed_data[col], kde=True, ax=axes[i], color='skyblue') axes[i].set_title(f'{col}分布') axes[i].set_xlabel('') # 隐藏多余的子图 for j in range(i+1, len(axes)): axes[j].set_visible(False) plt.tight_layout() st.pyplot(fig) else: st.warning("没有可用的数值特征") # 特征相关性分析 st.markdown("**特征相关性热力图**") corr_cols = numeric_cols + ['is_rh_next'] if len(corr_cols) > 1: corr_data = processed_data[corr_cols].corr() fig, ax = plt.subplots(figsize=(12, 8)) sns.heatmap(corr_data, annot=True, fmt=".2f", cmap='coolwarm', ax=ax) plt.title('特征相关性热力图') st.pyplot(fig) else: st.warning("特征不足,无法生成相关性热力图") # 模型训练 st.subheader("模型训练") # 训练参数设置 col1, col2 = st.columns(2) test_size = col1.slider("测试集比例", 0.1, 0.4, 0.2, 0.05) random_state = col2.number_input("随机种子", 0, 100, 42) # 开始训练按钮 if st.button("开始训练模型", use_container_width=True): with st.spinner("模型训练中,请稍候..."): # 创建Spark会话 spark = create_spark_session() # 将Pandas DataFrame转换为Spark DataFrame spark_df = spark.createDataFrame(processed_data) # 划分训练集和测试集 train_df, test_df = spark_df.randomSplit([1.0 - test_size, test_size], seed=random_state) # 特征工程 # 分类特征编码 categorical_cols = ['GENDER', 'MKT_STAR_GRADE_NAME', 'IF_YHTS'] # 只处理存在的分类特征 existing_cat_cols = [col for col in categorical_cols if col in processed_data.columns] indexers = [StringIndexer(inputCol=col, outputCol=col+"_index") for col in existing_cat_cols] encoders = [OneHotEncoder(inputCol=col+"_index", outputCol=col+"_encoded") for col in existing_cat_cols] # 数值特征 numeric_cols = ['AGE', 'ONLINE_DAY', 'TERM_CNT', 'PROM_AMT_MONTH'] # 组合所有特征 feature_cols = numeric_cols + [col+"_encoded" for col in existing_cat_cols] assembler = VectorAssembler(inputCols=feature_cols, outputCol="features") # 目标变量索引 label_indexer = StringIndexer(inputCol="is_rh_next", outputCol="label") # 构建模型 lr = LogisticRegression(featuresCol="features", labelCol="label") dt = DecisionTreeClassifier(featuresCol="features", labelCol="label") rf = RandomForestClassifier(featuresCol="features", labelCol="label") # 创建管道 pipeline_lr = Pipeline(stages=indexers + encoders + [assembler, label_indexer, lr]) pipeline_dt = Pipeline(stages=indexers + encoders + [assembler, label_indexer, dt]) pipeline_rf = Pipeline(stages=indexers + encoders + [assembler, label_indexer, rf]) # 训练模型 model_lr = pipeline_lr.fit(train_df) model_dt = pipeline_dt.fit(train_df) model_rf = pipeline_rf.fit(train_df) # 评估模型 evaluator_auc = BinaryClassificationEvaluator(labelCol="label", rawPredictionCol="rawPrediction") evaluator_acc = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="accuracy") evaluator_f1 = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="f1") def evaluate_model(model, data): predictions = model.transform(data) auc = evaluator_auc.evaluate(predictions) acc = evaluator_acc.evaluate(predictions) f1 = evaluator_f1.evaluate(predictions) return {"AUC": auc, "Accuracy": acc, "F1": f1} results = { "Logistic Regression": evaluate_model(model_lr, test_df), "Decision Tree": evaluate_model(model_dt, test_df), "Random Forest": evaluate_model(model_rf, test_df) } # 保存结果 st.session_state.model_results = results st.session_state.best_model = model_rf # 默认使用随机森林作为最佳模型 st.session_state.spark = spark st.success("🎉 模型训练完成!") # 显示模型性能 st.subheader("模型性能评估") # 转换为DataFrame展示 results_df = pd.DataFrame(results).T st.dataframe(results_df.style.format("{:.4f}").background_gradient(cmap='Blues')) # 可视化比较 fig, ax = plt.subplots(figsize=(10, 6)) results_df.plot(kind='bar', ax=ax) plt.title('模型性能比较') plt.ylabel('分数') plt.xticks(rotation=15) plt.legend(loc='upper right') st.pyplot(fig) # 特征重要性(随机森林) st.subheader("随机森林特征重要性") rf_model = model_rf.stages[-1] feature_importances = rf_model.featureImportances.toArray() feature_names = numeric_cols + [f"{col}_encoded" for col in existing_cat_cols] importance_df = pd.DataFrame({ "Feature": feature_names, "Importance": feature_importances }).sort_values("Importance", ascending=False).head(10) fig, ax = plt.subplots(figsize=(10, 6)) sns.barplot(x="Importance", y="Feature", data=importance_df, palette="viridis", ax=ax) plt.title('Top 10 重要特征') st.pyplot(fig) # 保存模型 model_path = "best_model" model_rf.write().overwrite().save(model_path) st.session_state.model_path = model_path except Exception as e: st.error(f"数据处理错误: {str(e)}") # 预测分析部分 else: st.markdown(""" 用户转化预测 预测单宽带用户转化为融合套餐的可能性 """, unsafe_allow_html=True) # 上传预测数据 predict_file = st.file_uploader("上传预测数据 (CSV格式, GBK编码)", type=["csv"]) if predict_file is not None: try: # 读取数据 predict_data = pd.read_csv(predict_file, encoding='GBK') # 显示数据预览 with st.expander("数据预览", expanded=True): st.dataframe(predict_data.head()) # 检查是否有模型 if "model_path" not in st.session_state or not os.path.exists(st.session_state.model_path): st.warning("⚠️ 未找到训练好的模型,请先训练模型") st.stop() # 开始预测按钮 if st.button("开始预测", use_container_width=True): with st.spinner("预测进行中,请稍候..."): # 数据预处理 processed_data = preprocess_data(predict_data) # 创建Spark会话 if "spark" not in st.session_state: spark = create_spark_session() st.session_state.spark = spark else: spark = st.session_state.spark # 将Pandas DataFrame转换为Spark DataFrame spark_df = spark.createDataFrame(processed_data) # 加载模型 best_model = st.session_state.best_model # 生成预测结果 predictions = best_model.transform(spark_df) # 提取预测结果 predictions_df = predictions.select( "CCUST_ROW_ID", "probability", "prediction" ).toPandas() # 解析概率值 predictions_df['转化概率'] = predictions_df['probability'].apply(lambda x: float(x[1])) predictions_df['预测结果'] = predictions_df['prediction'].apply(lambda x: "可能转化" if x == 1.0 else "可能不转化") # 添加转化可能性等级 predictions_df['转化可能性'] = pd.cut( predictions_df['转化概率'], bins=[0, 0.3, 0.7, 1], labels=["低可能性", "中可能性", "高可能性"] ) # 保存结果 st.session_state.prediction_results = predictions_df st.success("✅ 预测完成!") except Exception as e: st.error(f"预测错误: {str(e)}") # 显示预测结果 if "prediction_results" in st.session_state: st.markdown(""" 预测结果 用户转化可能性评估报告 """, unsafe_allow_html=True) result_df = st.session_state.prediction_results # 转化可能性分布 st.subheader("转化可能性分布概览") col1, col2, col3 = st.columns(3) high_conv = (result_df["转化可能性"] == "高可能性").sum() med_conv = (result_df["转化可能性"] == "中可能性").sum() low_conv = (result_df["转化可能性"] == "低可能性").sum() col1.markdown(f""" {high_conv} 高可能性用户 """, unsafe_allow_html=True) col2.markdown(f""" {med_conv} 中可能性用户 """, unsafe_allow_html=True) col3.markdown(f""" {low_conv} 低可能性用户 """, unsafe_allow_html=True) # 转化可能性分布图 fig, ax = plt.subplots(figsize=(8, 5)) conv_counts = result_df["转化可能性"].value_counts() conv_counts.plot(kind='bar', color=['#4CAF50', '#FFC107', '#F44336'], ax=ax) plt.title('用户转化可能性分布') plt.xlabel('可能性等级') plt.ylabel('用户数量') st.pyplot(fig) # 详细预测结果 st.subheader("详细预测结果") # 样式函数 def color_convert(val): if val == "高可能性": return "background-color: #c8e6c9; color: #388e3c;" elif val == "中可能性": return "background-color: #fff9c4; color: #f57f17;" else: return "background-color: #ffcdd2; color: #c62828;" # 格式化显示 display_df = result_df[["CCUST_ROW_ID", "转化概率", "预测结果", "转化可能性"]] styled_df = display_df.style.format({ "转化概率": "{:.2%}" }).applymap(color_convert, subset=["转化可能性"]) st.dataframe(styled_df, height=400) # 下载结果 csv = display_df.to_csv(index=False).encode("utf-8") st.download_button( label="下载预测结果", data=csv, file_name="用户转化预测结果.csv", mime="text/csv", use_container_width=True ) 页脚 st.markdown(“—”) st.markdown(“”" © 2023 精准营销系统 | 基于Spark和Streamlit开发 """, unsafe_allow_html=True) 将上述所给代码,不使用spark,仿照如下所给代码,完成算法和模型调优等操作 import streamlit as st import pandas as pd import numpy as np import joblib import os import time import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.font_manager as fm import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix from sklearn.preprocessing import StandardScaler from imblearn.over_sampling import SMOTE from sklearn.impute import SimpleImputer import warnings warnings.filterwarnings("ignore") plt.rcParams[‘font.sans-serif’] = [‘SimHei’] plt.rcParams[‘axes.unicode_minus’] = False # 正确显示负号 页面设置 st.set_page_config( page_title=“风控违约预测系统”, page_icon=“📊”, layout=“wide”, initial_sidebar_state=“expanded” ) 自定义CSS样式 st.markdown(“”" <style> .stApp { background: linear-gradient(135deg, #f5f7fa 0%, #e4edf5 100%); font-family: 'Helvetica Neue', Arial, sans-serif; } .header { background: linear-gradient(90deg, #2c3e50 0%, #4a6491 100%); color: white; padding: 1.5rem; border-radius: 0.75rem; box-shadow: 0 4px 12px rgba(0,0,0,0.1); margin-bottom: 2rem; } .card { background: white; border-radius: 0.75rem; padding: 1.5rem; margin-bottom: 1.5rem; box-shadow: 0 4px 12px rgba(0,0,0,0.08); transition: transform 0.3s ease; } .card:hover { transform: translateY(-5px); box-shadow: 0 6px 16px rgba(0,0,0,0.12); } .stButton button { background: linear-gradient(90deg, #3498db 0%, #1a5276 100%) !important; color: white !important; border: none !important; border-radius: 0.5rem; padding: 0.75rem 1.5rem; font-size: 1rem; font-weight: 600; transition: all 0.3s ease; width: 100%; } .stButton button:hover { transform: scale(1.05); box-shadow: 0 4px 8px rgba(52, 152, 219, 0.4); } .feature-box { background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%); border-radius: 0.75rem; padding: 1.5rem; margin-bottom: 1.5rem; } .result-box { background: linear-gradient(135deg, #e8f5e9 0%, #c8e6c9 100%); border-radius: 0.75rem; padding: 1.5rem; margin-top: 1.5rem; } .model-box { background: linear-gradient(135deg, #fff3e0 0%, #ffe0b2 100%); border-radius: 0.75rem; padding: 1.5rem; margin-top: 1.5rem; } .stProgress > div > div > div { background: linear-gradient(90deg, #2ecc71 0%, #27ae60 100%) !important; } .metric-card { background: white; border-radius: 0.75rem; padding: 1rem; text-align: center; box-shadow: 0 4px 8px rgba(0,0,0,0.06); } .metric-value { font-size: 1.8rem; font-weight: 700; color: #2c3e50; } .metric-label { font-size: 0.9rem; color: #7f8c8d; margin-top: 0.5rem; } .highlight { background: linear-gradient(90deg, #ffeb3b 0%, #fbc02d 100%); padding: 0.2rem 0.5rem; border-radius: 0.25rem; font-weight: 600; } .stDataFrame { border-radius: 0.75rem; box-shadow: 0 4px 8px rgba(0,0,0,0.06); } .risk-high { background-color: #ffcdd2 !important; color: #c62828 !important; font-weight: 700; } .risk-medium { background-color: #fff9c4 !important; color: #f57f17 !important; font-weight: 600; } .risk-low { background-color: #c8e6c9 !important; color: #388e3c !important; } </style> “”", unsafe_allow_html=True) def preprocess_loan_data(data_old): “”" 训练时数据预处理函数,返回处理后的数据和推理时需要的参数 参数: data_old: 原始训练数据 (DataFrame) 返回: processed_data: 预处理后的训练数据 (DataFrame) preprocessor_params: 推理时需要的预处理参数 (dict) """ # 1. 创建原始数据副本 loan_data = data_old.copy() # 2. 保存要删除的列列表 drop_list = ['id','member_id', 'term', 'pymnt_plan', 'initial_list_status', 'sub_grade', 'emp_title', 'issue_d', 'title', 'zip_code', 'addr_state', 'earliest_cr_line', 'last_pymnt_d', 'last_credit_pull_d', 'url','desc','next_pymnt_d'] loan_data.drop([col for col in drop_list if col in loan_data.columns], axis=1, inplace=True, errors='ignore') # 3. 删除缺失值超过90%的列 #todo 自己补齐删除代码 missing_ratio = loan_data.isnull().sum() / len(loan_data) loan_data.drop(missing_ratio[missing_ratio > 0.9].index, axis=1, inplace=True, errors='ignore') # 4. 删除值全部相同的列 #todo 自己补齐删除代码 constant_cols = loan_data.columns[loan_data.nunique() <= 1] loan_data.drop(constant_cols, axis=1, inplace=True, errors='ignore') # 5. 处理特殊数值列 loans = loan_data # 修正变量名 loans["int_rate"] = loans["int_rate"].astype(str).str.rstrip('%').astype("float") loans["revol_util"] = loans["revol_util"].astype(str).str.rstrip('%').astype("float") # 6. 缺失值处理 ## 识别分类列和数值列 objectColumns = loans.select_dtypes(include=["object"]).columns.tolist() numColumns = loans.select_dtypes(include=[np.number]).columns.tolist() ## 保存分类列的列名 categorical_columns = objectColumns.copy() ## 填充分类变量缺失值 loans[objectColumns] = loans[objectColumns].fillna("Unknown") ## 填充数值变量缺失值并保存均值 imr = SimpleImputer(missing_values=np.nan, strategy="mean") loans[numColumns] = imr.fit_transform(loans[numColumns]) # 保存数值列的均值 numerical_means = {col: imr.statistics_[i] for i, col in enumerate(numColumns)} # 8. 特征衍生 loans["installment_feat"] = loans["installment"] / ((loans["annual_inc"] + 1) / 12) # 9. 目标变量编码 status_mapping = { "Current": 0, "Issued": 0, "Fully Paid": 0, "In Grace Period": 1, "Late (31-120 days)": 1, "Late (16-30 days)": 1, "Charged Off": 1, "Does not meet the credit policy. Status:Charged Off": 1, "Does not meet the credit policy. Status:Fully Paid": 0, "Default": 0 } loans["loan_status"] = loans["loan_status"].map(status_mapping) # 10. 有序特征映射 mapping_dict = { "emp_length": { "10+ years": 10, "9 years": 9, "8 years": 8, "7 years": 7, "6 years": 6, "5 years": 5, "4 years": 4, "3 years": 3, "2 years": 2, "1 year": 1, "< 1 year": 0, "Unknown": 0 }, "grade": { "A": 1, "B": 2, "C": 3, "D": 4, "E": 5, "F": 6, "G": 7 } } loans = loans.replace(mapping_dict) # 11. One-hot编码 n_columns = ["home_ownership", "verification_status", "purpose", "application_type"] dummy_df = pd.get_dummies(loans[n_columns], drop_first=False) loans = pd.concat([loans, dummy_df], axis=1) loans.drop(n_columns, axis=1, inplace=True) # 保存One-hot编码后的列名 onehot_columns = n_columns onehot_encoder_columns = dummy_df.columns.tolist() # 12. 特征缩放 # 识别需要缩放的数值列 numeric_cols = loans.select_dtypes(include=["int", "float"]).columns.tolist() if 'loan_status' in numeric_cols: numeric_cols.remove('loan_status') # 创建并拟合缩放器 sc = StandardScaler() if numeric_cols: loans[numeric_cols] = sc.fit_transform(loans[numeric_cols]) # 保存缩放列名 scaled_columns = numeric_cols # 13. 保存最终列结构(在SMOTE之前) #final_columns = loans.columns.tolist().remove('loan_status') final_columns = loans.columns[loans.columns != 'loan_status'].tolist() # 14. 处理不平衡数据(SMOTE过采样) X = loans.drop("loan_status", axis=1) y = loans["loan_status"] os = SMOTE(random_state=42) X_res, y_res = os.fit_resample(X, y) # 15. 合并为最终DataFrame processed_data = pd.concat([X_res, y_res], axis=1) processed_data.columns = list(X.columns) + ["loan_status"] # 16. 创建推理时需要的参数字典 preprocessor_params = { # 1. 删除的列 'drop_list': drop_list, # 2. 分类列缺失值填充 'categorical_columns': categorical_columns, # 3. 数值列填充均值 'numerical_means': numerical_means, # 4. 有序特征映射 'mapping_dict': mapping_dict, # 5. One-hot配置 'onehot_columns': onehot_columns, 'onehot_encoder_columns': onehot_encoder_columns, # 6. 缩放器及缩放列 'scaler': sc, # 已拟合的StandardScaler实例 'scaled_columns': scaled_columns, # 7. 最终列结构(训练后的列顺序) 'final_columns': final_columns } return processed_data, preprocessor_params def preprocess_loan_data_inference(data_old, preprocessor_params): “”" 推理时数据处理函数 参数: data_old: 原始推理数据 (DataFrame) preprocessor_params: 从训练过程保存的预处理参数 (dict) 返回: processed_data: 预处理后的推理数据 (DataFrame) """ # 1. 复制数据避免污染原始数据 loanss = data_old.copy() # 2. 删除训练时确定的列 drop_list = preprocessor_params['drop_list'] loans = loanss.drop(columns=[col for col in drop_list if col in loanss.columns], axis=1, errors='ignore') # 3. 处理特殊数值列(百分比转换) if 'int_rate' in loans: loans["int_rate"] = loans["int_rate"].astype(str).str.rstrip('%').astype("float") if 'revol_util' in loans: loans["revol_util"] = loans["revol_util"].astype(str).str.rstrip('%').astype("float") # 4. 特征衍生(使用训练时相同公式) if 'installment' in loans and 'annual_inc' in loans: loans["installment_feat"] = loans["installment"] / ((loans["annual_inc"] + 1) / 12) # 5. 有序特征映射(使用训练时的映射字典) mapping_dict = preprocessor_params['mapping_dict'] for col, mapping in mapping_dict.items(): if col in loans: # 处理未知值,默认为0 loans[col] = loans[col].map(mapping).fillna(0).astype(int) # 6. 缺失值处理(使用训练时保存的策略) # 分类变量 cat_cols = preprocessor_params['categorical_columns'] for col in cat_cols: if col in loans: loans[col] = loans[col].fillna("Unknown") # 数值变量(使用训练时保存的均值) num_means = preprocessor_params['numerical_means'] for col, mean_value in num_means.items(): if col in loans: loans[col] = loans[col].fillna(mean_value) # 7. One-hot编码(对齐训练时的列结构) n_columns = preprocessor_params['onehot_columns'] expected_dummy_columns = preprocessor_params['onehot_encoder_columns'] # 创建空DataFrame用于存储结果 dummy_df = pd.DataFrame(columns=expected_dummy_columns) # 为每个分类列生成dummy变量 for col in n_columns: if col in loans: # 为当前列生成dummies col_dummies = pd.get_dummies(loans[col], prefix=col) # 对齐训练时的列结构 for expected_col in expected_dummy_columns: if expected_col in col_dummies: dummy_df[expected_col] = col_dummies[expected_col] else: # 如果该列不存在,则创建全0列 dummy_df[expected_col] = 0 # 合并dummy变量 loans = pd.concat([loans, dummy_df], axis=1) # 删除原始分类列 loans.drop(columns=[col for col in n_columns if col in loans.columns], inplace=True, errors='ignore') # 8. 特征缩放(使用训练时的缩放器参数) sc = preprocessor_params['scaler'] scaled_cols = [col for col in preprocessor_params['scaled_columns'] if col in loans.columns] if scaled_cols: loans[scaled_cols] = sc.transform(loans[scaled_cols]) # 9. 对齐最终特征列(确保与训练数据相同) final_columns = preprocessor_params['final_columns'] # 添加缺失列(用0填充) for col in final_columns: if col not in loans.columns: loans[col] = 0 # 移除多余列并保持顺序 processed_data = loans[final_columns] print(loans.columns) return processed_data 标题区域 st.markdown(“”" 风控违约预测系统 基于机器学习的信贷风险评估与预测 """, unsafe_allow_html=True) 页面布局 col1, col2 = st.columns([1, 1.5]) 左侧区域 - 图片和简介 with col1: st.markdown(“”" 智能风控系统 利用先进机器学习技术预测信贷违约风险 “”", unsafe_allow_html=True) # 使用在线图片作为占位符 st.image("https://images.unsplash.com/photo-1553877522-43269d4ea984?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=1200&q=80", caption="智能风控系统示意图", use_column_width=True) st.markdown(""" 📈 系统功能 客户违约风险预测 高精度机器学习模型 可视化风险评估 批量数据处理 """, unsafe_allow_html=True) 右侧区域 - 功能选择 with col2: st.markdown(“”" 请选择操作类型 您可以选择训练新模型或使用现有模型进行预测 “”", unsafe_allow_html=True) # 功能选择 option = st.radio("", ["🚀 训练新模型 - 使用新数据训练预测模型", "🔍 推理预测 - 使用模型预测违约风险"], index=0, label_visibility="hidden") # 模型训练部分 if "训练新模型" in option: st.markdown(""" 模型训练 上传训练数据并训练新的预测模型 """, unsafe_allow_html=True) # 上传训练数据 train_file = st.file_uploader("上传训练数据 (CSV格式)", type=["csv"]) if train_file is not None: try: # 读取数据 train_data_old = pd.read_csv(train_file) # 显示数据预览 with st.expander("数据预览", expanded=True): st.dataframe(train_data_old.head()) col1, col2, col3 = st.columns(3) col1.metric("总样本数", train_data_old.shape[0]) col2.metric("特征数量", train_data_old.shape[1] - 1) # 训练参数设置 st.subheader("训练参数") col1, col2 = st.columns(2) test_size = col1.slider("测试集比例", 0.1, 0.4, 0.2, 0.1) n_estimators = col2.slider("树的数量", 10, 500, 100, 10) max_depth = col1.slider("最大深度", 2, 30, 10, 1) random_state = col2.number_input("随机种子", 0, 100, 42) # 开始训练按钮 if st.button("开始训练模型", use_container_width=True): with st.spinner("模型训练中,请稍候..."): # 模拟数据处理 progress_bar = st.progress(0) train_data,preprocessor_params = preprocess_loan_data(train_data_old) joblib.dump(preprocessor_params, 'loan_preprocessor_params.pkl') # 步骤1: 数据预处理 time.sleep(1) progress_bar.progress(25) st.success("✅ 数据预处理完成") # 步骤2: 特征工程 time.sleep(1) progress_bar.progress(50) st.success("✅ 特征工程完成") # 步骤3: 模型训练 time.sleep(2) progress_bar.progress(75) # 实际训练代码 (简化版) X = train_data.drop("loan_status", axis=1) y = train_data["loan_status"] # 划分训练测试集 #todo 自己补齐数据划分代码 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state, stratify=y) # 训练模型 #todo 自己补齐调用随机森林算法完成模型的训练 model = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth, random_state=random_state, n_jobs=-1) model.fit(X_train, y_train) # 保存模型 joblib.dump(model, "risk_model.pkl") # 步骤4: 模型评估 time.sleep(1) progress_bar.progress(100) # 评估模型 #todo 自己补齐调用预测函数完成测试集推理预测 y_pred = model.predict(X_test) y_proba = model.predict_proba(X_test)[:, 1] accuracy = accuracy_score(y_test, y_pred) auc = roc_auc_score(y_test, y_proba) # 保存评估结果 st.session_state.model_trained = True st.session_state.accuracy = accuracy st.session_state.auc = auc st.session_state.y_test = y_test st.session_state.y_pred = y_pred st.success("🎉 模型训练完成!") # 显示模型性能 st.subheader("模型性能评估") col1, col2 = st.columns(2) col1.markdown(f""" {accuracy*100:.1f}% 准确率 """, unsafe_allow_html=True) col2.markdown(f""" {auc:.3f} AUC 分数 """, unsafe_allow_html=True) # 混淆矩阵 st.subheader("混淆矩阵") cm = confusion_matrix(y_test, y_pred) fig, ax = plt.subplots(figsize=(6, 4)) sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", ax=ax) ax.set_xlabel("预测标签") ax.set_ylabel("真实标签") ax.set_title("混淆矩阵") st.pyplot(fig) # 特征重要性 st.subheader("特征重要性") feature_importance = pd.DataFrame({ "特征": X.columns, "重要性": model.feature_importances_ }).sort_values("重要性", ascending=False).head(10) fig, ax = plt.subplots(figsize=(10, 6)) sns.barplot(x="重要性", y="特征", data=feature_importance, palette="viridis", ax=ax) ax.set_title("Top 10 重要特征") st.pyplot(fig) except Exception as e: st.error(f"数据处理错误: {str(e)}") # 推理预测部分 else: st.markdown(""" 风险预测 上传需要预测的数据,生成违约风险评估报告 """, unsafe_allow_html=True) # 上传预测数据 predict_file = st.file_uploader("上传预测数据 (CSV格式)", type=["csv"]) if predict_file is not None: try: # 读取数据 predict_data = pd.read_csv(predict_file) # 显示数据预览 with st.expander("数据预览", expanded=True): st.dataframe(predict_data.head()) st.info(f"数据集包含 {predict_data.shape[0]} 个样本,{predict_data.shape[1]} 个特征") # 检查是否有模型 if not os.path.exists("risk_model.pkl"): st.warning("⚠️ 未找到训练好的模型,请先训练模型或使用示例数据") # 使用示例模型 if st.button("使用示例模型进行预测", use_container_width=True): st.info("正在使用预训练的示例模型进行预测...") # 创建示例模型 X = np.random.rand(100, 10) y = np.random.randint(0, 2, 100) model = RandomForestClassifier(n_estimators=50, random_state=42) model.fit(X, y) # 生成预测结果 predictions = model.predict(predict_data.values) probas = model.predict_proba(predict_data.values)[:, 1] # 创建结果DataFrame result_df = pd.DataFrame({ "客户ID": predict_data["member_id"], "违约概率": probas, "预测标签": predictions }) # 添加风险等级 result_df["风险等级"] = pd.cut( result_df["违约概率"], bins=[0, 0.2, 0.5, 1], labels=["低风险", "中风险", "高风险"], include_lowest=True ) # 保存结果 st.session_state.prediction_results = result_df else: # 加载模型 model = joblib.load("risk_model.pkl") preprocessor_params = joblib.load('loan_preprocessor_params.pkl') # 开始预测按钮 if st.button("开始风险预测", use_container_width=True): with st.spinner("预测进行中,请稍候..."): # 模拟预测过程 progress_bar = st.progress(0) # 预处理推理数据 #todo 自己补齐调用推理数据处理函数完成推理数据的清洗 processed_inference = preprocess_loan_data_inference(predict_data, preprocessor_params) # 步骤1: 数据预处理 time.sleep(1) progress_bar.progress(25) # 步骤2: 特征工程 time.sleep(1) progress_bar.progress(50) # 步骤3: 模型预测 time.sleep(1) progress_bar.progress(75) # 生成预测结果 predictions = model.predict(processed_inference.values) probas = model.predict_proba(processed_inference.values)[:, 1] # 创建结果DataFrame result_df = pd.DataFrame({ "客户ID": predict_data["member_id"], "违约概率": probas, "预测标签": predictions }) # 添加风险等级 result_df["风险等级"] = pd.cut( result_df["违约概率"], bins=[0, 0.2, 0.5, 1], labels=["低风险", "中风险", "高风险"], include_lowest=True ) # 步骤4: 生成报告 time.sleep(1) progress_bar.progress(100) # 保存结果 st.session_state.prediction_results = result_df st.success("✅ 预测完成!") except Exception as e: st.error(f"预测错误: {str(e)}") # 显示预测结果 if "prediction_results" in st.session_state: st.markdown(""" 预测结果 客户违约风险评估报告 """, unsafe_allow_html=True) result_df = st.session_state.prediction_results # 风险分布 st.subheader("风险分布概览") col1, col2, col3 = st.columns(3) high_risk = (result_df["风险等级"] == "高风险").sum() med_risk = (result_df["风险等级"] == "中风险").sum() low_risk = (result_df["风险等级"] == "低风险").sum() col1.markdown(f""" {high_risk} 高风险客户 """, unsafe_allow_html=True) col2.markdown(f""" {med_risk} 中风险客户 """, unsafe_allow_html=True) col3.markdown(f""" {low_risk} 低风险客户 """, unsafe_allow_html=True) # 风险分布图 fig, ax = plt.subplots(figsize=(8, 4)) risk_counts = result_df["风险等级"].value_counts() risk_counts.plot(kind="bar", color=["#4CAF50", "#FFC107", "#F44336"], ax=ax) ax.set_title("客户风险等级分布") ax.set_xlabel("风险等级") ax.set_ylabel("客户数量") st.pyplot(fig) # 详细预测结果 st.subheader("详细预测结果") # 样式函数 def color_risk(val): if val == "高风险": return "background-color: #ffcdd2; color: #c62828;" elif val == "中风险": return "background-color: #fff9c4; color: #f57f17;" else: return "background-color: #c8e6c9; color: #388e3c;" # 格式化显示 styled_df = result_df.style.applymap(color_risk, subset=["风险等级"]) st.dataframe(styled_df.format({ "违约概率": "{:.2%}" }), height=400) # 下载结果 csv = result_df.to_csv(index=False).encode("utf-8") st.download_button( label="下载预测结果", data=csv, file_name="风险预测结果.csv", mime="text/csv", use_container_width=True ) 页脚 st.markdown(“—”) st.markdown(“”" © 2023 风控违约预测系统 | 基于Streamlit开发 """, unsafe_allow_html=True)

最新推荐

recommend-type

Visual C++.NET编程技术实战指南

根据提供的文件信息,可以生成以下知识点: ### Visual C++.NET编程技术体验 #### 第2章 定制窗口 - **设置窗口风格**:介绍了如何通过编程自定义窗口的外观和行为。包括改变窗口的标题栏、边框样式、大小和位置等。这通常涉及到Windows API中的`SetWindowLong`和`SetClassLong`函数。 - **创建六边形窗口**:展示了如何创建一个具有特殊形状边界的窗口,这类窗口不遵循标准的矩形形状。它需要使用`SetWindowRgn`函数设置窗口的区域。 - **创建异形窗口**:扩展了定制窗口的内容,提供了创建非标准形状窗口的方法。这可能需要创建一个不规则的窗口区域,并将其应用到窗口上。 #### 第3章 菜单和控制条高级应用 - **菜单编程**:讲解了如何创建和修改菜单项,处理用户与菜单的交互事件,以及动态地添加或删除菜单项。 - **工具栏编程**:阐述了如何使用工具栏,包括如何创建工具栏按钮、分配事件处理函数,并实现工具栏按钮的响应逻辑。 - **状态栏编程**:介绍了状态栏的创建、添加不同类型的指示器(如文本、进度条等)以及状态信息的显示更新。 - **为工具栏添加皮肤**:展示了如何为工具栏提供更加丰富的视觉效果,通常涉及到第三方的控件库或是自定义的绘图代码。 #### 第5章 系统编程 - **操作注册表**:解释了Windows注册表的结构和如何通过程序对其进行读写操作,这对于配置软件和管理软件设置非常关键。 - **系统托盘编程**:讲解了如何在系统托盘区域创建图标,并实现最小化到托盘、从托盘恢复窗口的功能。 - **鼠标钩子程序**:介绍了钩子(Hook)技术,特别是鼠标钩子,如何拦截和处理系统中的鼠标事件。 - **文件分割器**:提供了如何将文件分割成多个部分,并且能够重新组合文件的技术示例。 #### 第6章 多文档/多视图编程 - **单文档多视**:展示了如何在同一个文档中创建多个视图,这在文档编辑软件中非常常见。 #### 第7章 对话框高级应用 - **实现无模式对话框**:介绍了无模式对话框的概念及其应用场景,以及如何实现和管理无模式对话框。 - **使用模式属性表及向导属性表**:讲解了属性表的创建和使用方法,以及如何通过向导性质的对话框引导用户完成多步骤的任务。 - **鼠标敏感文字**:提供了如何实现点击文字触发特定事件的功能,这在阅读器和编辑器应用中很有用。 #### 第8章 GDI+图形编程 - **图像浏览器**:通过图像浏览器示例,展示了GDI+在图像处理和展示中的应用,包括图像的加载、显示以及基本的图像操作。 #### 第9章 多线程编程 - **使用全局变量通信**:介绍了在多线程环境下使用全局变量进行线程间通信的方法和注意事项。 - **使用Windows消息通信**:讲解了通过消息队列在不同线程间传递信息的技术,包括发送消息和处理消息。 - **使用CriticalSection对象**:阐述了如何使用临界区(CriticalSection)对象防止多个线程同时访问同一资源。 - **使用Mutex对象**:介绍了互斥锁(Mutex)的使用,用以同步线程对共享资源的访问,保证资源的安全。 - **使用Semaphore对象**:解释了信号量(Semaphore)对象的使用,它允许一个资源由指定数量的线程同时访问。 #### 第10章 DLL编程 - **创建和使用Win32 DLL**:介绍了如何创建和链接Win32动态链接库(DLL),以及如何在其他程序中使用这些DLL。 - **创建和使用MFC DLL**:详细说明了如何创建和使用基于MFC的动态链接库,适用于需要使用MFC类库的场景。 #### 第11章 ATL编程 - **简单的非属性化ATL项目**:讲解了ATL(Active Template Library)的基础使用方法,创建一个不使用属性化组件的简单项目。 - **使用ATL开发COM组件**:详细阐述了使用ATL开发COM组件的步骤,包括创建接口、实现类以及注册组件。 #### 第12章 STL编程 - **list编程**:介绍了STL(标准模板库)中的list容器的使用,讲解了如何使用list实现复杂数据结构的管理。 #### 第13章 网络编程 - **网上聊天应用程序**:提供了实现基本聊天功能的示例代码,包括客户端和服务器的通信逻辑。 - **简单的网页浏览器**:演示了如何创建一个简单的Web浏览器程序,涉及到网络通信和HTML解析。 - **ISAPI服务器扩展编程**:介绍了如何开发ISAPI(Internet Server API)服务器扩展来扩展IIS(Internet Information Services)的功能。 #### 第14章 数据库编程 - **ODBC数据库编程**:解释了ODBC(开放数据库互联)的概念,并提供了使用ODBC API进行数据库访问的示例。 - **ADO编程**:介绍了ADO(ActiveX Data Objects)技术,讲解了如何使用ADO进行数据库的增删改查等操作。 #### 第15章 HTML帮助系统编程 - **创建HTML帮助文件**:讲解了如何创建HTML帮助文件(.chm),这是微软帮助系统的一种形式。 - **区分上下文帮助**:提供了在应用程序中实现上下文敏感帮助的技术示例。 #### 第16章 安装和部署项目 - **用安装程序向导创建安装项目**:介绍了如何使用Visual Studio中的安装和部署项目向导,快速创建安装程序。 - **部署应用程序**:阐述了部署应用程序到目标系统的过程,以及如何确保应用程序的正确安装和运行。 以上内容涵盖了Visual C++.NET编程技术体验一书中涉及的各个技术点,并对每个章节中的示例做了详细的说明。这些知识点对于理解和掌握Visual C++.NET编程非常重要,并能够帮助读者在实际项目开发中应用这些技术。
recommend-type

HarmonyOS内核深度探秘:优化自由行旅游系统的策略

# 1. HarmonyOS内核概述与旅游系统需求分析 ## 1.1 HarmonyOS内核概述 HarmonyOS(鸿蒙操作系统)是由华为开发的一个分布式操作系统,旨在提供跨多种设备的无缝体验。其内核设计理念强调高效、安全和模块化,以微内核架构和分布式能力
recommend-type

tkinter模块所有控件

<think>好的,我现在需要回答用户关于Tkinter模块中所有控件列表的问题。首先,我需要回忆Tkinter的基础知识,确保自己了解各个控件的名称和用途。用户希望得到所有支持的控件列表,所以必须全面覆盖,不能遗漏。 首先,我应该从Tkinter的标准控件开始。常见的控件包括Label、Button、Entry这些基础部件。然后是Frame,用于布局,还有Canvas用于绘图。接下来是Checkbutton、Radiobutton,这些属于选择类控件。Listbox和Scrollbar通常一起使用,处理滚动内容。还有Scale(滑块)、Spinbox、Menu、Menubutton这些可能
recommend-type

局域网五子棋游戏:娱乐与聊天的完美结合

标题“网络五子棋”和描述“适合于局域网之间娱乐和聊天!”以及标签“五子棋 网络”所涉及的知识点主要围绕着五子棋游戏的网络版本及其在局域网中的应用。以下是详细的知识点: 1. 五子棋游戏概述: 五子棋是一种两人对弈的纯策略型棋类游戏,又称为连珠、五子连线等。游戏的目标是在一个15x15的棋盘上,通过先后放置黑白棋子,使得任意一方先形成连续五个同色棋子的一方获胜。五子棋的规则简单,但策略丰富,适合各年龄段的玩家。 2. 网络五子棋的意义: 网络五子棋是指可以在互联网或局域网中连接进行对弈的五子棋游戏版本。通过网络版本,玩家不必在同一地点即可进行游戏,突破了空间限制,满足了现代人们快节奏生活的需求,同时也为玩家们提供了与不同对手切磋交流的机会。 3. 局域网通信原理: 局域网(Local Area Network,LAN)是一种覆盖较小范围如家庭、学校、实验室或单一建筑内的计算机网络。它通过有线或无线的方式连接网络内的设备,允许用户共享资源如打印机和文件,以及进行游戏和通信。局域网内的计算机之间可以通过网络协议进行通信。 4. 网络五子棋的工作方式: 在局域网中玩五子棋,通常需要一个客户端程序(如五子棋.exe)和一个服务器程序。客户端负责显示游戏界面、接受用户输入、发送落子请求给服务器,而服务器负责维护游戏状态、处理玩家的游戏逻辑和落子请求。当一方玩家落子时,客户端将该信息发送到服务器,服务器确认无误后将更新后的棋盘状态传回给所有客户端,更新显示。 5. 五子棋.exe程序: 五子棋.exe是一个可执行程序,它使得用户可以在个人计算机上安装并运行五子棋游戏。该程序可能包含了游戏的图形界面、人工智能算法(如果支持单机对战AI的话)、网络通信模块以及游戏规则的实现。 6. put.wav文件: put.wav是一个声音文件,很可能用于在游戏进行时提供声音反馈,比如落子声。在网络环境中,声音文件可能被用于提升玩家的游戏体验,尤其是在局域网多人游戏场景中。当玩家落子时,系统会播放.wav文件中的声音,为游戏增添互动性和趣味性。 7. 网络五子棋的技术要求: 为了确保多人在线游戏的顺利进行,网络五子棋需要具备一些基本的技术要求,包括但不限于稳定的网络连接、高效的数据传输协议(如TCP/IP)、以及安全的数据加密措施(如果需要的话)。此外,还需要有一个良好的用户界面设计来提供直观和舒适的用户体验。 8. 社交与娱乐: 网络五子棋除了是一个娱乐游戏外,它还具有社交功能。玩家可以通过游戏内的聊天系统进行交流,分享经验和策略,甚至通过网络寻找新的朋友。这使得网络五子棋不仅是一个个人娱乐工具,同时也是一种社交活动。 总结来说,网络五子棋结合了五子棋游戏的传统魅力和现代网络技术,使得不同地区的玩家能够在局域网内进行娱乐和聊天,既丰富了人们的娱乐生活,又加强了人际交流。而实现这一切的基础在于客户端程序的设计、服务器端的稳定运行、局域网的高效通信,以及音效文件增强的游戏体验。
recommend-type

自由行旅游新篇章:HarmonyOS技术融合与系统架构深度解析

# 1. HarmonyOS技术概述 ## 1.1 HarmonyOS的起源与发展 HarmonyOS(鸿蒙操作系统)由华为公司开发,旨在构建全场景分布式OS,以应对不同设备间的互联问题。自从2019年首次发布以来,HarmonyOS迅速成长,并迅速应用于智能手机、平板、智能穿戴、车载设备等多种平台。该系
recommend-type

足底支撑相到达73%是什么问题

<think>好的,我现在要处理用户的问题:“足底支撑相达到73%可能的原因及影响”。首先,需要理解用户提到的“足底支撑相73%”具体指什么。足底支撑相通常指步态周期中脚与地面接触的时间占比,正常范围大约在60%-62%左右。如果达到73%,明显超出正常范围,可能意味着步态异常。 接下来,需要确定可能的原因。可能的原因包括生物力学异常,比如足弓异常(扁平足或高弓足)、踝关节活动度受限,或者肌肉力量不足,特别是小腿和足部肌肉。另外,神经系统疾病如脑卒中或帕金森病可能影响步态控制。骨骼关节问题如关节炎、髋膝关节病变也可能导致支撑时间延长。还有代偿性步态,比如因疼痛或受伤而改变步态模式。 然后是
recommend-type

宾馆预约系统开发与优化建议

宾馆预约系统是一个典型的在线服务应用,它允许用户通过互联网平台预定宾馆房间。这种系统通常包含多个模块,比如用户界面、房态管理、预订处理、支付处理和客户评价等。从技术层面来看,构建一个宾馆预约系统涉及到众多的IT知识和技术细节,下面将详细说明。 ### 标题知识点 - 宾馆预约系统 #### 1. 系统架构设计 宾馆预约系统作为一个完整的应用,首先需要进行系统架构设计,决定其采用的软件架构模式,如B/S架构或C/S架构。此外,系统设计还需要考虑扩展性、可用性、安全性和维护性。一般会采用三层架构,包括表示层、业务逻辑层和数据访问层。 #### 2. 前端开发 前端开发主要负责用户界面的设计与实现,包括用户注册、登录、房间搜索、预订流程、支付确认、用户反馈等功能的页面展示和交互设计。常用的前端技术栈有HTML, CSS, JavaScript, 以及各种前端框架如React, Vue.js或Angular。 #### 3. 后端开发 后端开发主要负责处理业务逻辑,包括用户管理、房间状态管理、订单处理等。后端技术包括但不限于Java (使用Spring Boot框架), Python (使用Django或Flask框架), PHP (使用Laravel框架)等。 #### 4. 数据库设计 数据库设计对系统的性能和可扩展性至关重要。宾馆预约系统可能需要设计的数据库表包括用户信息表、房间信息表、预订记录表、支付信息表等。常用的数据库系统有MySQL, PostgreSQL, MongoDB等。 #### 5. 网络安全 网络安全是宾馆预约系统的重要考虑因素,包括数据加密、用户认证授权、防止SQL注入、XSS攻击、CSRF攻击等。系统需要实现安全的认证机制,比如OAuth或JWT。 #### 6. 云服务和服务器部署 现代的宾馆预约系统可能部署在云平台上,如AWS, Azure, 腾讯云或阿里云。在云平台上,系统可以按需分配资源,提高系统的稳定性和弹性。 #### 7. 付款接口集成 支付模块需要集成第三方支付接口,如支付宝、微信支付、PayPal等,需要处理支付请求、支付状态确认、退款等业务。 #### 8. 接口设计与微服务 系统可能采用RESTful API或GraphQL等接口设计方式,提供服务的微服务化,以支持不同设备和服务的接入。 ### 描述知识点 - 这是我个人自己做的 请大家帮忙修改哦 #### 个人项目经验与团队合作 描述中的这句话暗示了该宾馆预约系统可能是由一个个人开发者创建的。个人开发和团队合作在软件开发流程中有着显著的不同。个人开发者需要关注的方面包括项目管理、需求分析、代码质量保证、测试和部署等。而在团队合作中,每个成员会承担不同的职责,需要有效的沟通和协作。 #### 用户反馈与迭代 描述还暗示了该系统目前处于需要外部反馈和修改的阶段。这表明系统可能还处于开发或测试阶段,需要通过用户的实际使用反馈来不断迭代改进。 ### 标签知识点 - 200 #### 未提供信息 “200”这个标签可能指的是HTTP状态码中表示请求成功(OK)的200状态码。但是,由于没有提供更多的上下文信息,无法进一步分析其在本例中的具体含义。 ### 压缩包子文件的文件名称列表知识点 - 1111 #### 文件命名与管理 “1111”这个文件名称可能是一个版本号、日期标记或者是一个简单的标识符。文件命名应当遵循一定的规则,以确保文件的可追溯性和管理的便利性。在软件开发过程中,合理组织文件和版本控制(如使用Git)是必不可少的。 综上所述,宾馆预约系统的开发是一项复杂的工程,它涉及前后端的开发、数据库设计、系统安全、接口设计等多个方面。开发者在开发过程中需要不断学习和应用各类IT知识,以确保系统能够安全、高效、稳定地运行。而对于个人开发项目,如何合理利用有限资源、高效地管理和优化项目过程也是至关重要的。
recommend-type

HarmonyOS在旅游领域的创新:揭秘最前沿应用实践

# 1. HarmonyOS旅游应用的市场前景分析 随着数字化转型的不断深入,旅游行业正面临着前所未有的变革。在这样的背景下,HarmonyOS作为一种新兴的操作系统,带来了全新的市场前景和机遇。本章将深入分析HarmonyOS在旅游应用领域的市场潜力、用户需求、以及技术创新对旅游体验的改善。 ## 1.1 市场需求与用户画像分析 旅游市场的需求持续增
recommend-type

数据架构师需要具备什么能力

<think>嗯,用户现在转向询问数据架构师的能力要求了,而且特别提到要参考站内引用内容。看来ta正在规划职业方向,可能是个技术岗位的进阶者或转行者。之前对话历史显示用户对技术细节有深度需求(比如C语言底层特性),这次提问虽然跨度大,但延续了“技术职业发展”这条主线。用户引用的三段材料其实很有意思:第一篇强调综合能力,第二篇突出编程基础,第三篇提到商业洞察力——这正好构成数据架构师的三个能力象限。用户给出的引用里埋了个关键矛盾:第二篇说“速成只能做码农”,第三篇说“需要持续学习”,暗示ta可能担心速成班的局限性。回应时得强调“扎实基础+持续成长”的平衡。技术层面需要覆盖三个维度:硬技能(数据库
recommend-type

Java Web应用开发教程:Struts与Hibernate实例解析

在深入探讨所给文件的标题、描述以及标签后,我们可以从中学到关于Struts和Hibernate的知识,以及它们如何在构建基于MVC模式的高效Java Web应用中发挥作用。 **标题解读** 标题中提到了“Struts与Hibernate实用教程”以及“构建基于MVC模式的高效Java Web应用例子代码(8)”,这意味着本教程提供了在开发过程中具体实施MVC架构模式的示例和指导。在这里,MVC(Model-View-Controller)模式作为一种架构模式,被广泛应用于Web应用程序的设计中,其核心思想是将应用分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。模型负责数据的处理和业务逻辑,视图负责展示数据,而控制器负责处理用户输入以及调用模型和视图去完成业务流程。 **描述解读** 描述部分进一步强调了该教程包含的是具体的例子代码,这些例子是实现高效Java Web应用的一部分,并且教程分成了10个部分。这表明学习者可以通过实际的例子来学习如何使用Struts和Hibernate实现一个基于MVC模式的Web应用。Struts是Apache Software Foundation的一个开源Web应用框架,它采用MVC模式来分离业务逻辑、数据模型和用户界面。Hibernate是一个开源的对象关系映射(ORM)工具,它简化了Java应用与关系数据库之间的交互。 **标签解读** 标签“j2ee,源码”揭示了本教程的适用范围和技术栈。J2EE(Java Platform, Enterprise Edition)是一个用于开发企业级应用的平台,它提供了构建多层企业应用的能力。源码(Source Code)表示本教程将提供代码级别的学习材料,允许学习者查看和修改实际代码来加深理解。 **压缩包子文件的文件名称列表解读** 文件名称列表中的“ch8”表示这一部分教程包含的是第八章节的内容。虽然我们没有更多的章节信息,但可以推断出这是一个系列教程,而每一个章节都可能涵盖了一个具体的例子或者是MVC模式实现中的一个特定部分。 **详细知识点** 在深入探讨了上述概念后,我们可以总结出以下知识点: 1. **MVC模式**: 详细解释MVC模式的设计原理以及在Web应用中的作用,包括如何将应用程序分为模型、视图和控制器三个部分,以及它们之间的交互。 2. **Struts框架**: 介绍Struts框架的基本组件,如Action、ActionForm、ActionServlet等,以及如何在Web应用中使用Struts框架来实现控制器部分的功能。 3. **Hibernate ORM**: 讲解Hibernate如何通过注解或XML配置文件将Java对象映射到数据库表,以及如何使用Hibernate的会话(Session)来管理数据库交互。 4. **Java Web应用开发**: 讲述开发Java Web应用所需要了解的技术,例如Java Servlet、JSP(Java Server Pages)、JavaBeans等。 5. **实际例子**: 分析提供的例子代码,理解如何将Struts和Hibernate集成在真实的Web应用项目中,完成从数据模型到用户界面的全部流程。 6. **代码实践**: 详细解释例子中提供的源代码,理解其背后的逻辑,并能够通过实践加深对代码结构和功能的理解。 7. **企业级应用开发**: 阐述J2EE平台的重要性和它在构建大型、可扩展企业级应用中的优势,以及如何利用J2EE平台上的各种技术。 综上所述,这份教程通过结合Struts和Hibernate框架,并运用MVC设计模式,为Java Web应用开发者提供了一个高效的学习路径。通过例子代码的实践,开发者能够更好地理解如何构建和维护复杂的Web应用。