活动介绍

代码解释:os.makedirs('images/train', exist_ok=True) os.makedirs('images/val', exist_ok=True) os.makedirs('images/test', exist_ok=True) os.makedirs('labels/train', exist_ok=True) os.makedirs('labels/val', exist_ok=True) os.makedirs('labels/test', exist_ok=True) listdir = os.listdir(txtpath) train, test = train_test_split(listdir, test_size=test_size, shuffle=True, random_state=0) train, val = train_test_split(train, test_size=val_size, shuffle=True, random_state=0)

时间: 2023-06-08 19:04:27 浏览: 585
这段代码是在创建文件夹,用来存储训练数据集、验证数据集和测试数据集。通过使用os.makedirs函数可以创建多层级目录,并使用exist_ok=True参数来确保若目录已存在则不会抛出异常。接下来,代码读取文本文件目录列表并使用train_test_split函数,将其分为训练集、测试集和验证集。其中,参数test_size和val_size分别代表测试集和验证集所占比例。
相关问题

import os, shutil from sklearn.model_selection import train_test_split val_size = 0.2 #test_size = 0.2 postfix = 'jpg' imgpath = r'D:\yolov10-main\RXdata\images' txtpath = r'D:\yolov10-main\RXdata\labels' output_train_img_folder =r'D:\yolov10-main\RXdata\dataset_kengwa/images/train' output_val_img_folder = r'D:\yolov10-main\RXdata\dataset_kengwa/images/val' output_train_txt_folder = r'D:\yolov10-main\RXdata\dataset_kengwa\labels/train' output_val_txt_folder = r'E:D:\yolov10-main\RXdata\dataset_kengwa\labels/val' os.makedirs(output_train_img_folder, exist_ok=True) os.makedirs(output_val_img_folder, exist_ok=True) os.makedirs(output_train_txt_folder, exist_ok=True) os.makedirs(output_val_txt_folder, exist_ok=True) listdir = [i for i in os.listdir(txtpath) if 'txt' in i] train, val = train_test_split(listdir, test_size=val_size, shuffle=True, random_state=0) #todo:需要test放开 # train, test = train_test_split(listdir, test_size=test_size, shuffle=True, random_state=0) # train, val = train_test_split(train, test_size=val_size, shuffle=True, random_state=0) for i in train: img_source_path = os.path.join(imgpath, '{}.{}'.format(i[:-4], postfix)) txt_source_path = os.path.join(txtpath, i) img_destination_path = os.path.join(output_train_img_folder, '{}.{}'.format(i[:-4], postfix)) txt_destination_path = os.path.join(output_train_txt_folder, i) shutil.copy(img_source_path, img_destination_path) shutil.copy(txt_source_path, txt_destination_path) for i in val: img_source_path = os.path.join(imgpath, '{}.{}'.format(i[:-4], postfix)) txt_source_path = os.path.join(txtpath, i) img_destination_path = os.path.join(output_val_img_folder, '{}.{}'.format(i[:-4], postfix)) txt_destination_path = os.path.join(output_val_txt_folder, i) shutil.copy(img_source_path, img_destination_path) shutil.copy(txt_source_path, txt_destination_path) # # for i in train: # shutil.copy('{}/{}.{}'.format(imgpath, i[:-4], postfix), r'E:

<think>好的,我现在需要帮用户解决如何使用Python中的shutil和sklearn实现图像和标签文件的数据集划分及复制操作。首先,用户提到了shutil和sklearn,所以我要考虑这两个库在数据集处理中的常见用法。shutil通常用于文件操作,比如复制、移动,而sklearn中的train_test_split函数常用于数据集的划分。 用户的需求是划分图像和对应的标签文件,并复制到相应的目录中。这里的关键点是要确保图像和标签文件在划分后保持一一对应。例如,如果有一个图像文件image1.jpg,对应的标签可能是image1.txt,这样在划分训练集、验证集和测试集时,两者需要同步处理,否则会导致数据不匹配的问题。 接下来,我需要回忆一下shutil的用法,比如shutil.copy可以复制文件到指定路径。然后是sklearn的train_test_split,这个函数可以方便地将数据集分成训练集、验证集和测试集。通常的做法是先获取所有文件的列表,然后划分索引,再根据索引复制文件。 可能需要注意的步骤包括:获取所有图像文件的列表,提取对应的标签文件名,确保两者的顺序一致。然后使用train_test_split两次,第一次分出训练集和临时集,第二次从临时集中分出验证集和测试集。比如先分出80%训练,剩下的20%再分成50%验证和50%测试,这样总的比例就是80:10:10。 另外,目录结构的创建也很重要。需要检查目标目录是否存在,如果不存在则用os.makedirs创建。在复制文件时,要遍历每个划分后的文件列表,将图像和标签同时复制到对应的目录中。 可能会遇到的问题包括文件路径处理错误,比如文件名拼接不正确,或者标签文件不存在导致错误。因此,在代码中需要添加检查,确保每个图像文件都有对应的标签文件,避免程序崩溃。此外,随机划分时的随机种子设置,以确保结果的可重复性。 参考用户提供的引用内容,特别是引用[1]中提到的数据集划分脚本,可能需要类似的逻辑,但需要适配图像和标签文件的同步处理。引用[2]中的process_images函数可能不需要,因为用户的问题是关于文件操作而不是图像处理。 最后,测试代码的步骤也需要考虑,比如使用示例数据验证是否正确复制,目录结构是否正确,文件是否一一对应等。同时,用户可能需要调整划分比例,或者添加更多的功能,比如分层抽样,这时候可能需要用到sklearn的StratifiedKFold,但根据当前需求,train_test_split应该足够。 总结下来,步骤应该是:1. 整理文件列表,确保图像和标签对应;2. 划分索引;3. 创建目录结构;4. 复制文件到相应目录。代码中需要注意异常处理和路径操作的正确性。</think>以下是如何使用Python中shutil和sklearn实现图像与标签文件的数据集划分及复制操作的完整方案: ### 一、实现步骤 1. **目录结构准备** ```python import os from sklearn.model_selection import train_test_split import shutil # 原始数据路径 src_images = "datasets/images" src_labels = "datasets/labels" # 目标路径 dest_base = "datasets_split" splits = ["train", "val", "test"] for split in splits: os.makedirs(f"{dest_base}/images/{split}", exist_ok=True) os.makedirs(f"{dest_base}/labels/{split}", exist_ok=True) ``` 2. **文件列表同步划分** ```python # 获取所有图像文件名(不带扩展名) image_files = [os.path.splitext(f)[0] for f in os.listdir(src_images)] # 划分数据集(示例比例:70%训练,15%验证,15%测试) train_files, temp_files = train_test_split(image_files, test_size=0.3, random_state=42) val_files, test_files = train_test_split(temp_files, test_size=0.5, random_state=42) ``` 3. **文件复制函数** ```python def copy_files(files, split_type): for file_base in files: # 复制图像文件 src_img = os.path.join(src_images, f"{file_base}.jpg") # 假设图像为jpg格式 dest_img = os.path.join(dest_base, "images", split_type, f"{file_base}.jpg") shutil.copy(src_img, dest_img) # 复制标签文件 src_label = os.path.join(src_labels, f"{file_base}.txt") # 假设标签为txt格式 dest_label = os.path.join(dest_base, "labels", split_type, f"{file_base}.txt") if os.path.exists(src_label): shutil.copy(src_label, dest_label) ``` 4. **执行复制操作** ```python copy_files(train_files, "train") copy_files(val_files, "val") copy_files(test_files, "test") ``` ### 二、关键要点说明 1. **文件同步机制**:通过`file_base`确保图像与标签文件的对应关系,避免数据错位[^1] 2. **随机状态设置**:`random_state=42`保证每次划分结果一致,便于复现实验 3. **扩展名适配**:支持修改`.jpg`和`.txt`为其他格式(如PNG/XML) 4. **异常处理**:建议添加`try-except`块处理缺失标签文件的情况 ### 三、验证操作 ```python # 验证各分区的文件数量 print(f"Train: {len(os.listdir(f'{dest_base}/images/train'))} images") print(f"Val: {len(os.listdir(f'{dest_base}/images/val'))} images") print(f"Test: {len(os.listdir(f'{dest_base}/images/test'))} images") ``` ### 四、进阶优化建议 1. **分层抽样**:使用`StratifiedShuffleSplit`保持类别分布 2. **增量复制**:添加进度条显示(可结合tqdm库) 3. **日志记录**:生成划分记录文件保存文件名与分组的对应关系[^3]

# 将数据集按照 80% - 20% 的比例划分为训练集和验证集 train_dir = os.path.join(data_dir, 'train') val_dir = os.path.join(data_dir, 'val') if not os.path.exists(val_dir): os.makedirs(train_dir) os.makedirs(val_dir) # 遍历每个标签的文件夹 for label in labels: label_dir = os.path.join(data_dir, label) images = os.listdir(label_dir) random.shuffle(images) # 随机打乱图像顺序 # 划分训练集和验证集 split_index = int(0.8 * len(images)) train_images = images[:split_index] val_images = images[split_index:] # 将训练集和验证集图像复制到对应的文件夹中 for image in train_images: src_path = os.path.join(label_dir, image) dst_path = os.path.join(train_dir, label, image) os.makedirs(os.path.dirname(dst_path), exist_ok=True) # 确保目标文件夹存在 shutil.copy(src_path, dst_path) for image in val_images: src_path = os.path.join(label_dir, image) dst_path = os.path.join(val_dir, label, image) os.makedirs(os.path.dirname(dst_path), exist_ok=True) # 确保目标文件夹存在 shutil.copy(src_path, dst_path) #print("数据集已成功划分为训练集和验证集。") # 定义数据集 train_data = datasets.ImageFolder(train_dir, transform=transform) val_data = datasets.ImageFolder(val_dir, transform=transform) 出现了这个错误name 'transform' is not defined

这个错误是因为代码中使用了变量 transform,但是没有定义。通常情况下,在 PyTorch 中定义数据集时需要对数据进行预处理,如图像的大小调整、归一化等操作,这些预处理操作会通过 transform 变量进行定义。因此,你需要确认是否在代码前面定义了相应的 transform 变量。如果没有定义,你可以参考 PyTorch 官方文档中的示例代码进行定义,或者自行定义适合你的数据集的 transform 变量。
阅读全文

相关推荐

import os import shutil import random # random.seed(0) #随机种子,可自选开启 def split_data(file_path, label_path, new_file_path, train_rate, val_rate, test_rate): images = os.listdir(file_path) labels = os.listdir(label_path) images_no_ext = {os.path.splitext(image)[0]: image for image in images} labels_no_ext = {os.path.splitext(label)[0]: label for label in labels} matched_data = [(img, images_no_ext[img], labels_no_ext[img]) for img in images_no_ext if img in labels_no_ext] unmatched_images = [img for img in images_no_ext if img not in labels_no_ext] unmatched_labels = [label for label in labels_no_ext if label not in images_no_ext] if unmatched_images: print("未匹配的图片文件:") for img in unmatched_images: print(images_no_ext[img]) if unmatched_labels: print("未匹配的标签文件:") for label in unmatched_labels: print(labels_no_ext[label]) random.shuffle(matched_data) total = len(matched_data) train_data = matched_data[:int(train_rate * total)] val_data = matched_data[int(train_rate * total):int((train_rate + val_rate) * total)] test_data = matched_data[int((train_rate + val_rate) * total):] # 处理训练集 for img_name, img_file, label_file in train_data: old_img_path = os.path.join(file_path, img_file) old_label_path = os.path.join(label_path, label_file) new_img_dir = os.path.join(new_file_path, 'train', 'images') new_label_dir = os.path.join(new_file_path, 'train', 'labels') os.makedirs(new_img_dir, exist_ok=True) os.makedirs(new_label_dir, exist_ok=True) shutil.copy(old_img_path, os.path.join(new_img_dir, img_file)) shutil.copy(old_label_path, os.path.join(new_label_dir, label_file)) # 处理验证集 for img_name, img_file, label_file in val_data: old_img_path = os.path.join(file_path, img_file) old_label_path = os.path.join(label_path, label_file) new_img_dir = os.path.join(new_file_path, 'val', 'images') new_label_dir = os.path.join(new_file_path, 'val', 'labels') os.makedirs(new_img_dir, exist_ok=True) os.makedirs(new_label_dir,

# 定义数据集路径和标签 data_dir = "D:/wjd" # 数据集路径 labels = ['Ag', 'Al', 'Au', 'Cu', 'W', 'V', 'Mo', 'Ta'] # 标签 # 将数据集按照 80% - 20% 的比例划分为训练集和验证集 train_dir = os.path.join(data_dir, 'train') val_dir = os.path.join(data_dir, 'val') if not os.path.exists(val_dir): os.makedirs(train_dir) os.makedirs(val_dir) # 遍历每个标签的文件夹 for label in labels: label_dir = os.path.join(data_dir, label) images = os.listdir(label_dir) random.shuffle(images) # 随机打乱图像顺序 # 划分训练集和验证集 split_index = int(0.8 * len(images)) train_images = images[:split_index] val_images = images[split_index:] # 将训练集和验证集图像复制到对应的文件夹中 for image in train_images: src_path = os.path.join(label_dir, image) dst_path = os.path.join(train_dir, label, image) os.makedirs(os.path.dirname(dst_path), exist_ok=True) # 确保目标文件夹存在 shutil.copy(src_path, dst_path) for image in val_images: src_path = os.path.join(label_dir, image) dst_path = os.path.join(val_dir, label, image) os.makedirs(os.path.dirname(dst_path), exist_ok=True) # 确保目标文件夹存在 shutil.copy(src_path, dst_path) #print("数据集已成功划分为训练集和验证集。") # 定义数据预处理 transform_train = transforms.Compose([ transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) transform_val = transforms.Compose([ transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 定义数据集 train_data = datasets.ImageFolder(train_dir, transform=transform) val_data = datasets.ImageFolder(val_dir, transform=transform),这里出现了错误

我用这段代码来添加low-count泊松噪声import cv2 import numpy as np import os from tqdm import tqdm 配置参数 input_dir = “datasets/Kodak24_poisson/gt_color” # 输入文件夹 gt_dir = “datasets/Kodak24_poisson/gt” # 地面真值输出文件夹 noisy_dir = “datasets/Kodak24_poisson/noisy” # 噪声图像输出文件夹 scale_factor = 50 # 光子计数缩放系数 (控制噪声水平) bit_depth = 16 # 输出图像位深 (16-bit TIFF) 创建输出目录 os.makedirs(gt_dir, exist_ok=True) os.makedirs(noisy_dir, exist_ok=True) 获取文件列表 file_list = [f for f in os.listdir(input_dir) if f.endswith(“.png”)] for filename in tqdm(file_list, desc=“Processing images”): # 读取并转换图像 img = cv2.imread(os.path.join(input_dir, filename)) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换到光子计数域 (模拟低光子特性) photon_counts = (gray.astype(np.float32) / 255) * scale_factor # 保存地面真值 (16-bit TIFF) gt_output = photon_counts.astype(np.uint16 if bit_depth == 16 else np.uint8) cv2.imwrite(os.path.join(gt_dir, filename.replace(".png", ".tiff")), gt_output) # 生成泊松噪声 noisy_counts = np.random.poisson(photon_counts).astype(np.uint16) # 保存噪声图像 cv2.imwrite(os.path.join(noisy_dir, filename.replace(".png", ".tiff")), noisy_counts) # 计算噪声特性 mean_val = np.mean(noisy_counts) var_val = np.var(noisy_counts) ratio = mean_val / var_val if var_val != 0 else 0 # 输出统计信息 print(f"\nImage: {filename}") print(f"Mean: {mean_val:.2f} Variance: {var_val:.2f}") print(f"Mean/Variance Ratio: {ratio:.2f} (Target: ≈1.00)") print("Poisson noise verification:", "PASS" if 0.9 < ratio < 1.1 else "WARNING") 可是得到的值中均值和方差区别很大。Processing images: 0%| | 0/24 [00:00<?, ?it/s] Image: kodim14.png Mean: 20.25 Variance: 113.15 Mean/Variance Ratio: 0.18 (Target: ≈1.00) Poisson noise verification: WARNING Processing images: 4%|██▉ | 1/24 [00:00<00:09, 2.47it/s] Image: kodim18.png Mean: 14.24 Variance: 71.71 Mean/Variance Ratio: 0.20 (Target: ≈1.00) Poisson noise verification: WARNING Image: kodim01.png Mean: 22.00 Variance: 82.89 Mean/Variance Ratio: 0.27 (Target: ≈1.00) Poisson noise verification: WARNING Image: kodim20.png Mean: 33.64 Variance: 347.59 Mean/Variance Ratio: 0.10 (Target: ≈1.00) Poisson noise verification: WARNING Processing images: 17%|███████████▌ | 4/24 [00:00<00:02, 9.00it/s] Image: kodim09.png Mean: 27.31 Variance: 94.83 Mean/Variance Ratio: 0.29 (Target: ≈1.00) Poisson noise verification: WARNING Image: kodim15.png Mean: 14.96 Variance: 143.61 Mean/Variance Ratio: 0.10 (Target: ≈1.00) Poisson noise verification: WARNING Image: kodim05.png Mean: 16.12 Variance: 119.03 Mean/Variance Ratio: 0.14 (Target: ≈1.00) Poisson noise verification: WARNING Processing images: 29%|████████████████████▏ | 7/24 [00:00<00:01, 13.31it/s] Image: kodim04.png

import os import numpy as np from scipy.io import loadmat def mat_to_npy(mat_path, save_path, chunk_size=401*1024): mat = loadmat(mat_path) # 提取振动信号(假设信号存储在'X'开头的变量中) signal = mat[next(key for key in mat if key.startswith('X'))] # 转换为一维数组 signal = signal.flatten() # 计算每个chunk的样本数(假设每个float32占4字节) samples_per_chunk = chunk_size // 4 # 分割数据 for i in range(0, len(signal), samples_per_chunk): chunk = signal[i:i+samples_per_chunk] np.save(f"{save_path}_part{i//samples_per_chunk}.npy", chunk) root_dir = "data/real" os.makedirs(os.path.join(root_dir, "train", "normal"), exist_ok=True) os.makedirs(os.path.join(root_dir, "val", "normal"), exist_ok=True) for fault_type in ["inner_race", "outer_race", "roller"]: os.makedirs(os.path.join(root_dir, "train", fault_type), exist_ok=True) os.makedirs(os.path.join(root_dir, "val", fault_type), exist_ok=True) def process_data(input_dir, output_dir, category): for load in os.listdir(input_dir): load_dir = os.path.join(input_dir, load) if not os.path.isdir(load_dir): continue # 划分训练集和验证集(示例:负载0-2为训练,负载3为验证) split = "train" if load != "3" else "val" for mat_file in os.listdir(load_dir): if mat_file.endswith(".mat"): mat_path = os.path.join(load_dir, mat_file) save_path = os.path.join(output_dir, split, category, mat_file[:-4]) mat_to_npy(mat_path, save_path) # 处理正常数据 normal_dir = "CRWU/Normal Baseline" process_data(normal_dir, "data/real", "normal") # 处理故障数据 fault_categories = { "Ball": "roller", "Inner Race": "inner_race", "Outer Race": "outer_race" } for freq_dir in ["12k Drive End Bearing Fault Data", "48k Drive End Bearing Fault Data", "12k Fan End Bearing Fault Data"]: for fault_type, target in fault_categories.items(): fault_path = os.path.join("CRWU", freq_dir, fault_type) if os.path.exists(fault_path): process_data(fault_path, "data/real", target)

import os import shutil from sklearn.model_selection import train_test_split import pandas as pd # 定义源目录路径 source_folder = 'C:/Users\Lenovo\Desktop\crcw不同端12k在0负载下\风扇端' subfolders = ["内圈故障", "球故障"] # 创建目标文件夹结构 target_folders = { 'train': '训练集', 'val': '验证集', 'test': '测试集' } os.makedirs('划分后的数据', exist_ok=True) for key, folder in target_folders.items(): for subfolder in subfolders: path = os.path.join('划分后的数据', folder, subfolder) os.makedirs(path, exist_ok=True) # 遍历每个子文件夹并读取CSV文件 all_data = [] for subfolder in subfolders: folder_path = os.path.join(source_folder, subfolder) files = [f for f in os.listdir(folder_path) if f.endswith('.csv')] # 将所有数据加载到列表中 for file in files: data = pd.read_csv(os.path.join(folder_path, file)) all_data.append((data, subfolder)) # 划分数据集 train_val, test = train_test_split(all_data, test_size=0.2, random_state=42) train, val = train_test_split(train_val, test_size=0.25, random_state=42) # 即最终比例为6:2:2 # 移动文件至对应的目标文件夹 def move_files(data_list, target_dir): for data, label in data_list: filename = f"{label}_{hash(str(data.iloc[0].values))}.csv" # 确保唯一性 save_path = os.path.join(target_folders[target_dir], label, filename) data.to_csv(save_path, index=False) move_files(train, 'train') move_files(val, 'val') move_files(test, 'test') print("数据集已成功划分为训练集、验证集和测试集!")可以分析一下这段代码吗

import tensorflow as tf import os import matplotlib.pyplot as plt from time import time # 定义标签字典(根据实际类别修改) label_dict = { 'electrodrill': 0, 'headphones': 1, 'keyboard': 2, 'mobile_phone': 3, 'monitor': 4, 'mouse': 5, 'multimeter': 6, 'number': 7, 'oscillograph': 8, 'pliers': 9, 'printer': 10, 'screwdriver': 11, 'soldering_iron': 12, 'speaker': 13, 'tape_measure': 14, 'wrench': 15 } def data_load(data_dir, test_data_dir, img_height, img_width, batch_size): def process_image(image_path): image = tf.io.read_file(image_path) image = tf.image.decode_jpeg(image, channels=3) image = tf.image.resize(image, [img_height, img_width]) image = (image / 127.5) - 1.0 # MobileNet标准化 return image def parse_path(path): # 转换为numpy字符串处理路径 path_str = path.numpy().decode('utf-8') # 获取类别文件夹名 class_name = tf.strings.split(path_str, os.path.sep)[-2].numpy().decode('utf-8') # 从预定义的字典获取标签索引 label_idx = label_dict.get(class_name, -1) # -1表示未知类别 if label_idx == -1: raise ValueError(f"未知类别: {class_name}") return process_image(path), label_idx def map_fn(path): # 使用py_function包装Python逻辑 image, label = tf.py_function( func=parse_path, inp=[path], Tout=[tf.float32, tf.int32] ) # 设置明确的Tensor形状 image.set_shape([img_height, img_width, 3]) label.set_shape([]) # 将标签转换为one-hot编码 label = tf.one_hot(label, depth=len(label_dict)) return image, label def load_dataset(directory): # 获取所有图片路径 dataset = tf.data.Dataset.list_files(directory + '/*/*.jpg', shuffle=True) # 应用处理函数 dataset = dataset.map( map_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE ) return dataset # 加载数据集 train_ds = load_dataset(data_dir) val_ds = load_dataset(test_data_dir) # 批处理和预取 train_ds = train_ds.batch(batch_size).prefetch(tf.data.experimental.AUTOTUNE) val_ds = val_ds.batch(batch_size).prefetch(tf.data.experimental.AUTOTUNE) # 验证数据预处理是否正确 for images, labels in train_ds.take(1): # 检查图像标准化是否正确 min_value = tf.reduce_min(images) max_value = tf.reduce_max(images) print(f"图像标准化检查: 最小值 = {min_value.numpy()}, 最大值 = {max_value.numpy()}") assert min_value >= -1 and max_value <= 1, "图像标准化错误,范围应为[-1, 1]" # 检查标签是否为one-hot编码且正确 print("标签示例:", labels[0].numpy()) # 应为one-hot如[0,0,1,...,0] assert tf.reduce_sum(labels[0]).numpy() == 1, "标签应该是one-hot编码,其中只有一个值为1,其余为0" return train_ds, val_ds def model_load(IMG_SHAPE=(224, 224, 3), class_num=16, learning_rate=0.01): # 添加learning_rate参数 base_model = tf.keras.applications.MobileNetV2( input_shape=IMG_SHAPE, include_top=False, weights='imagenet' ) base_model.trainable = False model = tf.keras.Sequential([ base_model, tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(class_num, activation='softmax') ]) # 显式设置学习率的优化器 optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) model.compile( optimizer=optimizer, # 使用自定义优化器 loss='categorical_crossentropy', metrics=['accuracy'] ) model.summary() return model def show_loss_acc(history): acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] plt.figure(figsize=(8, 8)) plt.subplot(2, 1, 1) plt.plot(acc, label='Training Accuracy') plt.plot(val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.ylabel('Accuracy') plt.ylim([min(plt.ylim()), 1]) plt.title('Training and Validation Accuracy') plt.subplot(2, 1, 2) plt.plot(loss, label='Training Loss') plt.plot(val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.ylabel('Cross Entropy') plt.title('Training and Validation Loss') plt.xlabel('epoch') plt.savefig('results/results_mobilenet.png', dpi=100) def train(epochs): begin_time = time() # 创建必要目录 os.makedirs("models", exist_ok=True) os.makedirs("results", exist_ok=True) try: print("加载数据集中...") train_ds, val_ds = data_load( "C:/Users/dll20/Desktop/vegetables_tf2.3-master/new_data/train", "C:/Users/dll20/Desktop/vegetables_tf2.3-master/new_data/val", 224, 224, 16 ) # 验证数据加载 for images, labels in train_ds.take(1): print(f"图像形状: {images.shape}, 标签形状: {labels.shape}") print(f"标签示例: {labels[0].numpy()}") print("类别数量:", len(label_dict)) print("类别映射:", label_dict) model = model_load(class_num=len(label_dict)) print("开始训练...") history = model.fit( train_ds, validation_data=val_ds, epochs=epochs, verbose=1 ) model.save("models/mobilenet_engineer.h5") show_loss_acc(history) except Exception as e: print(f"训练出错: {str(e)}") import traceback traceback.print_exc() finally: print(f"总耗时: {time() - begin_time:.2f}秒") if __name__ == '__main__': # 配置TensorFlow tf.config.run_functions_eagerly(False) physical_devices = tf.config.list_physical_devices('GPU') if physical_devices: tf.config.experimental.set_memory_growth(physical_devices[0], True) 图像标准化检查: 最小值 = -1.0, 最大值 = 1.0 标签示例: [0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.] 图像形状: (16, 224, 224, 3), 标签形状: (16, 16) 标签示例: [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] 类别数量: 16 类别映射: {'electrodrill': 0, 'headphones': 1, 'keyboard': 2, 'mobile_phone': 3, 'monitor': 4, 'mouse': 5, 'multimeter': 6, 'number': 7, 'oscillograph': 8, 'pliers': 9, 'printer': 10, 'screwdriver': 11, 'soldering_iron': 12, 'speaker': 13, 'tape_measure': 14, 'wrench': 15} Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= mobilenetv2_1.00_224 (Functi (None, 7, 7, 1280) 2257984 _________________________________________________________________ global_average_pooling2d (Gl (None, 1280) 0 _________________________________________________________________ dense (Dense) (None, 16) 20496 ================================================================= Total params: 2,278,480 Trainable params: 20,496 Non-trainable params: 2,257,984 _________________________________________________________________ 开始训练... Epoch 1/100 2025-05-17 20:14:57.943383: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cublas64_10.dll 2025-05-17 20:16:05.881342: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library cudnn64_7.dll 2025-05-17 20:19:28.437448: W tensorflow/stream_executor/gpu/redzone_allocator.cc:314] Internal: Invoking GPU asm compilation is supported on Cuda non-Windows platforms only Relying on driver to perform ptx compilation. Modify $PATH to customize ptxas location. This message will be only logged once. 1024/1024 [==============================] - 53s 52ms/step - loss: 9.9016 - accuracy: 0.0606 - val_loss: 9.3069 - val_accuracy: 0.0701 Epoch 2/100 1024/1024 [==============================] - 77s 75ms/step - loss: 10.5672 - accuracy: 0.0642 - val_loss: 10.8782 - val_accuracy: 0.0718 Epoch 3/100 1024/1024 [==============================] - 80s 78ms/step - loss: 10.6035 - accuracy: 0.0639 - val_loss: 10.8998 - val_accuracy: 0.0658 Epoch 4/100 1024/1024 [==============================] - 78s 76ms/step - loss: 10.4597 - accuracy: 0.0658 - val_loss: 9.5053 - val_accuracy: 0.0581 Epoch 5/100 1024/1024 [==============================] - 77s 75ms/step - loss: 10.1673 - accuracy: 0.0596 - val_loss: 12.2643 - val_accuracy: 0.0620 Epoch 6/100 1024/1024 [==============================] - 81s 79ms/step - loss: 10.1886 - accuracy: 0.0628 - val_loss: 9.2048 - val_accuracy: 0.0641 Epoch 7/100 1024/1024 [==============================] - 78s 76ms/step - loss: 10.2992 - accuracy: 0.0630 - val_loss: 10.0681 - val_accuracy: 0.0658 Epoch 8/100 1024/1024 [==============================] - 65s 63ms/step - loss: 10.2812 - accuracy: 0.0665 - val_loss: 12.2382 - val_accuracy: 0.0645 Epoch 9/100 1024/1024 [==============================] - 76s 74ms/step - loss: 11.4436 - accuracy: 0.0637 - val_loss: 9.5845 - val_accuracy: 0.0697 Epoch 10/100 1024/1024 [==============================] - 55s 54ms/step - loss: 10.2822 - accuracy: 0.0664 - val_loss: 9.9871 - val_accuracy: 0.0632 Epoch 11/100 1024/1024 [==============================] - 56s 55ms/step - loss: 10.9518 - accuracy: 0.0647 - val_loss: 12.8353 - val_accuracy: 0.0603 Epoch 12/100 1024/1024 [==============================] - 57s 55ms/step - loss: 10.7480 - accuracy: 0.0646 - val_loss: 10.8068 - val_accuracy: 0.0607 Epoch 13/100 1024/1024 [==============================] - 56s 54ms/step - loss: 10.3040 - accuracy: 0.0618 - val_loss: 11.6900 - val_accuracy: 0.0628 Epoch 14/100 1024/1024 [==============================] - 54s 52ms/step - loss: 10.5912 - accuracy: 0.0630 - val_loss: 14.3563 - val_accuracy: 0.0778 Epoch 15/100 1024/1024 [==============================] - 53s 52ms/step - loss: 10.7772 - accuracy: 0.0635 - val_loss: 11.0138 - val_accuracy: 0.0641 Epoch 16/100 1024/1024 [==============================] - 53s 52ms/step - loss: 10.1329 - accuracy: 0.0651 - val_loss: 11.0438 - val_accuracy: 0.0632 Epoch 17/100 1024/1024 [==============================] - 54s 52ms/step - loss: 10.4157 - accuracy: 0.0617 - val_loss: 11.4240 - val_accuracy: 0.0662 Epoch 18/100 1024/1024 [==============================] - 57s 55ms/step - loss: 10.4042 - accuracy: 0.0635 - val_loss: 11.6729 - val_accuracy: 0.0624 train(epochs=100) 我上述代码运行输出 一共16个类 正确率一直这么低 基本没变化 感觉就是没用上这个模型的感觉 不是微调的问题 我的目的是图像分类出16个种类 帮我检查这个代码 帮我找找原因

# by CSDN 迪菲赫尔曼 import os import random import shutil def copy_files(src_dir, dst_dir, filenames, extension): os.makedirs(dst_dir, exist_ok=True) missing_files = 0 for filename in filenames: src_path = os.path.join(src_dir, filename + extension) dst_path = os.path.join(dst_dir, filename + extension) # Check if the file exists before copying if os.path.exists(src_path): shutil.copy(src_path, dst_path) else: print(f"Warning: File not found for {filename}") missing_files += 1 return missing_files def split_and_copy_dataset(image_dir, label_dir, output_dir, train_ratio=0.7, valid_ratio=0.15, test_ratio=0.15): # 获取所有图像文件的文件名(不包括文件扩展名) image_filenames = [os.path.splitext(f)[0] for f in os.listdir(image_dir)] # 随机打乱文件名列表 random.shuffle(image_filenames) # 计算训练集、验证集和测试集的数量 total_count = len(image_filenames) train_count = int(total_count * train_ratio) valid_count = int(total_count * valid_ratio) test_count = total_count - train_count - valid_count # 定义输出文件夹路径 train_image_dir = os.path.join(output_dir, 'train', 'images') train_label_dir = os.path.join(output_dir, 'train', 'labels') valid_image_dir = os.path.join(output_dir, 'valid', 'images') valid_label_dir = os.path.join(output_dir, 'valid', 'labels') test_image_dir = os.path.join(output_dir, 'test', 'images') test_label_dir = os.path.join(output_dir, 'test', 'labels') # 复制图像和标签文件到对应的文件夹 train_missing_files = copy_files(image_dir, train_image_dir, image_filenames[:train_count], '.jpg') train_missing_files += copy_files(label_dir, train_label_dir, image_filenames[:train_count], '.txt') valid_missing_files = copy_files(image_dir, valid_image_dir, image_filenames[train_count:train_count + valid_count], '.jpg') valid_missing_files += copy_files(label_dir, valid_label_dir, image_filenames[train_count:train_count + valid_count], '.txt')

大家在看

recommend-type

PCL点云官方点云数据.zip

PCL官方点云数据,包含全部全部点云数据,可以用于官方所有例子的测试与比较,其中有著名的斯坦福大学提供的兔子模型,马模型等。
recommend-type

基于强化学习的坦克大战python语言实现

该游戏有两个系统。一个是玩家控制的小车。还有一个AI控制的坦克可以自动探寻敌方坦克所在位置,进行攻击。 运行run_examples.py文件,可以实现坦克战斗界面,其中: machine_control() # human_control() 两个函数进行选择性注释,第一个为增强学习后的坦克大战。第二个函数 human_control()为认为操作进行坦克大战。 run_RF.py函数实现了增强学习模型训练过程。 坦克大战功能: 人工操作坦克控制功能 使用pygame库之后,可以检测玩家的控制,当玩家按下按键后,就可以映射到我方坦克上,从而进行操控。基本操作是: w——前进 s——后退 a——向左前进 d——向右前进 空格——发射导弹 Tensorflow(神经网络编程框架) 2.12 Keras(高级神经网络框架) 2.3.4
recommend-type

数字逻辑与数字系统设计习题 卢建华版 参考答案

数字逻辑与数字系统设计--基于Proteus VSM和Verilog HDL 卢建华 邵平凡 编著 课后习题答案
recommend-type

Foxit Quick PDF Library 17.11

著名的PDF编程插件17.11版本,已解压,手动安装,支持Delphi 10.3 Rio Quick PDF Library for Windows ActiveX – ActiveX COM for Windows development supports C#, Visual C++, C++ Builder, Delphi, Visual Basic, PHP, Python, Java, PowerBASIC and more. 32-bit and 64-bit versions. DLL – Dynamically-linked library for Windows development
recommend-type

MPU9250-MPL-STM32F1

STM32F103C8T6 通过PC11(SDA),PC12(SCL)与MPU9250连接,用MPL姿态解算出姿态角

最新推荐

recommend-type

《Babysitting-on-a-Spring-Day》Spring-Is-Coming-PPT下载.pptx

《Babysitting-on-a-Spring-Day》Spring-Is-Coming-PPT下载.pptx
recommend-type

《Babysitting-on-a-Spring-Day》Spring-Is-Coming-PPT.pptx

《Babysitting-on-a-Spring-Day》Spring-Is-Coming-PPT.pptx
recommend-type

C# winform通过扫码枪自动扫描实现的货物出入库、订单管理系统

winform通过扫码枪自动扫描实现的货物出入库、订单管理系统。 扫码功能注意事项 程序启动时将输入法更改为英文输入,将鼠标光标放置在扫描结果后的输入框内。扫码枪可以扫描条形码和二维码,具体可扫描类型请参考连接在系统的扫码枪。 扫描结果根据正则表达式进行匹配,如有需要修改并使用,请在MyPatternStr类中修改表达式。
recommend-type

SysY语言编译器项目-支持SysY语言词法分析语法分析语义分析中间代码生成目标代码优化-为计算机专业学生和编译器开发者提供完整教学参考实现-使用LLVM框架实现前端词法解析器语法.zip

SysY语言编译器项目_支持SysY语言词法分析语法分析语义分析中间代码生成目标代码优化_为计算机专业学生和编译器开发者提供完整教学参考实现_使用LLVM框架实现前端词法解析器语法.zip扣子COZE AI 编程案例
recommend-type

《数控加工与编程》实训的目的与安排.doc

《数控加工与编程》实训的目的与安排.doc
recommend-type

C++实现的DecompressLibrary库解压缩GZ文件

根据提供的文件信息,我们可以深入探讨C++语言中关于解压缩库(Decompress Library)的使用,特别是针对.gz文件格式的解压过程。这里的“lib”通常指的是库(Library),是软件开发中用于提供特定功能的代码集合。在本例中,我们关注的库是用于处理.gz文件压缩包的解压库。 首先,我们要明确一个概念:.gz文件是一种基于GNU zip压缩算法的压缩文件格式,广泛用于Unix、Linux等操作系统上,对文件进行压缩以节省存储空间或网络传输时间。要解压.gz文件,开发者需要使用到支持gzip格式的解压缩库。 在C++中,处理.gz文件通常依赖于第三方库,如zlib或者Boost.IoStreams。codeproject.com是一个提供编程资源和示例代码的网站,程序员可以在该网站上找到现成的C++解压lib代码,来实现.gz文件的解压功能。 解压库(Decompress Library)提供的主要功能是读取.gz文件,执行解压缩算法,并将解压缩后的数据写入到指定的输出位置。在使用这些库时,我们通常需要链接相应的库文件,这样编译器在编译程序时能够找到并使用这些库中定义好的函数和类。 下面是使用C++解压.gz文件时,可能涉及的关键知识点: 1. Zlib库 - zlib是一个用于数据压缩的软件库,提供了许多用于压缩和解压缩数据的函数。 - zlib库支持.gz文件格式,并且在多数Linux发行版中都预装了zlib库。 - 在C++中使用zlib库,需要包含zlib.h头文件,同时链接z库文件。 2. Boost.IoStreams - Boost是一个提供大量可复用C++库的组织,其中的Boost.IoStreams库提供了对.gz文件的压缩和解压缩支持。 - Boost库的使用需要下载Boost源码包,配置好编译环境,并在编译时链接相应的Boost库。 3. C++ I/O操作 - 解压.gz文件需要使用C++的I/O流操作,比如使用ifstream读取.gz文件,使用ofstream输出解压后的文件。 - 对于流操作,我们常用的是std::ifstream和std::ofstream类。 4. 错误处理 - 解压缩过程中可能会遇到各种问题,如文件损坏、磁盘空间不足等,因此进行适当的错误处理是必不可少的。 - 正确地捕获异常,并提供清晰的错误信息,对于调试和用户反馈都非常重要。 5. 代码示例 - 从codeproject找到的C++解压lib很可能包含一个或多个源代码文件,这些文件会包含解压.gz文件所需的函数或类。 - 示例代码可能会展示如何初始化库、如何打开.gz文件、如何读取并处理压缩数据,以及如何释放资源等。 6. 库文件的链接 - 编译使用解压库的程序时,需要指定链接到的库文件,这在不同的编译器和操作系统中可能略有不同。 - 通常,在编译命令中加入-l参数,比如使用g++的话可能是`g++ -o DecompressLibrary DecompressLibrary.cpp -lz`,其中`-lz`表示链接zlib库。 7. 平台兼容性 - 在不同平台上使用解压库可能需要考虑平台兼容性问题。 - Windows系统可能需要额外的配置和库文件,因为zlib或其他库可能不是默认预装的。 根据以上知识点,我们可以得出,在C++中解压.gz文件主要涉及到对zlib或类似库的使用,以及熟悉C++的I/O操作。正确使用这些库,能够有效地对压缩文件进行解压,并处理可能出现的错误情况。如果从codeproject获取到的C++解压lib确实是针对.gz文件格式的,那么它很可能已经封装好了大部分的操作细节,让开发者能够以更简单的方式实现解压功能。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

VM ware如何查看软件版本信息

<think>首先,用户的问题是:“我想查找VMware软件版本信息的查看方法请问如何在VMware中查看软件版本信息”。用户参考了之前的引用,但那些引用主要是关于查看VMware版本的一般方法,现在用户具体想知道在VMware软件中如何查看版本信息。回顾之前的对话:-用户第一次问的是VSCode的版本查看方法。-现在用户问的是VMware的版本查看方法。-系统级指令要求使用中文回答,正确格式化数学表达式(如果需要),但这里可能不需要数学表达式。-指令还要求生成相关问题,并在回答中引用段落时添加引用标识。用户提供的引用[1]到[5]是关于VMware版本的查看方法、下载等,但用户特别强调“参考
recommend-type

数据库课程设计报告:常用数据库综述

数据库是现代信息管理的基础,其技术广泛应用于各个领域。在高等教育中,数据库课程设计是一个重要环节,它不仅是学习理论知识的实践,也是培养学生综合运用数据库技术解决问题能力的平台。本知识点将围绕“经典数据库课程设计报告”展开,详细阐述数据库的基本概念、课程设计的目的和内容,以及在设计报告中常用的数据库技术。 ### 1. 数据库基本概念 #### 1.1 数据库定义 数据库(Database)是存储在计算机存储设备中的数据集合,这些数据集合是经过组织的、可共享的,并且可以被多个应用程序或用户共享访问。数据库管理系统(DBMS)提供了数据的定义、创建、维护和控制功能。 #### 1.2 数据库类型 数据库按照数据模型可以分为关系型数据库(如MySQL、Oracle)、层次型数据库、网状型数据库、面向对象型数据库等。其中,关系型数据库因其简单性和强大的操作能力而广泛使用。 #### 1.3 数据库特性 数据库具备安全性、完整性、一致性和可靠性等重要特性。安全性指的是防止数据被未授权访问和破坏。完整性指的是数据和数据库的结构必须符合既定规则。一致性保证了事务的执行使数据库从一个一致性状态转换到另一个一致性状态。可靠性则保证了系统发生故障时数据不会丢失。 ### 2. 课程设计目的 #### 2.1 理论与实践结合 数据库课程设计旨在将学生在课堂上学习的数据库理论知识与实际操作相结合,通过完成具体的数据库设计任务,加深对数据库知识的理解。 #### 2.2 培养实践能力 通过课程设计,学生能够提升分析问题、设计解决方案以及使用数据库技术实现这些方案的能力。这包括需求分析、概念设计、逻辑设计、物理设计、数据库实现、测试和维护等整个数据库开发周期。 ### 3. 课程设计内容 #### 3.1 需求分析 在设计报告的开始,需要对项目的目标和需求进行深入分析。这涉及到确定数据存储需求、数据处理需求、数据安全和隐私保护要求等。 #### 3.2 概念设计 概念设计阶段要制定出数据库的E-R模型(实体-关系模型),明确实体之间的关系。E-R模型的目的是确定数据库结构并形成数据库的全局视图。 #### 3.3 逻辑设计 基于概念设计,逻辑设计阶段将E-R模型转换成特定数据库系统的逻辑结构,通常是关系型数据库的表结构。在此阶段,设计者需要确定各个表的属性、数据类型、主键、外键以及索引等。 #### 3.4 物理设计 在物理设计阶段,针对特定的数据库系统,设计者需确定数据的存储方式、索引的具体实现方法、存储过程、触发器等数据库对象的创建。 #### 3.5 数据库实现 根据物理设计,实际创建数据库、表、视图、索引、触发器和存储过程等。同时,还需要编写用于数据录入、查询、更新和删除的SQL语句。 #### 3.6 测试与维护 设计完成之后,需要对数据库进行测试,确保其满足需求分析阶段确定的各项要求。测试过程包括单元测试、集成测试和系统测试。测试无误后,数据库还需要进行持续的维护和优化。 ### 4. 常用数据库技术 #### 4.1 SQL语言 SQL(结构化查询语言)是数据库管理的国际标准语言。它包括数据查询、数据操作、数据定义和数据控制四大功能。SQL语言是数据库课程设计中必备的技能。 #### 4.2 数据库设计工具 常用的数据库设计工具包括ER/Studio、Microsoft Visio、MySQL Workbench等。这些工具可以帮助设计者可视化地设计数据库结构,提高设计效率和准确性。 #### 4.3 数据库管理系统 数据库管理系统(DBMS)是用于创建和管理数据库的软件。关系型数据库管理系统如MySQL、PostgreSQL、Oracle、SQL Server等是数据库课程设计中的核心工具。 #### 4.4 数据库安全 数据库安全涉及用户认证、授权、数据加密、审计日志记录等方面,以确保数据的完整性和保密性。设计报告中应考虑如何通过DBMS内置的机制或额外的安全措施来保护数据。 ### 5. 结语 综上所述,一个经典数据库课程设计报告包含了从需求分析到数据库安全的全过程,涵盖了数据库设计的各个方面。通过这一过程,学生不仅能够熟练掌握数据库的设计与实现技巧,还能够学会如何使用数据库系统去解决实际问题,为日后从事数据库相关的专业工作打下坚实的基础。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为