python 实现Kolmogorov-Smirnov 方法做正态分布检验

时间: 2023-06-05 16:05:59 浏览: 620
您好!关于您的问题,我可以回答。您可以使用 Python 的 SciPy 模块中的 kstest() 函数来进行 Kolmogorov-Smirnov 正态分布检验。具体实现方法可以参考以下代码: ```python import numpy as np from scipy.stats import norm, kstest data = np.random.normal(size=1000) # 随机生成 1000 个符合正态分布的样本 stat, p = kstest(data, norm.cdf) # 进行 KS 检验 print("Stat = {:.4f}, p-value = {:.4f}".format(stat, p)) ``` 其中,norm.cdf 代表正态分布的累积分布函数。返回值中的 stat 表示 KS 统计量,p 代表对应的 p-value。 希望能够帮到您!如果您有其他问题,欢迎随时提出。
相关问题

皮马印第安人糖尿病Kolmogorov-Smirnov检验bmi正态性代码

以下是使用Python实现的皮马印第安人糖尿病数据集中BMI是否符合正态分布的Kolmogorov-Smirnov检验代码: ```python import numpy as np from scipy.stats import kstest import pandas as pd # 读取数据 data = pd.read_csv('pima-indians-diabetes.csv') # 提取BMI数据 bmi = data['BMI'].values # 计算平均值和标准差 mean = np.mean(bmi) std = np.std(bmi) # 使用Kolmogorov-Smirnov检验 D, p = kstest((bmi - mean) / std, 'norm') alpha = 0.05 if p < alpha: print('BMI不符合正态分布') else: print('BMI符合正态分布') ``` 在上述代码中,我们首先从文件中读取皮马印第安人糖尿病数据集,然后提取出BMI数据。接着,我们计算了BMI的平均值和标准差,并将数据标准化后使用Kolmogorov-Smirnov检验进行正态性检验。最后,我们根据p值和设定的显著性水平alpha来判断BMI是否符合正态分布。

python实现Kolmogorov-Smirnov test(K-S)的代码

<think>嗯,用户问的是怎么用Python写Kolmogorov-Smirnov检验的代码示例,还提到了scipy的ks_2samp和kstest。首先我得回忆一下这两个函数的区别。K-S检验有两种主要用途:单样本检验和双样本检验。kstest应该是用来检验一个样本是否来自某个特定的分布,比如正态分布,而ks_2samp是用来比较两个独立样本是否来自同一分布。 用户提供的引用里,引用3提到了kstest的用法,有一个示例代码。引用1和引用3都提到了kstest的参数,比如rvs、cdf、args等。引用2和引用4可能和卡方检验、熵有关,但当前问题主要是K-S检验,所以可能需要集中在引用1和引用3。 用户的需求可能是想看到两种情况的示例代码:一种是单样本检验是否符合某分布,另一种是双样本检验是否同分布。所以回答里应该包括这两种情况的代码。同时,用户提到scipy.stats.ks_2samp或kstest,说明可能对这两个函数的使用场景有疑问,需要区分清楚。 接下来,我需要检查用户给的引用中的示例是否正确。比如引用3中的示例是kstest用于正态性检验,数据是随机生成的,然后调用stats.kstest(data, 'norm')。但这里需要注意的是,当检验正态分布时,如果使用默认参数,kstest会使用标准正态分布(均值0,标准差1),而用户的数据如果是其他参数的正态分布,可能需要调整参数,或者使用cdf并传递参数。例如,如果数据是均值为mu,标准差为sigma的正态分布,应该传入cdf='norm',args=(mu, sigma),或者在生成数据时调整。 另外,kstest的参数中,cdf可以是字符串指定的分布,也可以是可调用的函数。比如,如果要检验是否符合指数分布,可以传入'expon',或者自定义一个累积分布函数。 对于双样本检验,用户需要使用ks_2samp函数,引用中没有直接给出示例,但根据scipy文档,这个函数接受两个样本数组,返回统计量和p值。 所以,回答的结构应该分为两部分:单样本检验(kstest)和双样本检验(ks_2samp),分别给出代码示例,并解释参数和结果的含义。同时,需要注意用户可能遇到的常见问题,比如分布参数的设置,或者如何解读p值。 可能还需要提到注意事项,比如样本量、检验的功效,以及与其他正态性检验方法的比较,比如Shapiro-Wilk检验。但用户主要问的是K-S检验,所以这部分可以简要提及。 现在需要组织语言,确保代码正确,符合用户提供的引用中的示例,特别是引用3中的代码是否正确。例如,引用3中的kstest示例是否正确处理了分布参数?比如生成的数据是标准正态分布,检验时使用'norm'是正确的,但如果数据来自非标准正态分布,是否需要调整参数? 例如,如果数据是均值为1,标准差为2的正态分布,应该调用stats.kstest(data, 'norm', args=(1,2)),或者如果数据已经被标准化,可能不需要。所以在示例中需要说明这一点,避免用户误用。 另外,在双样本检验的示例中,可以生成两个不同分布的样本,比如一个正态,一个均匀,然后用ks_2samp检验它们是否同分布,这样结果p值应该较小,拒绝原假设。 总结回答的结构: 1. 单样本检验(kstest)的示例,包括如何检验是否符合特定分布,比如正态分布,并说明参数设置。 2. 双样本检验(ks_2samp)的示例,比较两个样本。 3. 注意事项,比如参数设置、p值解读、与其他检验的区别。 4. 相关问题,可能涉及如何选择检验、其他分布检验、结果解读等。 需要确保代码在用户的环境中能运行,比如正确导入库,使用合适的数据生成方法。同时,引用用户提供的引用,比如引用3中的示例代码,并在适当的地方添加引用标记,如[^3]。 最后,生成的相关问题要围绕K-S检验的应用场景、参数调整、结果解释、与其他检验的比较等,帮助用户进一步了解相关知识。</think>### Python实现Kolmogorov-Smirnov检验的代码示例 Kolmogorov-Smirnov检验(K-S检验)在Python中可通过`scipy.stats`模块的`kstest`(单样本检验)和`ks_2samp`(双样本检验)实现。以下是具体代码示例及说明: --- #### **1. 单样本K-S检验(kstest)** 检验数据是否服从**特定分布**(如正态分布、指数分布等): ```python from scipy import stats import numpy as np # 生成示例数据(标准正态分布) data = np.random.normal(0, 1, 100) # 执行K-S检验(检验数据是否服从标准正态分布) statistic, p_value = stats.kstest(data, 'norm') # 'norm'表示标准正态分布 # 输出结果 if p_value < 0.05: print("拒绝原假设:数据不服从指定分布") else: print("无法拒绝原假设:数据可能服从指定分布") ``` **参数说明**: - 若检验其他参数的正态分布(如均值$\mu=1$,标准差$\sigma=2$),需指定参数: `stats.kstest(data, 'norm', args=(1, 2))` - 检验其他分布(如指数分布): `stats.kstest(data, 'expon', args=(0, 0.5))`[^1] --- #### **2. 双样本K-S检验(ks_2samp)** 检验**两组独立样本**是否来自同一分布: ```python from scipy import stats import numpy as np # 生成两组样本(一组正态分布,一组均匀分布) sample1 = np.random.normal(0, 1, 100) sample2 = np.random.uniform(-1, 1, 100) # 执行双样本K-S检验 statistic, p_value = stats.ks_2samp(sample1, sample2) # 输出结果 if p_value < 0.05: print("拒绝原假设:两组数据分布不同") else: print("无法拒绝原假设:两组数据可能同分布") ``` --- #### **注意事项** 1. **单样本检验的局限性**:K-S检验对分布参数的估计敏感,若参数由数据估计(如用样本均值代替理论均值),可能导致结果偏差。 2. **样本量要求**:样本量过小可能降低检验功效(易接受原假设),建议结合Q-Q图辅助判断[^2]。 3. **与其他检验对比**:正态性检验中,Shapiro-Wilk检验对小样本更敏感,而K-S检验适用于大样本。 ---
阅读全文

相关推荐

大家在看

recommend-type

离心泵特性曲线计算程序VB源代码包

离心泵特性曲线计算程序VB源代码包 化工原理课程实验使用
recommend-type

python的预测房价模型组合代码.zip

模型-python的预测房价模型.zip python的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zip python的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zippython的预测房价模型.zip
recommend-type

中国检查徽章背景的检察机关PPT模板

这是一套中国检查徽章背景的,检察机关PPT模板。第一PPT模板网提供精美军警类幻灯片模板免费下载; 关键词:蓝天白云、华表、彩带、中国检查徽章PPT背景图片,中国检查院工作汇报PPT模板,蓝色绿色搭配扁平化幻灯片图表,.PPTX格式;
recommend-type

WinUSB4NuVCOM_NUC970+NuWriter.rar

NUC970 USB启动所需的USB驱动,已经下载工具NuWriter,可以用于裸机启动NUC970调试,将USB接电脑后需要先安装WinUSB4NuVCOM_NUC970驱动,然后使用NuWriter初始化硬件,之后就可以使用jlink或者ulink调试。
recommend-type

indonesia-geojson:印度尼西亚GEOJSON文件收集

印尼省数据 indonesia-province.zip:SHP格式的印度尼西亚省 indonesia-province.json:GeoJSON格式的印度尼西亚省 indonesia-province-simple.json:GeoJSON格式的印度尼西亚省的简单版本(文件大小也较小!) id-all.geo.json:印度尼西亚省GEOJSON id-all.svg:印度尼西亚SVG地图 indonesia.geojson:来自成长亚洲的印度尼西亚GEOJSON 来源 工具 将SHP文件的形状转换并简化为GeoJSON

最新推荐

recommend-type

12月英语网络统考复习资料2-作文范文汇总.doc

12月英语网络统考复习资料2-作文范文汇总.doc
recommend-type

构建基于ajax, jsp, Hibernate的博客网站源码解析

根据提供的文件信息,本篇内容将专注于解释和阐述ajax、jsp、Hibernate以及构建博客网站的相关知识点。 ### AJAX AJAX(Asynchronous JavaScript and XML)是一种用于创建快速动态网页的技术,它允许网页在不重新加载整个页面的情况下,与服务器交换数据并更新部分网页内容。AJAX的核心是JavaScript中的XMLHttpRequest对象,通过这个对象,JavaScript可以异步地向服务器请求数据。此外,现代AJAX开发中,常常用到jQuery中的$.ajax()方法,因为其简化了AJAX请求的处理过程。 AJAX的特点主要包括: - 异步性:用户操作与数据传输是异步进行的,不会影响用户体验。 - 局部更新:只更新需要更新的内容,而不是整个页面,提高了数据交互效率。 - 前后端分离:AJAX技术允许前后端分离开发,让前端开发者专注于界面和用户体验,后端开发者专注于业务逻辑和数据处理。 ### JSP JSP(Java Server Pages)是一种动态网页技术标准,它允许开发者将Java代码嵌入到HTML页面中,从而实现动态内容的生成。JSP页面在服务器端执行,并将生成的HTML发送到客户端浏览器。JSP是Java EE(Java Platform, Enterprise Edition)的一部分。 JSP的基本工作原理: - 当客户端首次请求JSP页面时,服务器会将JSP文件转换为Servlet。 - 服务器上的JSP容器(如Apache Tomcat)负责编译并执行转换后的Servlet。 - Servlet生成HTML内容,并发送给客户端浏览器。 JSP页面中常见的元素包括: - 指令(Directives):如page、include、taglib等。 - 脚本元素:脚本声明(Script declarations)、脚本表达式(Scriptlet)和脚本片段(Expression)。 - 标准动作:如jsp:useBean、jsp:setProperty、jsp:getProperty等。 - 注释:在客户端浏览器中不可见的注释。 ### Hibernate Hibernate是一个开源的对象关系映射(ORM)框架,它提供了从Java对象到数据库表的映射,简化了数据库编程。通过Hibernate,开发者可以将Java对象持久化到数据库中,并从数据库中检索它们,而无需直接编写SQL语句或掌握复杂的JDBC编程。 Hibernate的主要优点包括: - ORM映射:将对象模型映射到关系型数据库的表结构。 - 缓存机制:提供了二级缓存,优化数据访问性能。 - 数据查询:提供HQL(Hibernate Query Language)和Criteria API等查询方式。 - 延迟加载:可以配置对象或对象集合的延迟加载,以提高性能。 ### 博客网站开发 构建一个博客网站涉及到前端页面设计、后端逻辑处理、数据库设计等多个方面。使用ajax、jsp、Hibernate技术栈,开发者可以更高效地构建功能完备的博客系统。 #### 前端页面设计 前端主要通过HTML、CSS和JavaScript来实现,其中ajax技术可以用来异步获取文章内容、用户评论等,无需刷新页面即可更新内容。 #### 后端逻辑处理 JSP可以在服务器端动态生成HTML内容,根据用户请求和数据库中的数据渲染页面。Hibernate作为ORM框架,可以处理Java对象与数据库表之间的映射,并提供数据库的CRUD(创建、读取、更新、删除)操作。 #### 数据库设计 博客网站的数据库设计通常包含多个表,如用户表(存储用户信息)、文章表(存储文章信息)、评论表(存储用户评论信息)等。使用Hibernate框架可以简化数据库操作,同时确保数据的一致性和安全性。 #### 安全性和性能优化 安全性是构建网站时需要考虑的重要方面,包括但不限于SQL注入防护、XSS攻击防护、会话管理等。性能优化方面,可以利用Hibernate的缓存机制,以及对JSP页面和ajax请求进行适当的缓存处理。 ### 结论 ajax、jsp、Hibernate技术结合可以构建出高效、动态、易于维护的博客网站。在开发过程中,应当关注前后端分离、用户体验优化、系统性能和安全性等关键要素,确保博客网站的稳定和长期可用性。通过本篇文章,读者应该已经对这些技术有了初步了解,并能够结合文件提供的源码开始进行相关开发实践。
recommend-type

【Unity Sunny Land关卡设计高级指南】:打造完美关卡的8大技巧

# 1. Unity关卡设计概述 ## 1.1 关卡设计的核心要素 关卡设计作为游戏开发中不可或缺的一环,承担着构建游戏世界、呈现故事背景、引导玩家体验和激发玩家兴趣的责任。一个优秀的关卡不仅需要有吸引人的视觉效果和有趣的挑战,还需平衡玩家体验,提供连贯的游戏故事。 ## 1.2 关卡设计师的角色 在Unity引擎的环境下,关卡设计师需要具备对场景布局、角色互动、剧情
recommend-type

C++ 模版

<think>我们正在讨论C++模板的使用和常见问题。根据用户要求,所有行内数学表达式使用$...$,独立公式使用$$...$$,用中文回答,并生成相关问题。同时,回答要结构清晰,帮助用户逐步解决问题。 首先,回顾用户的问题:用户想了解C++模板的使用和常见问题。我们将从以下几个方面展开: 1. 模板的基本概念和用途 2. 函数模板和类模板 3. 模板特化和偏特化 4. 模板元编程简介 5. 常见问题及解决方案 注意:在回答中,我们会引用站内提供的引用内容(引用[1]和引用[2])作为参考,但主要围绕模板展开。 ### 1. 模板的基本概念和用途 C++模板是一种支持泛型编程的特性,允许
recommend-type

C#随机数摇奖系统功能及隐藏开关揭秘

### C#摇奖系统知识点梳理 #### 1. C#语言基础 C#(发音为“看井”)是由微软开发的一种面向对象的、类型安全的编程语言。它是.NET框架的核心语言之一,广泛用于开发Windows应用程序、ASP.NET网站、Web服务等。C#提供丰富的数据类型、控制结构和异常处理机制,这使得它在构建复杂应用程序时具有很强的表达能力。 #### 2. 随机数的生成 在编程中,随机数生成是常见的需求之一,尤其在需要模拟抽奖、游戏等场景时。C#提供了System.Random类来生成随机数。Random类的实例可以生成一个伪随机数序列,这些数在统计学上被认为是随机的,但它们是由确定的算法生成,因此每次运行程序时产生的随机数序列相同,除非改变种子值。 ```csharp using System; class Program { static void Main() { Random rand = new Random(); for(int i = 0; i < 10; i++) { Console.WriteLine(rand.Next(1, 101)); // 生成1到100之间的随机数 } } } ``` #### 3. 摇奖系统设计 摇奖系统通常需要以下功能: - 用户界面:显示摇奖结果的界面。 - 随机数生成:用于确定摇奖结果的随机数。 - 动画效果:模拟摇奖的视觉效果。 - 奖项管理:定义摇奖中可能获得的奖品。 - 规则设置:定义摇奖规则,比如中奖概率等。 在C#中,可以使用Windows Forms或WPF技术构建用户界面,并集成上述功能以创建一个完整的摇奖系统。 #### 4. 暗藏的开关(隐藏控制) 标题中提到的“暗藏的开关”通常是指在程序中实现的一个不易被察觉的控制逻辑,用于在特定条件下改变程序的行为。在摇奖系统中,这样的开关可能用于控制中奖的概率、启动或停止摇奖、强制显示特定的结果等。 #### 5. 测试 对于摇奖系统来说,测试是一个非常重要的环节。测试可以确保程序按照预期工作,随机数生成器的随机性符合要求,用户界面友好,以及隐藏的控制逻辑不会被轻易发现或利用。测试可能包括单元测试、集成测试、压力测试等多个方面。 #### 6. System.Random类的局限性 System.Random虽然方便使用,但也有其局限性。其生成的随机数序列具有一定的周期性,并且如果使用不当(例如使用相同的种子创建多个实例),可能会导致生成相同的随机数序列。在安全性要求较高的场合,如密码学应用,推荐使用更加安全的随机数生成方式,比如RNGCryptoServiceProvider。 #### 7. Windows Forms技术 Windows Forms是.NET框架中用于创建图形用户界面应用程序的库。它提供了一套丰富的控件,如按钮、文本框、标签等,以及它们的事件处理机制,允许开发者设计出视觉效果良好且功能丰富的桌面应用程序。 #### 8. WPF技术 WPF(Windows Presentation Foundation)是.NET框架中用于构建桌面应用程序用户界面的另一种技术。与Windows Forms相比,WPF提供了更现代化的控件集,支持更复杂的布局和样式,以及3D图形和动画效果。WPF的XAML标记语言允许开发者以声明性的方式设计用户界面,与C#代码分离,易于维护和更新。 #### 9. 压缩包子文件TransBallDemo分析 从文件名“TransBallDemo”可以推测,这可能是一个C#的示例程序或者演示程序,其中“TransBall”可能表示旋转的球体,暗示该程序包含了动画效果,可能是用来模拟转动的球体(如转盘或摇奖球)。该文件可能是用来展示如何实现一个带有视觉动画效果的摇奖系统的C#程序。 总结以上内容,我们可以得出构建一个C#摇奖系统需要深入理解C#语言及其随机数生成机制,设计用户界面,集成动画效果,确保隐藏控制逻辑的安全性,以及全面测试系统以保证其正确性和公平性。通过掌握Windows Forms或WPF技术,可以进一步增强系统的视觉和交互体验。
recommend-type

【数据驱动的力量】:管道缺陷判别方法论与实践经验

# 摘要 数据驱动技术在管道缺陷检测领域展现出强大的力量,本文首先概述了数据驱动的力量和管道缺陷判别的基础理论。接着,重点探讨了管道缺陷的类型与特征、数据采集与预处理、数据驱动模型的选择与构建。在实践技巧章节,本文详述了实战数据集的准备与处理、缺陷识别算法的应用、以及性能评估与模型优化。此外,高级应用章节深入讨论了实时数据处理分析、多模态数据融合技术、以及深度学习在缺
recommend-type

FatalError: `Segmentation fault` is detected by the operating system. [TimeInfo: *** Aborted at 1752568501 (unix time) try "date -d @1752568501" if you are using GNU date ***] [SignalInfo: *** SIGSEGV (@0x0) received by PID 3203 (TID 0x7f8a04143340) from PID 0 ***],训练模型中出现上述错误,怎么解决

<think>我们面对的是一个模型训练过程中出现的Segmentation fault错误。根据引用[1],Segmentation Fault通常是由非法内存访问引起的,常见原因包括空指针解引用、数组越界、使用未初始化指针等。在深度学习训练场景中,还可能涉及显存溢出、CUDA内核错误等。 引用[2]展示了一个具体案例:在PaddlePaddle框架中遇到Segmentation fault,并提示了C++ Traceback。这通常表明底层C++代码出现了问题。而引用[3]则提到Python环境下的Segmentation fault,可能涉及Python扩展模块的错误。 解决步骤: 1
recommend-type

EditPlus中实现COBOL语言语法高亮的设置

标题中的“editplus”指的是一个轻量级的代码编辑器,特别受到程序员和软件开发者的欢迎,因为它支持多种编程语言。标题中的“mfcobol”指的是一种特定的编程语言,即“Micro Focus COBOL”。COBOL语言全称为“Common Business-Oriented Language”,是一种高级编程语言,主要用于商业、金融和行政管理领域的数据处理。它最初开发于1959年,是历史上最早的高级编程语言之一。 描述中的“cobol语言颜色显示”指的是在EditPlus这款编辑器中为COBOL代码提供语法高亮功能。语法高亮是一种编辑器功能,它可以将代码中的不同部分(如关键字、变量、字符串、注释等)用不同的颜色和样式显示,以便于编程者阅读和理解代码结构,提高代码的可读性和编辑的效率。在EditPlus中,要实现这一功能通常需要用户安装相应的语言语法文件。 标签“cobol”是与描述中提到的COBOL语言直接相关的一个词汇,它是对描述中提到的功能或者内容的分类或者指代。标签在互联网内容管理系统中用来帮助组织内容和便于检索。 在提供的“压缩包子文件的文件名称列表”中只有一个文件名:“Java.stx”。这个文件名可能是指一个语法高亮的模板文件(Syntax Template eXtension),通常以“.stx”为文件扩展名。这样的文件包含了特定语言语法高亮的规则定义,可用于EditPlus等支持自定义语法高亮的编辑器中。不过,Java.stx文件是为Java语言设计的语法高亮文件,与COBOL语言颜色显示并不直接相关。这可能意味着在文件列表中实际上缺少了为COBOL语言定义的相应.stx文件。对于EditPlus编辑器,要实现COBOL语言的颜色显示,需要的是一个COBOL.stx文件,或者需要在EditPlus中进行相应的语法高亮设置以支持COBOL。 为了在EditPlus中使用COBOL语法高亮,用户通常需要做以下几步操作: 1. 确保已经安装了支持COBOL的EditPlus版本。 2. 从Micro Focus或者第三方资源下载COBOL的语法高亮文件(COBOL.stx)。 3. 打开EditPlus,进入到“工具”菜单中的“配置用户工具”选项。 4. 在用户工具配置中,选择“语法高亮”选项卡,然后选择“添加”来载入下载的COBOL.stx文件。 5. 根据需要选择其他语法高亮的选项,比如是否开启自动完成、代码折叠等。 6. 确认并保存设置。 完成上述步骤后,在EditPlus中打开COBOL代码文件时,应该就能看到语法高亮显示了。语法高亮不仅仅是颜色的区分,它还可以包括字体加粗、斜体、下划线等样式,以及在某些情况下,语法错误的高亮显示。这对于提高编码效率和准确性有着重要意义。
recommend-type

影子系统(windows)问题排查:常见故障诊断与修复

# 摘要 本文旨在深入探讨影子系统的概念、工作原理以及故障诊断基础。首先,介绍影子系统的定义及其运作机制,并分析其故障诊断的理论基础,包括系统故障的分类和特征。接着,详细探讨各种故障诊断工具和方法,并提供实际操作中的故障排查步骤。文中还深入分析了影子系统常见故障案例,涵盖系统启动问题、软件兼容性和网络连通性问题,并提供相应的诊断与解决方案。高级故障诊断与修复
recommend-type

nt!DbgBreakPointWithStatus: fffff805`7affd0b0 cc int 3 kd> g KDTARGET: Refreshing KD connection *** Fatal System Error: 0x0000001a (0x0000000000061941,0xFFFFF8057B20E1C0,0x0000000000000019,0xFFFFFC89CACA7190) Break instruction exception - code 80000003 (first chance) A fatal system error has occurred. Debugger entered on first try; Bugcheck callbacks have not been invoked. A fatal system error has occurred. For analysis of this file, run !analyze -v nt!DbgBreakPointWithStatus: fffff805`7affd0b0 cc int 3 kd> !analyze -v Connected to Windows 10 19041 x64 target at (Tue Jul 15 23:02:04.588 2025 (UTC + 8:00)), ptr64 TRUE Loading Kernel Symbols ............. Press ctrl-c (cdb, kd, ntsd) or ctrl-break (windbg) to abort symbol loads that take too long. Run !sym noisy before .reload to track down problems loading symbols. .................................................. ................................................................ ..................................................... Loading User Symbols Loading unloaded module list ...... ERROR: FindPlugIns 8007007b ******************************************************************************* * * * Bugcheck Analysis * * * ******************************************************************************* MEMORY_MANAGEMENT (1a) # Any other values for parameter 1 must be individually examined. Arguments: Arg1: 0000000000061941, The subtype of the BugCheck. Arg2: fffff8057b20e1c0 Arg3: 0000000000000019 Arg4: fffffc89caca7190 Debugging Details: ------------------ Press ctrl-c (cdb, kd, ntsd) or ctrl-break (windbg) to abort symbol loads that take too long. Run !sym noisy before .reload to track down problems loading symbols. 蓝屏了,但原帖子代码能正常执行,帖子作者说:我win10是专门针对2mb大页,win7是专门针对4kb小页的,蓝屏的原因我只能想到是因为没有做大页和小页的处理了。你做了2mb和4kb之类的处理吗,还有2mb的大页的物理地址要2mb对齐,不然电脑会卡死,我win10蓝屏的原因就是因为没有物理地址2mb对齐,我这代码是专门针对我那个虚拟机的环境,其他环境蓝屏你要是懂分页的话自己就会处理了。最重要的细节就是物理地址要对齐,2mb就2mb的对齐,1gb就1gb的对齐。

<think>我们之前讨论的代码中已经包含了对大页(2MB)和小页(4KB)的处理。但是,根据蓝屏信息(MEMORY_MANAGEMENT, 0x1a)和参数,问题可能出在内存对齐或页表项设置上。 原帖作者提到:2MB大页的物理地址必须2MB对齐,否则会导致系统不稳定甚至蓝屏。在之前的代码中,我们确实处理了大页的情况,但在分配2MB内存时,我们使用了`MmAllocateContiguousMemorySpecifyCache`,这个函数分配的内存不一定满足2MB对齐(尽管它分配的是连续内存)。因此,我们需要确保分配的内存地址是2MB对齐的。 解决方案: 1. 在分配2MB内存时,要