stm32l431rc与stm32l431CC区别
时间: 2023-10-23 12:13:22 浏览: 248
STM32L431RC和STM32L431CC都是基于ARM Cortex-M4内核的32位微控制器,主要区别在于封装和引脚数量。
STM32L431RC采用LQFP64封装,具有64个引脚,包括多个通用输入/输出端口、模拟输入通道、定时器和串行接口等。
而STM32L431CC采用LQFP48封装,具有48个引脚,包括多个通用输入/输出端口、模拟输入通道、定时器和串行接口等,但不如RC型号多。
因此,如果需要更多的引脚和外设,选择STM32L431RC可能更合适,而如果需要较小的封装和较少的引脚,则选择STM32L431CC可能更合适。
相关问题
生成stm32 c语言 RC522 uart驱动程序
以下是一个简单的基于UART通信的RC522驱动程序示例,可以用于STM32系列的单片机。该程序使用了HAL库。
```c
#include "main.h"
#include "rc522.h"
#include "string.h"
UART_HandleTypeDef huart2;
void SystemClock_Config(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_USART2_UART_Init();
RC522_Init(&huart2);
uint8_t card[5] = {0};
while (1)
{
if (RC522_Check(card) == MI_OK)
{
char str[32] = {0};
sprintf(str, "Card Detected: %02X-%02X-%02X-%02X-%02X\r\n", card[0], card[1], card[2], card[3], card[4]);
HAL_UART_Transmit(&huart2, (uint8_t *)str, strlen(str), 1000);
}
HAL_Delay(500);
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
}
void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOA_CLK_ENABLE();
/*Configure GPIO pin : PA8 */
GPIO_InitStruct.Pin = GPIO_PIN_8;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : PA9 */
GPIO_InitStruct.Pin = GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF1_USART1;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
void Error_Handler(void)
{
__disable_irq();
while (1)
{
}
}
```
需要注意的是,上述程序中使用了一个名为`RC522_Check`的函数来检测是否检测到RFID卡。这个函数需要在rc522.c文件中实现,下面是一个可能的实现:
```c
uint8_t RC522_Check(uint8_t *id)
{
uint8_t status;
status = RC522_Request(PICC_REQIDL, id);
if (status == MI_OK)
{
status = RC522_Anticoll(id);
if (status == MI_OK)
{
return MI_OK;
}
}
return MI_ERR;
}
```
这个函数会调用RC522_Request和RC522_Anticoll函数,这两个函数也需要在rc522.c文件中实现。完整的rc522.c文件和rc522.h文件可以通过以下链接下载:
- [rc522.c](https://gist.githubusercontent.com/ljz0804ccnu/7cc6e6a6e44f1c1a7f4d87b6c7d1b8e1/raw/9a9fbf9b0e0c65e7b0d1a4b5a6e1b4cc1b376c7f/rc522.c)
- [rc522.h](https://gist.githubusercontent.com/ljz0804ccnu/7cc6e6a6e44f1c1a7f4d87b6c7d1b8e1/raw/9a9fbf9b0e0c65e7b0d1a4b5a6e1b4cc1b376c7f/rc522.h)
在使用这个程序之前,你需要确保已经正确连接了RC522模块,并且将其与STM32的UART接口连接。如果需要修改UART参数,可以在MX_USART2_UART_Init函数中进行修改。
stm32f103rc小车听声辨位代码
对于STM32F103RC小车的声音定位代码,以下是一个简单的示例,你可以根据自己的需求进行修改和扩展:
```c
#include "stm32f10x.h"
#include "stdio.h"
#define SOUND_SPEED 343 // 声音在空气中传播的速度,单位为m/s
void TIM3_IRQHandler(void)
{
static uint32_t risingEdgeTime = 0;
static uint32_t fallingEdgeTime = 0;
static uint8_t captureState = 0;
if (TIM_GetITStatus(TIM3, TIM_IT_CC1) != RESET)
{
if (captureState == 0)
{
// 获取上升沿时间
risingEdgeTime = TIM_GetCapture1(TIM3);
captureState = 1;
}
else if (captureState == 1)
{
// 获取下降沿时间
fallingEdgeTime = TIM_GetCapture1(TIM3);
captureState = 0;
// 计算声音传播时间
uint32_t soundTravelTime = fallingEdgeTime - risingEdgeTime;
// 计算距离
float distance = (float)soundTravelTime * SOUND_SPEED / (2 * SystemCoreClock);
printf("Distance: %.2f m\r\n", distance);
}
TIM_ClearITPendingBit(TIM3, TIM_IT_CC1);
}
}
int main(void)
{
// 初始化GPIO和TIM3
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseStructure.TIM_Period = 0xFFFF; // 最大计数值
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
TIM_ICInitTypeDef TIM_ICInitStructure;
TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter = 0x0;
TIM_ICInit(TIM3, &TIM_ICInitStructure);
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
TIM_ITConfig(TIM3, TIM_IT_CC1, ENABLE);
TIM_Cmd(TIM3, ENABLE);
printf("Sound localization started.\r\n");
while (1)
{
// 主循环中可以进行其他操作
}
}
```
这段代码使用了STM32F103RC的TIM3模块来测量声音的传播时间,并通过计算距离实现声音定位功能。代码中使用PA6引脚作为输入捕获通道,通过捕获上升沿和下降沿的时间差来计算声音传播时间,进而得到距离。
需要注意的是,此代码只是一个简单的示例,实际应用中可能需要考虑更多的因素,例如噪声、多径效应等。你可以根据具体情况进行修改和优化。
阅读全文
相关推荐













