活动介绍

(train_images, train_labels), (test_images, test_labels) = datasets.fashion_mnist.load_data() f = plt.figure(figsize=(12, 7)) f.suptitle('Label Counts for a Sample of Clients') client_data = collections.OrderedDict() for i in range(6): client_data[f'client_{i}'] = ( train_images[i*1000:(i+1)*1000], train_labels[i*1000:(i+1)*1000]) plot_data = collections.defaultdict(list) for example in client_data[f'client_{i}']: label = example[0].numpy() #images, labels = example[] #label = labels.numpy() plot_data[label].append(label) for i in range(6): plt.subplot(2, 3, i+1) plt.title('Client {}'.format(i)) for j in range(10): plt.hist( plot_data[j], density=False, bins=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

时间: 2023-06-08 16:06:50 浏览: 192
这段代码使用了TensorFlow中的fashion_mnist数据集,将训练集和测试集分别赋值给了(train_images, train_labels)和(test_images,_labels)。接着,使用matplotlib库绘制一个12*7的图像,标题为“一组客户的标签计数”。然后用OrderedDict创建了一个名为client_data的字典,其中包含6个键值对,每个键值对表示一个客户的图片和标签。最后用defaultdict创建了一个名为plot_data的字典,用于收集每位客户的标签计数。
相关问题

``` from tensorflow.keras.datasets import mnist, usps from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, Input # 加载MNIST和USPS数据集 (mnist_train_images, mnist_train_labels), (mnist_test_images, mnist_test_labels) = mnist.load_data() (usps_train_images, usps_train_labels), (usps_test_images, usps_test_labels) = usps.load_data() # 数据预处理 mnist_train_images = mnist_train_images.reshape(-1, 28*28).astype('float32') / 255 mnist_test_images = mnist_test_images.reshape(-1, 28*28).astype('float32') / 255 usps_train_images = usps_train_images.reshape(-1, 28*28).astype('float32') / 255 usps_test_images = usps_test_images.reshape(-1, 28*28).astype('float32') / 255 mnist_train_labels = tf.keras.utils.to_categorical(mnist_train_labels, 10) mnist_test_labels = tf.keras.utils.to_categorical(mnist_test_labels, 10) usps_train_labels = tf.keras.utils.to_categorical(usps_train_labels, 10) usps_test_labels = tf.keras.utils.to_categorical(usps_test_labels, 10) # 定义源领域模型 input_tensor = Input(shape=(28*28,)) x = Dense(256, activation='relu')(input_tensor) x = Dense(256, activation='relu')(x) output_tensor = Dense(10, activation='softmax')(x) source_model = Model(inputs=input_tensor, outputs=output_tensor) source_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 在MNIST数据集上训练源领域模型 source_model.fit(mnist_train_images, mnist_train_labels, epochs=10, batch_size=128, validation_data=(mnist_test_images, mnist_test_labels)) # 定义领域适应模型 feature_extractor = Model(inputs=source_model.input, outputs=source_model.layers[-2].output) target_input = Input(shape=(28*28,)) target_features = feature_extractor(target_input) target_output = Dense(10, activation='softmax')(target_features) domain_adapt_model = Model(inputs=target_input, outputs=target_output) domain_adapt_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 在USPS数据集上微调领域适应模型 domain_adapt_model.fit(usps_train_images, usps_train_labels, epochs=10, batch_size=128, validation_data=(usps_test_images, usps_test_labels)) # 评估领域适应模型 test_loss, test_acc = domain_adapt_model.evaluate(usps_test_images, usps_test_labels) print(f'领域适应模型在USPS测试集上的准确率: {test_acc}')```解释代码

这段代码展示了如何通过深度神经网络实现简单的领域自适应(Domain Adaptation)。它利用MNIST作为源域数据集,并将其学到的知识迁移到目标域USPS上。以下是逐段详细解析: --- ### **1. 导入必要的库并加载数据** ```python from tensorflow.keras.datasets import mnist, usps ... (mnist_train_images, ...), (...) = mnist.load_data() (usps_train_images, ...), (...) = usps.load_data() ``` - 分别从Keras内置的数据集中加载MNIST手写数字图片以及USPS邮政服务的手写字体图像。 - 这两个数据库虽然都包含相似类别标签(即0~9十个阿拉伯数字),但是它们之间的风格差异较大——比如分辨率大小、书写方式等,这就构成了跨领域的典型应用场景之一。 --- ### **2. 数据预处理** ```python mnist_train_images = mnist_train_images.reshape(-1, 28*28).astype('float32') / 255 usps_train_images = usps_train_images.reshape(-1, 28*28).astype('float32') / 255 ... ``` - 将原始二维灰度图转化为一维向量形式以便后续输入全连接层操作; - 归一化像素值到[0, 1]范围之内有助于加快收敛速度并且避免梯度过大导致数值不稳定现象发生; - 使用 `to_categorical()` 函数把整数编码转换成独热编码(one-hot encoding)表示法方便做多分类任务损失函数计算使用。 --- ### **3. 构建及训练源领域模型(Source Domain Model)** ```python input_tensor = Input(shape=(28*28,)) x = Dense(256, activation='relu')(input_tensor) output_tensor = Dense(10, activation='softmax')(x) source_model = Model(inputs=input_tensor, outputs=output_tensor) source_model.compile(optimizer='adam', ...) source_model.fit(...) ``` - 创建一个多层感知机架构的基础分类器:先经过两层隐藏单元数目分别为256节点的ReLU激活层提取特征映射空间表征;然后由一个Softmax输出层给出最终预测结果概率分布; - 编译该模型采用Adam优化算法配合交叉熵代价衡量标准进行监督式学习过程; - 最终在丰富的MNIST训练样本之上完成一轮初步拟合工作得到较好的泛化能力基础版本。 --- ### **4. 提取特征用于新环境下的迁移**(Feature Extraction for Transfer Learning): ```python feature_extractor = Model(inputs=source_model.input, ..., ) target_output = Dense(10, activation='softmax')(...) domain_adapt_model = Model(...) ``` - 基于已经训练好的源头端子网构建出一个新的共享特征抽取模块 - 即保留原来中间各层结构不变仅移除掉末端决策部分形成独立功能组件; - 接着将上述生成的功能块嵌套进另一个完整体系里构成适合应对未知场景的新一代解决方案框架. --- ### **5. 训练&验证改进后的系统表现状况** ```python domain_adapt_model.fit(usps_train_images,...) test_loss, test_acc = domain_adapt_model.evaluate(...) ``` - 把先前从未接触过的USPS材料拿过来当作目标任务实例集合再次执行迭代寻优流程直至达到预期效果为止. - 打印评测得分了解实际运用价值所在. --- ### 总结思考方向: 本示例提供了一种直观易懂的方式来进行简单有效的领域转移尝试。然而值得注意的是这里仅仅是采用了最朴素的基本思想来解决问题而已,在真实世界当中往往还需要结合更多的高级技巧诸如对抗性生成网络之类的技术手段才能取得更好的成果!

``` !mkdir -p ~/.keras/datasets !cp work/mnist.npz ~/.keras/datasets/ import warnings warnings.filterwarnings("ignore") from keras.datasets import mnist #train_images 和 train_labels 组成了训练集(training set),模型将从这些数据中进行学习。 #然后在测试集(test set,即 test_images 和 test_labels)上对模型进行测试。 (train_images, train_labels), (test_images, test_labels) = mnist.load_data() train_images.shape#看下数据的维度 len(train_labels) train_labels test_images.shape len(test_labels) test_labels from keras import models from keras import layers network = models.Sequential() # 请在此处补充代码 network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) train_images = train_images.reshape((60000, 28 * 28)) train_images = train_images.astype('float32') / 255 test_images = test_images.reshape((10000, 28 * 28)) test_images = test_images.astype('float32') / 255 from keras.utils import to_categorical train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) network.fit(train_images, train_labels, epochs=5, batch_size=128) test_loss, test_acc = network.evaluate(test_images, test_labels) print('test_acc:', test_acc)```补充代码

在这个代码片段中,我们正在构建并训练一个用于识别手写数字的神经网络模型。以下是需要补充的部分代码以及对其功能的解释: ### 补充代码部分: ```python network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,))) network.add(layers.Dense(10, activation='softmax')) ``` --- ### 解释每一步的作用: #### **加载 MNIST 数据** 通过 `mnist.load_data()` 加载了手写数字数据集,并将其分为训练集 (`train_images`, `train_labels`) 和测试集 (`test_images`, `test_labels`)。 - 训练集中有 60000 张图片,每个图片大小为 \(28 \times 28\) 的灰度图。 - 测试集中有 10000 张图片。 #### **预处理步骤** 1. 将图像形状展平成一维向量: ```python train_images = train_images.reshape((60000, 28 * 28)) test_images = test_images.reshape((10000, 28 * 28)) ``` 2. 归一化像素值到 [0, 1] 范围内: ```python train_images = train_images.astype('float32') / 255 test_images = test_images.astype('float32') / 255 ``` 3. 使用 one-hot 编码对标签进行转换: ```python from keras.utils import to_categorical train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) ``` --- #### **搭建神经网络结构** 这里添加了一个简单的全连接层(Dense Layer)架构: 1. 第一层是一个包含 512 个节点的隐藏层,激活函数选择 ReLU: ```python network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,))) ``` 这里的输入形状 `(28 * 28,)` 对应于展开后的单张图片的所有像素点数。 2. 输出层由 10 个节点组成(对应于十个类别:数字 0 到 9),激活函数选择 Softmax 来计算概率分布: ```python network.add(layers.Dense(10, activation='softmax')) ``` --- #### **编译与训练** 接下来设置优化器、损失函数及评估指标: ```python network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) ``` 接着开始实际训练过程,在此过程中指定每次迭代所使用的批次样本数目和总的轮次次数(epoch 数): ```python network.fit(train_images, train_labels, epochs=5, batch_size=128) ``` 最后用测试数据评估模型性能: ```python test_loss, test_acc = network.evaluate(test_images, test_labels) print('test_acc:', test_acc) ``` --- ### 完整版代码整合 完整补充之后的代码如下所示: ```python !mkdir -p ~/.keras/datasets !cp work/mnist.npz ~/.keras/datasets/ import warnings warnings.filterwarnings("ignore") from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() # 查看数据维度信息 print(f"Train images shape: {train_images.shape}") print(f"Length of train labels: {len(train_labels)}") print(f"Test images shape: {test_images.shape}") print(f"Length of test labels: {len(test_labels)}") from keras import models from keras import layers network = models.Sequential() network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,))) # 添加第一层 network.add(layers.Dense(10, activation='softmax')) # 添加第二层 network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) # 预处理数据 train_images = train_images.reshape((60000, 28 * 28)).astype('float32') / 255 test_images = test_images.reshape((10000, 28 * 28)).astype('float32') / 255 from keras.utils import to_categorical train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) # 开始训练 network.fit(train_images, train_labels, epochs=5, batch_size=128) # 模型评价 test_loss, test_acc = network.evaluate(test_images, test_labels) print('Test accuracy:', test_acc) ``` ---
阅读全文

相关推荐

import tensorflow as tf from keras import datasets, layers, models import matplotlib.pyplot as plt # 导入mnist数据,依次分别为训练集图片、训练集标签、测试集图片、测试集标签 (train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data() # 将像素的值标准化至0到1的区间内。(对于灰度图片来说,每个像素最大值是255,每个像素最小值是0,也就是直接除以255就可以完成归一化。) train_images, test_images = train_images / 255.0, test_images / 255.0 # 查看数据维数信息 print(train_images.shape,test_images.shape,train_labels.shape,test_labels.shape) #调整数据到我们需要的格式 train_images = train_images.reshape((60000, 28, 28, 1)) test_images = test_images.reshape((10000, 28, 28, 1)) print(train_images.shape,test_images.shape,train_labels.shape,test_labels.shape) train_images = train_images.astype("float32") / 255.0 def image_to_patches(images, patch_size=4): batch_size = tf.shape(images)[0] patches = tf.image.extract_patches( images=images[:, :, :, tf.newaxis], sizes=[1, patch_size, patch_size, 1], strides=[1, patch_size, patch_size, 1], rates=[1, 1, 1, 1], padding="VALID" ) return tf.reshape(patches, [batch_size, -1, patch_size*patch_size*1]) class TransformerBlock(tf.keras.layers.Layer): def __init__(self, embed_dim, num_heads): super().__init__() self.att = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim) self.ffn = tf.keras.Sequential([ tf.keras.layers.Dense(embed_dim*4, activation="relu"), tf.keras.layers.Dense(embed_dim) ]) self.layernorm1 = tf.keras.layers.LayerNormalization() self.layernorm2 = tf.keras.layers.LayerNormalization() def call(self, inputs): attn_output = self.att(inputs, inputs) out1 = self.layernorm1(inputs + attn_output) ffn_output = self.ffn(out1) return self.layernorm2(out1 + ffn_output) class PositionEmbedding(tf.keras.layers.Layer): def __init__(self, max_len, embed_dim): super().__init__() self.pos_emb = tf.keras.layers.Embedding(input_dim=max_len, output_dim=embed_dim) def call(self, x): positions = tf.range(start=0, limit=tf.shape(x)[1], delta=1) return x + self.pos_emb(positions) def build_transformer_model(): inputs = tf.keras.Input(shape=(49, 16)) # 4x4 patches x = tf.keras.layers.Dense(64)(inputs) # 嵌入维度64 # 添加位置编码 x = PositionEmbedding(max_len=49, embed_dim=64)(x) # 堆叠Transformer模块 x = TransformerBlock(embed_dim=64, num_heads=4)(x) x = TransformerBlock(embed_dim=64, num_heads=4)(x) # 分类头 x = tf.keras.layers.GlobalAveragePooling1D()(x) outputs = tf.keras.layers.Dense(10, activation="softmax")(x) return tf.keras.Model(inputs=inputs, outputs=outputs) model = build_transformer_model() model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) # 数据预处理 train_images_pt = image_to_patches(train_images[..., tf.newaxis]) test_images_pt = image_to_patches(test_images[..., tf.newaxis]) history = model.fit( train_images_pt, train_labels, validation_data=(test_images_pt, test_labels), epochs=10, batch_size=128 )代码检查并添加注释

import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt Let us define a plt function for simplicity def plt_loss(x,training_metric,testing_metric,ax,colors = ['b']): ax.plot(x,training_metric,'b',label = 'Train') ax.plot(x,testing_metric,'k',label = 'Test') ax.set_xlabel('Epochs') ax.set_ylabel('Accuracy') plt.legend() plt.grid() plt.show() tf.keras.utils.set_random_seed(1) We import the Minist Dataset using Keras.datasets (train_data, train_labels), (test_data, test_labels) = keras.datasets.mnist.load_data() We first vectorize the image (28*28) into a vector (784) train_data = train_data.reshape(train_data.shape[0],train_data.shape[1]train_data.shape[2]) # 60000784 test_data = test_data.reshape(test_data.shape[0],test_data.shape[1]test_data.shape[2]) # 10000784 We next change label number to a 10 dimensional vector, e.g., 1-> train_labels = keras.utils.to_categorical(train_labels,10) test_labels = keras.utils.to_categorical(test_labels,10) start to build a MLP model N_batch_size = 5000 N_epochs = 100 lr = 0.01 we build a three layer model, 784 -> 64 -> 10 MLP_3 = keras.models.Sequential([ keras.layers.Dense(128, input_shape=(784,),activation='relu'), keras.layers.Dense(64, activation='relu'), keras.layers.Dense(10,activation='softmax') ]) MLP_3.compile( optimizer=keras.optimizers.Adam(lr), loss= 'categorical_crossentropy', metrics = ['accuracy'] ) History = MLP_3.fit(train_data,train_labels, batch_size = N_batch_size, epochs = N_epochs,validation_data=(test_data,test_labels), shuffle=False) train_acc = History.history['accuracy'] test_acc = History.history对于该模型,使用不同数量的训练数据(5000,10000,15000,…,60000,公差=5000的等差数列),绘制训练集和测试集准确率(纵轴)关于训练数据大小(横轴)的曲线

!mkdir -p ~/.keras/datasets !cp work/mnist.npz ~/.keras/datasets/ import warnings warnings.filterwarnings("ignore") from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() print(f"训练数据形状: {train_images.shape}") print(f"训练标签长度: {len(train_labels)}") print(f"测试数据形状: {test_images.shape}") print(f"测试标签长度: {len(test_labels)}") from keras import models from keras import layers # 构建神经网络模型 network = models.Sequential() network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,))) # 隐藏层:512个神经元,激活函数为ReLU network.add(layers.Dense(10, activation='softmax')) # 输出层:10个分类,激活函数为Softmax # 编译模型 network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) # 数据预处理 train_images = train_images.reshape((60000, 28 * 28)) # 将图像展平成一维向量 train_images = train_images.astype('float32') / 255 # 归一化到[0,1] test_images = test_images.reshape((10000, 28 * 28)) test_images = test_images.astype('float32') / 255 # 标签编码 from keras.utils import to_categorical train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) # 训练模型 network.fit(train_images, train_labels, epochs=5, batch_size=128) # 测试模型性能 test_loss, test_acc = network.evaluate(test_images, test_labels) print('Test accuracy:', test_acc)WARNING: Logging before flag parsing goes to stderr. W0402 07:43:05.362896 140490082953024 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:74: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead. W0402 07:43:05.367048 140490082953024 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead. W0402 07:43:05.371049 140490082953024 module_wrapper.py:139] From /opt/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.帮我指定出需要改哪里,要明确的位置

import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt ## Let us define a plt function for simplicity def plt_loss(x,training_metric,testing_metric,ax,colors = ['b']): ax.plot(x,training_metric,'b',label = 'Train') ax.plot(x,testing_metric,'k',label = 'Test') ax.set_xlabel('Epochs') ax.set_ylabel('Accuarcy')# ax.set_ylabel('Categorical Crossentropy Loss') plt.legend() plt.grid() plt.show() tf.keras.utils.set_random_seed(1) ## We import the Minist Dataset using Keras.datasets (train_data, train_labels), (test_data, test_labels) = keras.datasets.mnist.load_data() ## We first vectorize the image (28*28) into a vector (784) train_data = train_data.reshape(train_data.shape[0],train_data.shape[1]*train_data.shape[2]) # 60000*784 test_data = test_data.reshape(test_data.shape[0],test_data.shape[1]*test_data.shape[2]) # 10000*784 ## We next change label number to a 10 dimensional vector, e.g., 1->[0,1,0,0,0,0,0,0,0,0] train_labels = keras.utils.to_categorical(train_labels,10) test_labels = keras.utils.to_categorical(test_labels,10) ## start to build a MLP model N_batch_size = 5000 N_epochs = 100 lr = 0.01 # ## we build a three layer model, 784 -> 64 -> 10 MLP_3 = keras.models.Sequential([ keras.layers.Dense(64, input_shape=(784,),activation='relu'), keras.layers.Dense(10,activation='softmax') ]) MLP_3.compile( optimizer=keras.optimizers.Adam(lr), loss= 'categorical_crossentropy', metrics = ['accuracy'] ) History = MLP_3.fit(train_data,train_labels, batch_size = N_batch_size, epochs = N_epochs,validation_data=(test_data,test_labels), shuffle=False) train_acc = History.history['accuracy'] test_acc = History.history['val_accuracy']模仿此段代码,写一个双隐层感知器(输入层784,第一隐层128,第二隐层64,输出层10)

txt
内容概要:本文档定义了一个名为 xxx_SCustSuplier_info 的视图,用于整合和展示客户(Customer)和供应商(Supplier)的相关信息。视图通过连接多个表来获取组织单位、客户账户、站点使用、位置、财务代码组合等数据。对于客户部分,视图选择了与账单相关的记录,并提取了账单客户ID、账单站点ID、客户名称、账户名称、站点代码、状态、付款条款等信息;对于供应商部分,视图选择了有效的供应商及其站点信息,包括供应商ID、供应商名称、供应商编号、状态、付款条款、财务代码组合等。视图还通过外连接确保即使某些字段为空也能显示相关信息。 适合人群:熟悉Oracle ERP系统,尤其是应付账款(AP)和应收账款(AR)模块的数据库管理员或开发人员;需要查询和管理客户及供应商信息的业务分析师。 使用场景及目标:① 数据库管理员可以通过此视图快速查询客户和供应商的基本信息,包括账单信息、财务代码组合等;② 开发人员可以利用此视图进行报表开发或数据迁移;③ 业务分析师可以使用此视图进行数据分析,如信用评估、付款周期分析等。 阅读建议:由于该视图涉及多个表的复杂连接,建议读者先熟悉各个表的结构和关系,特别是 hz_parties、hz_cust_accounts、ap_suppliers 等核心表。此外,注意视图中使用的外连接(如 gl_code_combinations_kfv 表的连接),这可能会影响查询结果的完整性。

最新推荐

recommend-type

Comsol声子晶体能带计算:六角与三角晶格原胞选取及布里渊区高对称点选择 - 声子晶体 v1.0

内容概要:本文详细探讨了利用Comsol进行声子晶体能带计算过程中,六角晶格和三角晶格原胞选取的不同方法及其对简约布里渊区高对称点选择的影响。文中不仅介绍了两种晶格类型的基矢量定义方式,还强调了正确设置周期性边界条件(特别是相位补偿)的重要性,以避免计算误差如鬼带现象。同时,提供了具体的MATLAB代码片段用于演示关键步骤,并分享了一些实践经验,例如如何通过观察能带图中的狄拉克锥特征来验证路径设置的准确性。 适合人群:从事材料科学、物理学研究的专业人士,尤其是那些正在使用或计划使用Comsol软件进行声子晶体模拟的研究人员。 使用场景及目标:帮助研究人员更好地理解和掌握在Comsol环境中针对不同类型晶格进行精确的声子晶体能带计算的方法和技术要点,从而提高仿真精度并减少常见错误的发生。 其他说明:文章中提到的实际案例展示了因晶格类型混淆而导致的问题,提醒使用者注意细节差异,确保模型构建无误。此外,文中提供的代码片段可以直接应用于相关项目中作为参考模板。
recommend-type

springboot213大学生心理健康管理系统的设计与实现.zip

springboot213大学生心理健康管理系统的设计与实现
recommend-type

三轴自动锁螺丝机PLC配方编程:吸钉式锁螺丝智能调整与注释详解 变址寄存器 高效版

一种基于三菱FX系列PLC的三轴自动锁螺丝机的配方编程方法。该系统采用吸钉式锁螺丝方式,通过PLC进行智能管理和调整。主要内容包括:利用D寄存器阵列和变址寄存器Z来存储和管理不同配方的数据,如坐标和螺丝数量;通过触摸屏和示教器简化调试流程,使工人能够快速设置和保存参数;并通过RS指令将数据保存到触摸屏内置存储中。此外,还展示了具体的PLC程序片段,解释了如何通过简单的寄存器操作实现复杂的配方管理和自动化操作。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉PLC编程和机械设备调试的专业人士。 使用场景及目标:适用于需要提高生产效率和简化调试流程的制造业企业。主要目标是帮助技术人员掌握如何使用PLC进行配方管理,优化自动锁螺丝机的操作流程,减少人工干预,提升设备的智能化水平。 其他说明:文中提供的具体PLC程序代码和详细的注释有助于读者更好地理解和应用相关技术。同时,通过实例演示了如何利用PLC寄存器寻址特性和变址寄存器简化程序逻辑,为类似项目提供有价值的参考。
recommend-type

基于QT与STM32的Modbus-TCP四遥功能实现及源码解析

基于Qt开发的Modbus-TCP远程控制系统,用于实现四遥(遥测、遥控、遥信、遥调)功能。系统由上位机和下位机组成,上位机使用Qt进行图形界面开发,下位机采用STM32和W5500以太网模块,所有Modbus功能均自行实现,未使用第三方库。文中具体展示了各个功能的实现细节,包括ADC数据采集、LED控制、按键状态读取以及参数调节等功能的具体代码实现。 适合人群:具有一定嵌入式开发经验的研发人员,尤其是熟悉Qt和STM32的开发者。 使用场景及目标:适用于工业自动化、智能家居等领域,旨在帮助开发者理解和实现基于Modbus-TCP协议的远程控制系统,掌握四遥功能的具体实现方法。 其他说明:文中提供了详细的代码片段和技术难点解析,有助于读者深入理解系统的实现过程。同时,针对常见的开发问题给出了具体的解决方案,如浮点数转换、字节序处理等。
recommend-type

ERP系统客户与供应商信息视图创建:Oracle数据库中客户和供应商数据整合查询设计

内容概要:本文档定义了一个名为 `xxx_SCustSuplier_info` 的视图,用于整合和展示客户(Customer)和供应商(Supplier)的相关信息。视图通过连接多个表来获取组织单位、客户账户、站点使用、位置、财务代码组合等数据。对于客户部分,视图选择了与账单相关的记录,并提取了账单客户ID、账单站点ID、客户名称、账户名称、站点代码、状态、付款条款等信息;对于供应商部分,视图选择了有效的供应商及其站点信息,包括供应商ID、供应商名称、供应商编号、状态、付款条款、财务代码组合等。视图还通过外连接确保即使某些字段为空也能显示相关信息。 适合人群:熟悉Oracle ERP系统,尤其是应付账款(AP)和应收账款(AR)模块的数据库管理员或开发人员;需要查询和管理客户及供应商信息的业务分析师。 使用场景及目标:① 数据库管理员可以通过此视图快速查询客户和供应商的基本信息,包括账单信息、财务代码组合等;② 开发人员可以利用此视图进行报表开发或数据迁移;③ 业务分析师可以使用此视图进行数据分析,如信用评估、付款周期分析等。 阅读建议:由于该视图涉及多个表的复杂连接,建议读者先熟悉各个表的结构和关系,特别是 `hz_parties`、`hz_cust_accounts`、`ap_suppliers` 等核心表。此外,注意视图中使用的外连接(如 `gl_code_combinations_kfv` 表的连接),这可能会影响查询结果的完整性。
recommend-type

Web前端开发:CSS与HTML设计模式深入解析

《Pro CSS and HTML Design Patterns》是一本专注于Web前端设计模式的书籍,特别针对CSS(层叠样式表)和HTML(超文本标记语言)的高级应用进行了深入探讨。这本书籍属于Pro系列,旨在为专业Web开发人员提供实用的设计模式和实践指南,帮助他们构建高效、美观且可维护的网站和应用程序。 在介绍这本书的知识点之前,我们首先需要了解CSS和HTML的基础知识,以及它们在Web开发中的重要性。 HTML是用于创建网页和Web应用程序的标准标记语言。它允许开发者通过一系列的标签来定义网页的结构和内容,如段落、标题、链接、图片等。HTML5作为最新版本,不仅增强了网页的表现力,还引入了更多新的特性,例如视频和音频的内置支持、绘图API、离线存储等。 CSS是用于描述HTML文档的表现(即布局、颜色、字体等样式)的样式表语言。它能够让开发者将内容的表现从结构中分离出来,使得网页设计更加模块化和易于维护。随着Web技术的发展,CSS也经历了多个版本的更新,引入了如Flexbox、Grid布局、过渡、动画以及Sass和Less等预处理器技术。 现在让我们来详细探讨《Pro CSS and HTML Design Patterns》中可能包含的知识点: 1. CSS基础和选择器: 书中可能会涵盖CSS基本概念,如盒模型、边距、填充、边框、背景和定位等。同时还会介绍CSS选择器的高级用法,例如属性选择器、伪类选择器、伪元素选择器以及选择器的组合使用。 2. CSS布局技术: 布局是网页设计中的核心部分。本书可能会详细讲解各种CSS布局技术,包括传统的浮动(Floats)布局、定位(Positioning)布局,以及最新的布局模式如Flexbox和CSS Grid。此外,也会介绍响应式设计的媒体查询、视口(Viewport)单位等。 3. 高级CSS技巧: 这些技巧可能包括动画和过渡效果,以及如何优化性能和兼容性。例如,CSS3动画、关键帧动画、转换(Transforms)、滤镜(Filters)和混合模式(Blend Modes)。 4. HTML5特性: 书中可能会深入探讨HTML5的新标签和语义化元素,如`<article>`、`<section>`、`<nav>`等,以及如何使用它们来构建更加标准化和语义化的页面结构。还会涉及到Web表单的新特性,比如表单验证、新的输入类型等。 5. 可访问性(Accessibility): Web可访问性越来越受到重视。本书可能会介绍如何通过HTML和CSS来提升网站的无障碍访问性,比如使用ARIA标签(Accessible Rich Internet Applications)来增强屏幕阅读器的使用体验。 6. 前端性能优化: 性能优化是任何Web项目成功的关键。本书可能会涵盖如何通过优化CSS和HTML来提升网站的加载速度和运行效率。内容可能包括代码压缩、合并、避免重绘和回流、使用Web字体的最佳实践等。 7. JavaScript与CSS/HTML的交互: 在现代Web开发中,JavaScript与CSS及HTML的交云并用是不可或缺的。书中可能会讲解如何通过JavaScript动态地修改样式、操作DOM元素以及使用事件监听和响应用户交互。 8. Web框架和预处理器: 这本书可能会提到流行的Web开发框架和预处理器,比如Bootstrap、Foundation、Sass和Less等,它们是如何简化和加速开发流程的。 9. 测试和维护: 书中也可能包含关于如何测试网页以及如何持续优化和维护CSS和HTML代码的章节。例如,使用断言测试、自动化测试、性能分析工具等。 最后,鉴于文件名称列表中的“压缩包子文件”的表述,这可能是对“压缩包”文件的一种误译或误用,此处“压缩包”应该指的是包含该书籍PDF文件的压缩文件格式,如ZIP或RAR。而“Pro CSS and HTML Design Patterns.pdf”指的就是该书籍的PDF格式电子版文件。 以上所述,构成了《Pro CSS and HTML Design Patterns》一书可能包含的核心知识点。通过学习这些内容,Web前端开发者可以掌握更为高效和优雅的设计模式,从而在日常工作中更高效地解决实际问题。
recommend-type

Zotero 7数据同步:Attanger插件安装&设置,打造文献管理利器

/i.s3.glbimg.com/v1/AUTH_08fbf48bc0524877943fe86e43087e7a/internal_photos/bs/2018/L/j/ipKA8TRPyt4ptaG1DGww/t-m-01.png) # 1. Zotero 7数据同步简介 在数字时代,管理研究数据变得日益重要,而Zot
recommend-type

卷积神经网络的基础理论200字

<think>我们正在回答用户关于卷积神经网络(CNN)基础理论的询问。根据提供的引用资料,我们可以概述CNN的基本结构和工作原理。引用[1]提到CNN是一种前馈神经网络,信息从输入单向流动到输出。引用[2]指出CNN在图像处理等领域应用广泛,通过层次结构和参数调整实现模式识别。引用[3]说明CNN包含卷积层,使用卷积核提取局部特征,减少参数量,提高效率。引用[4]则提到了训练过程,包括前向传播、误差计算和反向传播(梯度下降)。因此,我们将从以下几个方面概述CNN:1.CNN的基本结构(卷积层、池化层、全连接层)2.卷积操作的工作原理(局部感受野、权重共享)3.训练过程(前向传播、损失函数、反
recommend-type

轻便实用的Java库类查询工具介绍

标题 "java2库类查询" 和描述表明,所提及的工具是一个专门用于查询Java库类的应用程序。此软件旨在帮助开发者快速地查找和引用Java的标准开发工具包(SDK)中包含的所有应用程序编程接口(API)类。通过这样的工具,开发者可以节省大量在官方文档或搜索引擎上寻找类定义和使用方法的时间。它被描述为轻巧且方便,这表明其占用的系统资源相对较少,同时提供直观的用户界面,使得查询过程简洁高效。 从描述中可以得出几个关键知识点: 1. Java SDK:Java的软件开发工具包(SDK)是Java平台的一部分,提供了一套用于开发Java应用软件的软件包和库。这些软件包通常被称为API,为开发者提供了编程界面,使他们能够使用Java语言编写各种类型的应用程序。 2. 库类查询:这个功能对于开发者来说非常关键,因为它提供了一个快速查找特定库类及其相关方法、属性和使用示例的途径。良好的库类查询工具可以帮助开发者提高工作效率,减少因查找文档而中断编程思路的时间。 3. 轻巧性:软件的轻巧性通常意味着它对计算机资源的要求较低。这样的特性对于资源受限的系统尤为重要,比如老旧的计算机、嵌入式设备或是当开发者希望最小化其开发环境占用空间时。 4. 方便性:软件的方便性通常关联于其用户界面设计,一个直观、易用的界面可以让用户快速上手,并减少在使用过程中遇到的障碍。 5. 包含所有API:一个优秀的Java库类查询软件应当能够覆盖Java所有标准API,这包括Java.lang、Java.util、Java.io等核心包,以及Java SE平台的所有其他标准扩展包。 从标签 "java 库 查询 类" 可知,这个软件紧密关联于Java编程语言的核心功能——库类的管理和查询。这些标签可以关联到以下知识点: - Java:一种广泛用于企业级应用、移动应用(如Android应用)、网站后端、大型系统和许多其他平台的编程语言。 - 库:在Java中,库是一组预打包的类和接口,它们可以被应用程序重复使用。Java提供了庞大的标准库,以支持各种常见的任务和功能。 - 查询:查询指的是利用软件工具搜索、定位和检索信息的过程。对于Java库类查询工具来说,这意味着可以通过类名、方法签名或其他标识符来查找特定的API条目。 最后,压缩包文件列表包含了两个文件:“java.dit”和“Java.exe”。其中“Java.exe”很可能是程序的可执行文件,而“java.dit”可能是一个数据文件,用于存储Java类的索引或数据。由于文件名后缀通常与文件类型相关联,但“dit”并不是一个常见的文件扩展名。这可能是一个特定于软件的自定义格式,或是一个打字错误。 总结来说,"java2库类查询" 是一个针对Java开发者的实用工具,它提供了一个轻量级、易用的平台来查询和定位Java标准库中的所有类和API。此工具对优化开发流程,减少查找Java类文档的时间大有裨益,尤其适合需要频繁查阅Java API的开发者使用。
recommend-type

【Zotero 7终极指南】:新手必备!Attanger插件全攻略与数据同步神技

# 1. Zotero 7与Attanger插件的介绍 在当今的学术研究和知识管理领域,高效的文献管理工具至关重要。Zotero 7作为一个流行的参考文献管理软件,因其强大的功能和用户友好的界面而受到专业人士的青睐。而Attanger插件则为Zotero 7带来了更多定制化和高级功能,极大地增强