def train(self): self.loss.step() epoch = self.scheduler.last_epoch + 1 learn_rate = self.scheduler.get_last_lr()[0] self.ckp.write_log( '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(learn_rate)) ) self.loss.start_log() self.model.train() timer_data, timer_model = utils.timer(), utils.timer() # timer_model.tic() for batch, (lr, hr, file_names) in enumerate(self.loader_train): lr, hr = self.prepare([lr, hr]) timer_data.hold() timer_model.tic() self.optimizer.zero_grad() sr = self.model(lr) loss = self.loss(sr, hr) if loss.item() < self.args.skip_threshold * self.error_last: loss.backward() self.optimizer.step() else: print('Skip this batch {}! (Loss: {})'.format( batch + 1, loss.item() )) timer_model.hold() if (batch + 1) % self.args.print_every == 0: self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format( (batch + 1) * self.args.batch_size, len(self.loader_train.dataset), self.loss.display_loss(batch), timer_model.release(), timer_data.release())) timer_data.tic() self.scheduler.step() self.loss.end_log(len(self.loader_train)) self.error_last = self.loss.log[-1, -1]
时间: 2023-05-31 22:06:45 浏览: 186
这段代码是在训练模型,其中self.loss.step()是更新损失函数,self.scheduler.last_epoch是获取当前epoch数,self.scheduler.get_last_lr()[0]是获取当前学习率。self.ckp.write_log()是将当前epoch数和学习率写入日志文件。self.loss.start_log()是开始记录训练日志。self.model.train()是将模型设置为训练模式。timer_data和timer_model是记录数据加载和模型计算时间的计时器。
相关问题
def step_ReduceLROnPlateau(self, metrics, epoch=None): if epoch is None: epoch = self.last_epoch + 1 self.last_epoch = epoch if epoch != 0 else 1 # ReduceLROnPlateau is called at the end of epoch, whereas others are called at beginning if self.last_epoch <= self.total_epoch: warmup_lr = [base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.) for base_lr in self.base_lrs] for param_group, lr in zip(self.optimizer.param_groups, warmup_lr): param_group['lr'] = lr else: if epoch is None: self.after_scheduler.step(metrics, None) else: self.after_scheduler.step(metrics, epoch - self.total_epoch)
这段代码看起来像是一个学习率调度器的实现,其中包含了一个 ReduceLROnPlateau 的函数。可以看出,这个函数的作用是在训练过程中动态地调整学习率,以提高模型的性能和稳定性。具体来说,这个函数会根据当前的 epoch 和总的训练 epoch 数量计算出一个 warmup_lr,然后将这个学习率设置为 optimizer 中各个参数组的学习率。当 epoch 大于总的训练 epoch 数量时,这个函数会调用一个 after_scheduler.step() 函数来进一步调整学习率。
def step(self, epoch=None, metrics=None): if type(self.after_scheduler) != ReduceLROnPlateau: if self.finished and self.after_scheduler: if epoch is None: self.after_scheduler.step(None) else: self.after_scheduler.step(epoch - self.total_epoch) else: return super(GradualWarmupScheduler, self).step(epoch) else: self.step_ReduceLROnPlateau(metrics, epoch)
这段代码是 GradualWarmupScheduler 的 step 函数的实现,其中包含了一个判断语句。首先,它会检查 after_scheduler 是否为 ReduceLROnPlateau 类型。如果不是,它会根据当前的训练 epoch 和总的训练 epoch 数量来判断是否需要调用 after_scheduler.step() 函数来进一步调整学习率。如果已经训练完成,它也会调用 after_scheduler.step() 函数来进行学习率的调整。否则,它会调用 super() 函数来调用父类的 step 函数来进行学习率的调整。如果 after_scheduler 是 ReduceLROnPlateau 类型,那么它会调用 step_ReduceLROnPlateau 函数来进行学习率的调整。
阅读全文
相关推荐













