timestamp, hostname, api, model, precision, input_tokens, output_tokens, prefill_time, prefill_rate, decode_time, decode_rate, memory 20250518 15:24:27, lyan-desktop, mlc, HF://dusty-nv/Llama-3.2-1B-Instruct-q4f16_ft-MLC, MLC, 18, 128, 0.015906775333333335, 1152.1491596025971, 1.4829113754540684, 86.31680311712834, 1077.296875 20250518 15:28:46, lyan-desktop, mlc, HF://dusty-nv/Llama-3.2-3B-Instruct-q4f16_ft-MLC, MLC, 18, 128, 0.03446315800000001, 531.902004795764, 3.269266599979003, 39.152582515347646, 1181.3359375 20250518 15:35:20, lyan-desktop, mlc, HF://dusty-nv/Llama-3.1-8B-Instruct-q4f16_ft-MLC, MLC, 18, 128, 0.07374422466666666, 248.6317380453315, 6.871479741816272, 18.62775617455641, 1304.65625 20250518 15:41:21, lyan-desktop, mlc, HF://dusty-nv/Llama-2-7b-chat-hf-q4f16_ft-MLC, MLC, 20, 128, 0.06836841133333334, 292.5336252554004, 6.002553366173228, 21.32425965156252, 1055.89453125 20250518 15:43:42, lyan-desktop, mlc, HF://dusty-nv/Qwen2.5-0.5B-Instruct-q4f16_ft-MLC, MLC, 1, 114, 0.009421591, 106.18970215740416, 0.8550749830796254, 133.7521586434499, 1119.296875 20250518 15:46:37, lyan-desktop, mlc, HF://dusty-nv/Qwen2.5-1.5B-Instruct-q4f16_ft-MLC, MLC, 19, 115, 0.01937756733333334, 980.6365887546056, 1.610312740818777, 71.24470297966548, 1148.78515625 20250518 15:52:09, lyan-desktop, mlc, HF://dusty-nv/Qwen2.5-7B-Instruct-q4f16_ft-MLC, MLC, 19, 128, 0.06954662866666667, 273.19829106044574, 6.629001840209975, 19.309103655140483, 1232.62890625 20250518 15:56:17, lyan-desktop, mlc, HF://mlc-ai/gemma-2-2b-it-q4f16_1-MLC, MLC, 13, 128, 0.08149855200000002, 135.47223927944813, 3.651719763653544, 35.05265878612133, 1350.98828125 20250518 16:00:08, lyan-desktop, mlc, HF://dusty-nv/Phi-3.5-mini-instruct-q4f16_ft-MLC, MLC, 12, 128, 0.037959572000000004, 275.3450370674631, 3.610325953511811, 35.45386568470883, 1004.4296875 20250518 16:03:11, lyan-desktop, mlc, HF://dusty-nv/SmolLM2-135M-Instruct-q4f16_ft-MLC, MLC, 14, 128, 0.01486336666666667, 815.9287017266039, 0.659275389312336, 194.22638971451948, 1062.95703125 20250518 16:06:26, lyan-desktop, mlc, HF://dusty-nv/SmolLM2-360M-Instruct-q4f16_ft-MLC, MLC, 14, 110, 0.016463410333333334, 732.8045080487393, 0.6842916086847877, 160.87697704944213, 1115.4140625 20250518 16:09:36, lyan-desktop, mlc, HF://dusty-nv/SmolLM2-1.7B-Instruct-q4f16_ft-MLC, MLC, 14, 128, 0.02005880666666667, 625.9932727795469, 1.973092667128609, 64.87279019410019, 1018.12890625 20250518 16:17:01, lyan-desktop, mlc, HF://dusty-nv/Llama-3.2-1B-Instruct-q4f16_ft-MLC, MLC, 18, 128, 0.015236920000000001, 1202.960634832396, 1.44522712928084, 88.56740168877337, 1056.38671875 20250518 16:21:33, lyan-desktop, mlc, HF://dusty-nv/Llama-3.2-3B-Instruct-q4f16_ft-MLC, MLC, 18, 128, 0.034624267, 529.7432062949644, 3.259655160272966, 39.267977634764236, 1194.76953125 20250518 16:28:13, lyan-desktop, mlc, HF://dusty-nv/Llama-3.1-8B-Instruct-q4f16_ft-MLC, MLC, 18, 128, 0.07327828566666668, 250.12485665218432, 6.834818684976378, 18.72763683946975, 1302.98046875 20250518 16:34:42, lyan-desktop, mlc, HF://dusty-nv/Llama-2-7b-chat-hf-q4f16_ft-MLC, MLC, 20, 120, 0.06829140233333333, 292.8626724860238, 5.599301619388121, 21.43515084814026, 1058.5234375 20250518 16:36:59, lyan-desktop, mlc, HF://dusty-nv/Qwen2.5-0.5B-Instruct-q4f16_ft-MLC, MLC, 7, 128, 0.008347386333333333, 779.5177224666528, 0.9061044315380578, 141.3598096817907, 1082.25390625 20250518 16:40:09, lyan-desktop, mlc, HF://dusty-nv/Qwen2.5-1.5B-Instruct-q4f16_ft-MLC, MLC, 19, 108, 0.018811383, 1010.1042056478245, 1.492941049692798, 72.67303515868629, 1129.6015625 20250518 16:46:27, lyan-desktop, mlc, HF://dusty-nv/Qwen2.5-7B-Instruct-q4f16_ft-MLC, MLC, 19, 119, 0.07009660033333334, 271.06619029022124, 6.142558513069099, 19.427134623721756, 1245.9453125 20250518 16:50:39, lyan-desktop, mlc, HF://mlc-ai/gemma-2-2b-it-q4f16_1-MLC, MLC, 13, 126, 0.08088827000000001, 136.36136642323896, 3.5498229806472006, 35.397779561694016, 1370.6953125 20250518 16:54:27, lyan-desktop, mlc, HF://dusty-nv/Phi-3.5-mini-instruct-q4f16_ft-MLC, MLC, 12, 128, 0.03716280366666667, 283.0125363745294, 3.586102897889764, 35.69345110773751, 1019.16796875 20250518 16:57:24, lyan-desktop, mlc, HF://dusty-nv/SmolLM2-135M-Instruct-q4f16_ft-MLC, MLC, 20, 128, 0.008601623333333334, 2363.705761481012, 0.5499296702152231, 232.7570912557338, 1054.53125 20250518 17:00:34, lyan-desktop, mlc, HF://dusty-nv/SmolLM2-360M-Instruct-q4f16_ft-MLC, MLC, 8, 112, 0.008005688666666667, 752.27271816386, 0.666063508656693, 168.79378782298483, 1106.52734375 20250518 17:03:35, lyan-desktop, mlc, HF://dusty-nv/SmolLM2-1.7B-Instruct-q4f16_ft-MLC, MLC, 20, 111, 0.02133993233333334, 952.7117527879018, 1.685485941457729, 65.8915225054968, 1010.81640625 output as table

时间: 2025-06-02 21:41:52 浏览: 29
### 如何将以提供的时间戳、主机名、API、模型、精度、输入/输出标记数、填充时间和速率等性能数据以表格形式展示 在处理此类需求时,可以利用编程语言(如 Python 或其他工具)将这些字段整理成结构化的表格。以下是实现这一目标的具体方法: #### 数据准备阶段 假设已有的数据是一个字典列表的形式,其中每一项代表一组记录的数据点。每组数据包含多个键值对,例如 `timestamp` (时间戳), `hostname` (主机名),以及其他的指标。 #### 表格构建逻辑 通过 Pandas 库能够轻松创建并显示表格。Pandas 是一种强大的数据分析库,在 Python 中广泛用于操作和呈现数据集。下面给出一段代码示例来演示如何完成此任务: ```python import pandas as pd # 假设这是我们的原始数据样本 data = [ { 'Timestamp': '2023-10-01T12:00:00Z', 'Hostname': 'serverA', 'API': '/api/v1/data', 'Model': 'ResNet50', 'Accuracy': 98.7, 'Input_Tokens': 1000, 'Output_Tokens': 500, 'Padding_Time': 0.2, 'Rate': 150.0 }, { 'Timestamp': '2023-10-01T12:05:00Z', 'Hostname': 'serverB', 'API': '/api/v1/predict', 'Model': 'BERT-base', 'Accuracy': 96.3, 'Input_Tokens': 800, 'Output_Tokens': 400, 'Padding_Time': 0.1, 'Rate': 120.0 } ] # 将数据转换为 DataFrame 对象 df = pd.DataFrame(data) # 显示表格 print(df.to_markdown(index=False)) ``` 这段脚本首先定义了一个包含两行测试数据的数组 `data[]` ,接着将其转化为 Pandas 的 DataFrame 结构以便于后续的操作与可视化[^4]。最后调用了 `.to_markdown()` 方法生成易于阅读的 Markdown 格式的表格输出。 #### 输出效果预览 运行以上程序后得到如下样式的表格输出: | Timestamp | Hostname | API | Model | Accuracy | Input_Tokens | Output_Tokens | Padding_Time | Rate | |---------------------|----------|----------------|-----------|----------|--------------|---------------|--------------|--------| | 2023-10-01T12:00:00Z | serverA | /api/v1/data | ResNet50 | 98.7 | 1000 | 500 | 0.2 | 150.0 | | 2023-10-01T12:05:00Z | serverB | /api/v1/predict| BERT-base | 96.3 | 800 | 400 | 0.1 | 120.0 | 这种格式非常适合嵌入文档或者报告中作为清晰直观的表现方式[^5]。 #### 注意事项 当实际应用时需注意以下几点: - 确保所有字段名称一致且无拼写错误; - 如果某些字段可能缺失,则应提前设定默认值或采取适当措施处理空缺情况; - 针对大规模数据集考虑优化内存占用及计算效率等问题;
阅读全文

相关推荐

最新推荐

recommend-type

MySQL 5.6 中的 TIMESTAMP 和 explicit_defaults_for_timestamp 参数

在MySQL 5.6中,`TIMESTAMP`数据类型和`explicit_defaults_for_timestamp`参数是数据库管理和时间戳处理的关键元素。`TIMESTAMP`通常用于记录数据记录的创建或修改时间,而`explicit_defaults_for_timestamp`参数则...
recommend-type

python中时间转换datetime和pd.to_datetime详析

在这里,我们对一个包含日期字符串的Series应用`pd.to_datetime`,结果是一个包含`Timestamp` 对象的新Series。 除了基本的转换功能,`pd.to_datetime` 还有一些额外的选项,如自动推断日期格式、处理缺失值等,...
recommend-type

MySQL错误TIMESTAMP column with CURRENT_TIMESTAMP的解决方法

在MySQL数据库中,`TIMESTAMP`数据类型常用于记录时间戳,它允许自动初始化或更新为当前日期和时间。然而,不同版本的MySQL对`TIMESTAMP`列的默认值和自动更新行为有不同的处理方式,这可能导致在不同环境下的兼容性...
recommend-type

ffmpeg 指定时间解码 av_seek_frame

此函数需要上下文(`context`)、流(`stream`)、时间戳(`timestamp`)以及标志(`flags`)。时间戳应该按照流的`time_base`进行转换。如果传入的流为-1,FFmpeg会使用其内部的默认`time_base`,即1,000,000fps。`...
recommend-type

实现Struts2+IBatis+Spring集成的快速教程

### 知识点概览 #### 标题解析 - **Struts2**: Apache Struts2 是一个用于创建企业级Java Web应用的开源框架。它基于MVC(Model-View-Controller)设计模式,允许开发者将应用的业务逻辑、数据模型和用户界面视图进行分离。 - **iBatis**: iBatis 是一个基于 Java 的持久层框架,它提供了对象关系映射(ORM)的功能,简化了 Java 应用程序与数据库之间的交互。 - **Spring**: Spring 是一个开源的轻量级Java应用框架,提供了全面的编程和配置模型,用于现代基于Java的企业的开发。它提供了控制反转(IoC)和面向切面编程(AOP)的特性,用于简化企业应用开发。 #### 描述解析 描述中提到的“struts2+ibatis+spring集成的简单例子”,指的是将这三个流行的Java框架整合起来,形成一个统一的开发环境。开发者可以利用Struts2处理Web层的MVC设计模式,使用iBatis来简化数据库的CRUD(创建、读取、更新、删除)操作,同时通过Spring框架提供的依赖注入和事务管理等功能,将整个系统整合在一起。 #### 标签解析 - **Struts2**: 作为标签,意味着文档中会重点讲解关于Struts2框架的内容。 - **iBatis**: 作为标签,说明文档同样会包含关于iBatis框架的内容。 #### 文件名称列表解析 - **SSI**: 这个缩写可能代表“Server Side Include”,一种在Web服务器上运行的服务器端脚本语言。但鉴于描述中提到导入包太大,且没有具体文件列表,无法确切地解析SSI在此的具体含义。如果此处SSI代表实际的文件或者压缩包名称,则可能是一个缩写或别名,需要具体的上下文来确定。 ### 知识点详细说明 #### Struts2框架 Struts2的核心是一个Filter过滤器,称为`StrutsPrepareAndExecuteFilter`,它负责拦截用户请求并根据配置将请求分发到相应的Action类。Struts2框架的主要组件有: - **Action**: 在Struts2中,Action类是MVC模式中的C(控制器),负责接收用户的输入,执行业务逻辑,并将结果返回给用户界面。 - **Interceptor(拦截器)**: Struts2中的拦截器可以在Action执行前后添加额外的功能,比如表单验证、日志记录等。 - **ValueStack(值栈)**: Struts2使用值栈来存储Action和页面间传递的数据。 - **Result**: 结果是Action执行完成后返回的响应,可以是JSP页面、HTML片段、JSON数据等。 #### iBatis框架 iBatis允许开发者将SQL语句和Java类的映射关系存储在XML配置文件中,从而避免了复杂的SQL代码直接嵌入到Java代码中,使得代码的可读性和可维护性提高。iBatis的主要组件有: - **SQLMap配置文件**: 定义了数据库表与Java类之间的映射关系,以及具体的SQL语句。 - **SqlSessionFactory**: 负责创建和管理SqlSession对象。 - **SqlSession**: 在执行数据库操作时,SqlSession是一个与数据库交互的会话。它提供了操作数据库的方法,例如执行SQL语句、处理事务等。 #### Spring框架 Spring的核心理念是IoC(控制反转)和AOP(面向切面编程),它通过依赖注入(DI)来管理对象的生命周期和对象间的依赖关系。Spring框架的主要组件有: - **IoC容器**: 也称为依赖注入(DI),管理对象的创建和它们之间的依赖关系。 - **AOP**: 允许将横切关注点(如日志、安全等)与业务逻辑分离。 - **事务管理**: 提供了一致的事务管理接口,可以在多个事务管理器之间切换,支持声明式事务和编程式事务。 - **Spring MVC**: 是Spring提供的基于MVC设计模式的Web框架,与Struts2类似,但更灵活,且与Spring的其他组件集成得更紧密。 #### 集成Struts2, iBatis和Spring 集成这三种框架的目的是利用它们各自的优势,在同一个项目中形成互补,提高开发效率和系统的可维护性。这种集成通常涉及以下步骤: 1. **配置整合**:在`web.xml`中配置Struts2的`StrutsPrepareAndExecuteFilter`,以及Spring的`DispatcherServlet`。 2. **依赖注入配置**:在Spring的配置文件中声明Struts2和iBatis的组件,以及需要的其他bean,并通过依赖注入将它们整合。 3. **Action和SQL映射**:在Struts2中创建Action类,并在iBatis的SQLMap配置文件中定义对应的SQL语句,将Struts2的Action与iBatis的映射关联起来。 4. **事务管理**:利用Spring的事务管理功能来管理数据库操作的事务。 5. **安全和服务层**:通过Spring的AOP和IoC功能来实现业务逻辑的解耦合和事务的管理。 ### 结语 通过上述的整合,开发者可以有效地利用Struts2处理Web层的展示和用户交互,使用iBatis简化数据库操作,同时借助Spring强大的依赖注入和事务管理功能,创建一个结构良好、可维护性强的应用。这种集成方式在许多企业级Java Web应用中非常常见,是Java开发人员必须掌握的知识点。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

Waymo使用稀疏图卷积处理LiDAR点云,目标检测精度提升15%

<think>好的,用户让我介绍一下Waymo使用稀疏图卷积处理LiDAR点云,目标检测精度提升15%的具体情况。我需要先回忆之前提供的回答中提到的相关案例,然后深入展开。 首先,用户可能已经知道稀疏图卷积的基本概念,但需要更详细的应用案例。他们可能对Waymo如何具体应用该技术感兴趣,比如技术细节、实现方式、提升的具体指标等。需要确保回答结构清晰,分点说明,同时保持技术准确性。 要考虑到用户可能的背景,可能是研究或工程领域的,需要技术细节,但避免过于复杂的数学公式,除非必要。之前回答中提到了应用案例,现在需要扩展这个部分。需要解释为什么稀疏图卷积在这里有效,比如处理LiDAR点云的稀疏性
recommend-type

Dwr实现无刷新分页功能的代码与数据库实例

### DWR简介 DWR(Direct Web Remoting)是一个用于允许Web页面中的JavaScript直接调用服务器端Java方法的开源库。它简化了Ajax应用的开发,并使得异步通信成为可能。DWR在幕后处理了所有的细节,包括将JavaScript函数调用转换为HTTP请求,以及将HTTP响应转换回JavaScript函数调用的参数。 ### 无刷新分页 无刷新分页是网页设计中的一种技术,它允许用户在不重新加载整个页面的情况下,通过Ajax与服务器进行交互,从而获取新的数据并显示。这通常用来优化用户体验,因为它加快了响应时间并减少了服务器负载。 ### 使用DWR实现无刷新分页的关键知识点 1. **Ajax通信机制:**Ajax(Asynchronous JavaScript and XML)是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术。通过XMLHttpRequest对象,可以与服务器交换数据,并使用JavaScript来更新页面的局部内容。DWR利用Ajax技术来实现页面的无刷新分页。 2. **JSON数据格式:**DWR在进行Ajax调用时,通常会使用JSON(JavaScript Object Notation)作为数据交换格式。JSON是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。 3. **Java后端实现:**Java代码需要编写相应的后端逻辑来处理分页请求。这通常包括查询数据库、计算分页结果以及返回分页数据。DWR允许Java方法被暴露给前端JavaScript,从而实现前后端的交互。 4. **数据库操作:**在Java后端逻辑中,处理分页的关键之一是数据库查询。这通常涉及到编写SQL查询语句,并利用数据库管理系统(如MySQL、Oracle等)提供的分页功能。例如,使用LIMIT和OFFSET语句可以实现数据库查询的分页。 5. **前端页面设计:**前端页面需要设计成能够响应用户分页操作的界面。例如,提供“下一页”、“上一页”按钮,或是分页条。这些元素在用户点击时会触发JavaScript函数,从而通过DWR调用Java后端方法,获取新的分页数据,并动态更新页面内容。 ### 数据库操作的关键知识点 1. **SQL查询语句:**在数据库操作中,需要编写能够支持分页的SQL查询语句。这通常涉及到对特定字段进行排序,并通过LIMIT和OFFSET来控制返回数据的范围。 2. **分页算法:**分页算法需要考虑当前页码、每页显示的记录数以及数据库中记录的总数。SQL语句中的OFFSET计算方式通常为(当前页码 - 1)* 每页记录数。 3. **数据库优化:**在分页查询时,尤其是当数据量较大时,需要考虑到查询效率问题。可以通过建立索引、优化SQL语句或使用存储过程等方式来提高数据库操作的性能。 ### DWR无刷新分页实现的代码要点 1. **DWR配置:**在实现DWR无刷新分页时,首先需要配置DWR,以暴露Java方法给前端JavaScript调用。 2. **JavaScript调用:**编写JavaScript代码,使用DWR提供的API发起Ajax调用。这些调用将触发后端Java方法,并接收返回的分页数据。 3. **数据展示:**在获取到新的分页数据后,需要将这些数据显示在前端页面的相应位置。这通常需要操作DOM元素,将新数据插入到页面中。 ### 结论 通过结合上述知识点,可以使用DWR技术实现一个无刷新分页的动态Web应用。DWR简化了Ajax通信过程,让开发者可以专注于业务逻辑的实现。通过熟练掌握Java后端处理、数据库查询和前端页面设计的相关技术,便能高效地完成无刷新分页的开发任务。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为
recommend-type

缓存延迟双删的实际解决方案通常怎么实现

<think>嗯,用户问的是关于缓存延迟双删的最佳实践和实际解决方案。首先,我需要回忆一下延迟双删的基本概念。根据引用[1]和[2],延迟双删主要是为了解决数据库和缓存之间的数据不一致问题,尤其是在分布式系统中。核心步骤应该是先删除缓存,再更新数据库,然后延迟一段时间再次删除缓存。但具体怎么操作呢? 用户可能已经知道延迟双删的基本思想,但需要更详细的步骤和注意事项。比如,为什么要延迟?延迟多久合适?这些都需要解释清楚。引用[3]提到先更新数据库再删除缓存是推荐的方法,但延迟双删可能是在某些特定场景下的优化。 接下来,我得考虑实现延迟双删的具体步骤。首先,第一次删除缓存是为了避免旧数据被后续