使用hadoop分析气象数据完整版(附带完整代码)
时间: 2025-07-04 16:05:16 浏览: 10
### 数据准备
在使用Hadoop进行气象数据分析之前,首先需要准备好数据。通常气象数据可以从公开的数据源获取,例如NOAA(National Oceanic and Atmospheric Administration)提供的全球气象数据。这些数据通常以文本文件的形式存在,包含各种气象参数,如温度、湿度、风速等。
#### 示例数据格式
假设我们有一个简单的气象数据文件,每行记录包含日期、地点、最高温度和最低温度:
```
2023-01-01,New York,25,15
2023-01-01,Los Angeles,30,20
2023-01-02,New York,28,18
2023-01-02,Los Angeles,32,22
```
### MapReduce 实现
接下来,我们将编写一个MapReduce程序来分析这些气象数据,计算每个城市的平均最高温度和最低温度。
#### Mapper 类
```java
import java.io.IOException;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Mapper;
public class WeatherMapper extends Mapper<LongWritable, Text, Text, DoubleWritable> {
private static final int MAX_TEMPERATURE = 0;
private static final int MIN_TEMPERATURE = 1;
@Override
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] parts = value.toString().split(",");
if (parts.length == 4) {
String city = parts[1];
double maxTemp = Double.parseDouble(parts[2]);
double minTemp = Double.parseDouble(parts[3]);
context.write(new Text(city + "_max"), new DoubleWritable(maxTemp));
context.write(new Text(city + "_min"), new DoubleWritable(minTemp));
}
}
}
```
#### Reducer 类
```java
import java.io.IOException;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Reducer;
public class WeatherReducer extends Reducer<Text, DoubleWritable, Text, DoubleWritable> {
@Override
public void reduce(Text key, Iterable<DoubleWritable> values, Context context) throws IOException, InterruptedException {
double sum = 0.0;
int count = 0;
for (DoubleWritable value : values) {
sum += value.get();
count++;
}
double average = sum / count;
context.write(key, new DoubleWritable(average));
}
}
```
#### Driver 类
```java
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WeatherAnalysis {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "Weather Analysis");
job.setJarByClass(WeatherAnalysis.class);
job.setMapperClass(WeatherMapper.class);
job.setReducerClass(WeatherReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(DoubleWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
### 运行 MapReduce 程序
编译并打包上述代码为JAR文件后,可以使用以下命令运行MapReduce作业:
```bash
hadoop jar weather-analysis.jar WeatherAnalysis /input/path /output/path
```
### 结果展示
运行完成后,输出目录中将包含每个城市及其对应的平均最高温度和最低温度。例如:
```
New York_max 26.5
New York_min 16.5
Los Angeles_max 31.0
Los Angeles_min 21.0
```
###
阅读全文
相关推荐















