活动介绍

#define SEG_CODE(...) ((SEG_A ## __VA_ARGS__) | (SEG_B ## __VA_ARGS__) ) SEG_CODE(_A,_B)展开是什么

时间: 2025-06-19 19:21:38 浏览: 18
<think>嗯,用户问的是关于C语言中的宏定义展开问题。具体来说,他们想知道`SEG_CODE(_A,_B)`这个宏展开后的结果是什么。首先,我需要回忆一下C语言中的宏处理规则,尤其是关于`##`操作符和可变参数宏的部分。 首先,给定的宏定义是`#define SEG_CODE(...) ((SEG_A ## __VA_ARGS__) | (SEG_B ## __VA_ARGS__))`。这里使用了`##`操作符,它用于将宏的参数连接到其他标记上。而`__VA_ARGS__`代表宏的可变参数部分,也就是用户调用时传入的参数。 当用户调用`SEG_CODE(_A,_B)`时,`...`部分会匹配到`_A,_B`,所以`__VA_ARGS__`被替换为`_A,_B`。接下来,宏展开的过程中,`SEG_A ## __VA_ARGS__`会把`SEG_A`和`_A,_B`连接起来。不过这里需要注意,`##`操作符的作用是将左右两边的标记合并成一个新的标记。但`__VA_ARGS__`在这里包含了两个参数,即`_A`和`_B`,所以这里可能会有问题。因为通常`##`用于连接单个参数,而可变参数可能包含多个参数,这时候连接操作是否合法? 例如,`SEG_A ## _A,_B`会被处理成`SEG_A_A, _B`吗?或者是否因为逗号的存在导致语法错误?这时候可能需要考虑宏展开的具体规则。根据C标准,`##`前后的内容会被合并,如果`__VA_ARGS__`包含多个参数,那么连接后的结果可能产生多个标记,但这可能导致语法错误,因为`SEG_A ## _A,_B`实际上会被视为`SEG_A_A`和`,_B`,而这里可能期望的是`SEG_A_A_B`或者其他形式。 或者,用户可能原本希望`SEG_A`和`_A`连接,然后`_B`作为另一个参数?这可能需要更仔细的分析。假设`__VA_ARGS__`是`_A,_B`,那么在`SEG_A ## __VA_ARGS__`中,`##`会把`SEG_A`和`_A`连接成`SEG_A_A`,然后剩下的`,_B`会被当作后续的内容吗?如果是这样,那么整个表达式可能变成`(SEG_A_A , _B) | (SEG_B_A , _B)`,但这显然有问题,因为逗号在这里可能被视为参数分隔符,而宏展开后的结构可能不符合预期。 可能用户的实际意图是让`SEG_A`和`_A`连接,`SEG_A`和`_B`连接,或者其他组合方式。但根据宏定义的写法,`SEG_A ## __VA_ARGS__`中的`__VA_ARGS__`是`_A,_B`,所以连接后的结果应该是`SEG_A_A,_B`,同样,`SEG_B ## __VA_ARGS__`变成`SEG_B_A,_B`。这样整个表达式就变成`(SEG_A_A,_B) | (SEG_B_A,_B)`,但这里的逗号会导致运算符优先级的问题,可能被解析为逗号运算符,或者语法错误,取决于上下文。 但更可能的是,用户的宏定义可能存在错误,或者这里的参数传递方式不正确。例如,可能原本希望`__VA_ARGS__`作为单独的参数传递给`SEG_A`和`SEG_B`的宏,但在这里被错误地连接了多个参数。 或者,用户可能希望将`_A`和`_B`分别连接到`SEG_A`和`SEG_B`的不同部分,但写法上可能存在问题。例如,是否应该使用双重宏展开,或者用不同的方式处理参数? 例如,如果宏定义为`#define SEG_CODE(X, Y) ((SEG_A##X) | (SEG_B##Y))`,那么`SEG_CODE(_A, _B)`会展开为`(SEG_A_A | SEG_B_B)`,这可能更符合预期。但原题的宏定义使用可变参数,并且参数是`_A,_B`,这可能意味着用户希望将两个参数同时应用到`SEG_A`和`SEG_B`的连接中。 或者,可能用户误用了可变参数宏,而实际上应该使用两个参数。此时,宏定义的正确性可能存在问题,导致展开后的结果不符合预期,甚至出现编译错误。 总结来说,根据标准的宏展开规则,`SEG_CODE(_A,_B)`会被替换为`((SEG_A_A,_B) | (SEG_B_A,_B))`。但这样的表达式可能存在语法错误,因为逗号在这里可能被当作运算符,导致左侧和右侧的表达式不完整,或者产生其他未预期的行为。 不过,也有可能用户的环境中的预处理器对这种情况有特殊处理,例如将`SEG_A ## _A,_B`解释为`SEG_A_A,_B`,而`SEG_B ## _A,_B`解释为`SEG_B_A,_B`,然后整个表达式可能被视为`(SEG_A_A, _B) | (SEG_B_A, _B)`。但这在实际编译中可能会导致错误,因为逗号在这里的用法可能不合适,或者这些标识符可能未定义。 因此,正确的展开结果应该是`((SEG_A_A,_B) | (SEG_B_A,_B))`,但需要指出这可能存在语法问题,用户可能需要检查宏定义的正确性,或者是否应该使用不同的参数传递方式。</think>让我们逐步分析`SEG_CODE(_A,_B)`的宏展开过程: 1. **宏定义解析** ```c #define SEG_CODE(...) ((SEG_A ## __VA_ARGS__) | (SEG_B ## __VA_ARGS__))
阅读全文

相关推荐

D:\anaconda\envs\transUnet\python.exe D:\BaiduNetdiskDownload\project_TransUNet\TransUNet\test.py Traceback (most recent call last): File "D:\anaconda\envs\transUnet\lib\site-packages\ml_collections\config_dict\config_dict.py", line 903, in __getitem__ field = self._fields[key] KeyError: 'skip_channels' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:\anaconda\envs\transUnet\lib\site-packages\ml_collections\config_dict\config_dict.py", line 827, in __getattr__ return self[attribute] File "D:\anaconda\envs\transUnet\lib\site-packages\ml_collections\config_dict\config_dict.py", line 909, in __getitem__ raise KeyError(self._generate_did_you_mean_message(key, str(e))) KeyError: "'skip_channels'" During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:\BaiduNetdiskDownload\project_TransUNet\TransUNet\test.py", line 118, in <module> net = ViT_seg(config_vit, img_size=args.img_size, num_classes=config_vit.n_classes).cuda() File "D:\BaiduNetdiskDownload\project_TransUNet\TransUNet\networks\vit_seg_modeling.py", line 377, in __init__ self.decoder = DecoderCup(config) File "D:\BaiduNetdiskDownload\project_TransUNet\TransUNet\networks\vit_seg_modeling.py", line 343, in __init__ skip_channels = self.config.skip_channels File "D:\anaconda\envs\transUnet\lib\site-packages\ml_collections\config_dict\config_dict.py", line 829, in __getattr__ raise AttributeError(e) AttributeError: "'skip_channels'"

#define _CRT_SECURE_NO_WARNINGS #define DECODING_TIME_TEST 1 #include "com_typedef.h" #include "app_util.h" #include "app_args.h" #include "dec_def.h" #if SVAC_NAL #include "com_svac_nal.h" #endif #if LINUX #include <execinfo.h> #include <signal.h> #include <stdlib.h> #include <unistd.h> void handler(int sig) { void *array[10]; size_t size; // get void*'s for all entries on the stack size = backtrace(array, 10); // print out all the frames to stderr fprintf(stderr, "Error: signal %d:\n", sig); backtrace_symbols_fd(array, size, STDERR_FILENO); exit(1); } #endif #if MULTI_LAYER_FRAMEWORK int g_CountDOICyCleTime[MAX_LAYER]; // number to count the DOI cycle time. int g_DOIPrev[MAX_LAYER]; // the doi of previous frm. #else int g_CountDOICyCleTime; // number to count the DOI cycle time. int g_DOIPrev; // the doi of previous frm. #endif #define VERBOSE_FRAME VERBOSE_1 #define MAX_BS_BUF (32*1024*1024) /* byte */ static char op_fname_inp[256] = "\0"; #if MULTI_LAYER_FRAMEWORK static char op_fname_out[MAX_LAYER][256] = { "\0", "\0"}; #else static char op_fname_out[256] = "\0"; #endif static int op_max_frm_num = 0; static int op_use_pic_signature = 0; static int op_clip_org_size = 0; static int op_bit_depth_output_cfg = 0; static int op_bit_depth_output = 0; #if CU_LEVEL_PRIVACY static int op_user_permission = 0; #endif #if LIBVC_ON static char op_fname_inp_libpics[256] = "\0"; /* bitstream of libpics */ static char op_fname_out_libpics[256] = "\0"; /* reconstructed yuv of libpics */ #endif #if LIB_PIC_ERR_TOL unsigned int bs_real_size = 0; #endif typedef enum _STATES { STATE_DECODING, STATE_BUMPING #if LIB_PIC_ERR_TOL , STATE_LIBPIC_COLLECTING #endif } STATES; typedef enum _OP_FLAGS { OP_FLAG_FNAME_INP, OP_FLAG_FNAME_OUT, #if MULTI_LAYER_FRAMEWORK OP_FLAG_FNAME_OUT1, #endif OP_FLAG_MAX_FRM_NUM, OP_FLAG_USE_PIC_SIGN, OP_FLAG_CLIP_ORG_SIZE, OP_FLAG_OUT_BIT_DEPTH, #if CU_LEVEL_PRIVACY OP_USER_PERMISSION, #endif OP_FLAG_VERBOSE, #if LIBVC_ON OP_FLAG_FNAME_INP_LIBPICS, OP_FLAG_FNAME_OUT_LIBPICS, #endif OP_FLAG_MAX } OP_FLAGS; static int op_flag[OP_FLAG_MAX] = {0}; static COM_ARGS_OPTION options[] = \ { { 'i', "input", ARGS_TYPE_STRING | ARGS_TYPE_MANDATORY, &op_flag[OP_FLAG_FNAME_INP], op_fname_inp, "file name of input bitstream"}, #if MULTI_LAYER_FRAMEWORK { 'o', "output", ARGS_TYPE_STRING, &op_flag[OP_FLAG_FNAME_OUT], op_fname_out[0],"file name of decoded output" }, { 'e', "output1", ARGS_TYPE_STRING, &op_flag[OP_FLAG_FNAME_OUT1], op_fname_out[1],"file name of decoded output" }, #else { 'o', "output", ARGS_TYPE_STRING, &op_flag[OP_FLAG_FNAME_OUT], op_fname_out,"file name of decoded output" }, #endif { 'f', "frames", ARGS_TYPE_INTEGER, &op_flag[OP_FLAG_MAX_FRM_NUM], &op_max_frm_num,"maximum number of frames to be decoded" }, { 's', "signature", COM_ARGS_VAL_TYPE_NONE, &op_flag[OP_FLAG_USE_PIC_SIGN], &op_use_pic_signature,"conformance check using picture signature (HASH)" }, { 'c', "clip_org_size", COM_ARGS_VAL_TYPE_NONE, &op_flag[OP_FLAG_CLIP_ORG_SIZE], &op_clip_org_size,"clip the output size to the original size (the input size at the encoder side)" }, { COM_ARGS_NO_KEY, "output_bit_depth", ARGS_TYPE_INTEGER, &op_flag[OP_FLAG_OUT_BIT_DEPTH], &op_bit_depth_output_cfg, "output bitdepth : 8 / 10 (default: internal bitdepth)" }, #if CU_LEVEL_PRIVACY { 'u', "user_permission", ARGS_TYPE_INTEGER , &op_flag[OP_USER_PERMISSION], &op_user_permission, "decoder user permission: 0 / 1 (default: 0)" }, #endif { 'v', "verbose", ARGS_TYPE_INTEGER, &op_flag[OP_FLAG_VERBOSE], &op_verbose, "verbose level\n" "\t 0: no message\n" "\t 1: frame-level messages (default)\n" "\t 2: all messages\n" }, #if LIBVC_ON { COM_ARGS_NO_KEY, "input_libpics", ARGS_TYPE_STRING, &op_flag[OP_FLAG_FNAME_INP_LIBPICS], op_fname_inp_libpics, "file name of input libpics bitstream" }, { COM_ARGS_NO_KEY, "output_libpics", ARGS_TYPE_STRING, &op_flag[OP_FLAG_FNAME_OUT_LIBPICS], op_fname_out_libpics, "file name of decoded libpics output" }, #endif { 0, "", COM_ARGS_VAL_TYPE_NONE, NULL, NULL, "" } /* termination */ }; #define NUM_ARG_OPTION ((int)(sizeof(options)/sizeof(options[0]))-1) static void print_usage(void) { int i; char str[1024]; v0print("< Usage >\n"); for(i=0; i<NUM_ARG_OPTION; i++) { if(com_args_get_help(options, i, str) < 0) return; v0print("%s\n", str); } } static int xFindNextStartCode(FILE * fp, int * ruiPacketSize, unsigned char *pucBuffer) { unsigned int uiDummy = 0; char bEndOfStream = 0; size_t ret = 0; #if SVAC_NAL ret = fread(&uiDummy, 1, 3, fp); if (ret != 3) { return -1; } #else ret = fread(&uiDummy, 1, 2, fp); if (ret != 2) { return -1; } #endif if (feof(fp)) { return -1; } assert(0 == uiDummy); ret = fread(&uiDummy, 1, 1, fp); if (ret != 1) { return -1; } if (feof(fp)) { return -1; } assert(1 == uiDummy); int iNextStartCodeBytes = 0; unsigned int iBytesRead = 0; unsigned int uiZeros = 0; unsigned char pucBuffer_Temp[16]; int iBytesRead_Temp = 0; #if SVAC_NAL pucBuffer[iBytesRead++] = 0x00; #endif pucBuffer[iBytesRead++] = 0x00; pucBuffer[iBytesRead++] = 0x00; pucBuffer[iBytesRead++] = 0x01; while (1) { unsigned char ucByte = 0; ret = fread(&ucByte, 1, 1, fp); if (feof(fp)) { iNextStartCodeBytes = 0; bEndOfStream = 1; break; } pucBuffer[iBytesRead++] = ucByte; if (1 < ucByte) { uiZeros = 0; } else if (0 == ucByte) { uiZeros++; } else if (uiZeros > 1) { iBytesRead_Temp = 0; pucBuffer_Temp[iBytesRead_Temp] = ucByte; iBytesRead_Temp++; ret = fread(&ucByte, 1, 1, fp); if (ret != 1) { return -1; } pucBuffer_Temp[iBytesRead_Temp] = ucByte; pucBuffer[iBytesRead++] = ucByte; iBytesRead_Temp++; #if SVAC_NAL if (pucBuffer_Temp[0] == 0x01 && ( pucBuffer_Temp[1] == SVAC_SPS #if SVAC_SECURITY_PARAM_SET || pucBuffer_Temp[1] == SVAC_SEC_PS #endif #if SVAC_AUTHENTICATION || pucBuffer_Temp[1] == SVAC_AUTH_DATA #endif #if HLS_OPT_PPS || pucBuffer_Temp[1] == SVAC_PPS || pucBuffer_Temp[1] == SVAC_PH || (pucBuffer[4] == SVAC_PH && (pucBuffer_Temp[1] == SVAC_IDR || pucBuffer_Temp[1] == SVAC_NON_RAP || pucBuffer_Temp[1] == SVAC_RAP_I #if LIB_PIC_MIXBIN #if DISPLAY_L_NAL_TYPE || pucBuffer_Temp[1] == SVAC_CRR_L || pucBuffer_Temp[1] == SVAC_CRR_DP || pucBuffer_Temp[1] == SVAC_CRR_RL #if LIB_PIC_ERR_TOL || pucBuffer_Temp[1] == SVAC_CRR_DL #endif )) || ((pucBuffer_Temp[1] == SVAC_CRR_L #if LIB_PIC_ERR_TOL || pucBuffer_Temp[1] == SVAC_CRR_DL #endif || pucBuffer_Temp[1] == SVAC_EOS || pucBuffer_Temp[1] == SVAC_EOCVS #else || pucBuffer_Temp[1] == SVAC_CRR_L || pucBuffer_Temp[1] == SVAC_CRR_RL)) || ((pucBuffer_Temp[1] == SVAC_CRR_L #endif #endif )) #else || pucBuffer_Temp[1] == SVAC_PPS || (pucBuffer[4] == SVAC_PPS && (pucBuffer_Temp[1] == SVAC_IDR || pucBuffer_Temp[1] == SVAC_NON_IDR #if LIB_PIC_MIXBIN || pucBuffer_Temp[1] == SVAC_CRR_L || pucBuffer_Temp[1] == SVAC_CRR_RL)) || ((pucBuffer_Temp[1] == SVAC_CRR_L #endif )) #endif ) ) #else if( pucBuffer_Temp[0] == 0x01 && (pucBuffer_Temp[1] == 0xb3 || pucBuffer_Temp[1] == 0xb6 || pucBuffer_Temp[1] == 0xb0 || pucBuffer_Temp[1] == 0x00 || pucBuffer_Temp[1] == 0xb1) ) #endif { #if SVAC_NAL iNextStartCodeBytes = 3 + 1 + 1; #else iNextStartCodeBytes = 2 + 1 + 1; #endif uiZeros = 0; break; } else { uiZeros = 0; iNextStartCodeBytes = 0;// 2 + 1 + 1; } } else { uiZeros = 0; } } *ruiPacketSize = iBytesRead - iNextStartCodeBytes; if (bEndOfStream) { return 0; } if (fseek(fp, -1 * iNextStartCodeBytes, SEEK_CUR) != 0) { printf("file seek failed!\n"); }; #if SVAC_NAL ret = fread(&uiDummy, 1, 4, fp); if (ret != 4) { return -1; } assert(0x01000000 == uiDummy); fseek(fp, -4, SEEK_CUR); #endif return 0; } static unsigned int initParsingConvertPayloadToRBSP(const unsigned int uiBytesRead, unsigned char* pBuffer, unsigned char* pBuffer2 #if CU_LEVEL_PRIVACY , unsigned char * bs_buf3,int *privacy_size #endif ) { unsigned int uiZeroCount = 0; unsigned int uiBytesReadOffset = 0; #if !NAL unsigned int uiBitsReadOffset = 0; #endif const unsigned char *pucRead = pBuffer; unsigned char *pucWrite = pBuffer2; unsigned int uiWriteOffset = uiBytesReadOffset; unsigned char ucCurByte = pucRead[uiBytesReadOffset]; #if CU_LEVEL_PRIVACY unsigned char *pucWrite_privacy = bs_buf3; unsigned int uiWriteOffset_temp0 = 0; unsigned int uiWriteOffset_temp1 = 0; unsigned int privacy = 0; unsigned int patch_flag = 1; #endif for (uiBytesReadOffset = 0; uiBytesReadOffset < uiBytesRead; uiBytesReadOffset++) { ucCurByte = pucRead[uiBytesReadOffset]; #if CU_LEVEL_PRIVACY if (patch_flag == 0 && pucRead[uiBytesReadOffset] == 0 && pucRead[uiBytesReadOffset + 1] == 0 && pucRead[uiBytesReadOffset + 2] == 0 && pucRead[uiBytesReadOffset + 3] == 1 && pucRead[uiBytesReadOffset + 4] == SVAC_PRIVACY) { uiWriteOffset_temp0 = uiWriteOffset; pucWrite = bs_buf3; uiWriteOffset = uiWriteOffset_temp1; privacy = 1; } if (pucRead[uiBytesReadOffset] == 0 && pucRead[uiBytesReadOffset + 1] == 0 && pucRead[uiBytesReadOffset + 2] == 0 && pucRead[uiBytesReadOffset + 3] == 1 && (pucRead[uiBytesReadOffset + 4] == SVAC_CRR_DP || pucRead[uiBytesReadOffset + 4] == SVAC_CRR_DL || pucRead[uiBytesReadOffset + 4] == SVAC_CRR_L || pucRead[uiBytesReadOffset + 4] == SVAC_CRR_RL || pucRead[uiBytesReadOffset + 4] == SVAC_IDR || pucRead[uiBytesReadOffset + 4] == SVAC_RAP_I || pucRead[uiBytesReadOffset + 4] == SVAC_NON_RAP)) { if (privacy == 1) { uiWriteOffset_temp1 = uiWriteOffset; uiWriteOffset = uiWriteOffset_temp0; } pucWrite = pBuffer2; privacy = 0; patch_flag = 0; } #endif #if NAL if (2 <= uiZeroCount && 0x03 == pucRead[uiBytesReadOffset]) { if (uiBytesReadOffset >= uiBytesRead) { break; } uiZeroCount = 0; uiBytesReadOffset++; ucCurByte = pucRead[uiBytesReadOffset]; pucWrite[uiWriteOffset] = pucRead[uiBytesReadOffset]; } else if (2 <= uiZeroCount && 0x00 == pucRead[uiBytesReadOffset]) { if (uiBytesReadOffset >= uiBytesRead) { break; } assert(pucRead[uiBytesReadOffset + 1] == 1); uiZeroCount = 0; uiBytesReadOffset++; ucCurByte = pucRead[uiBytesReadOffset]; pucWrite[uiWriteOffset] = pucRead[uiBytesReadOffset]; } else if (2 <= uiZeroCount && 0x02 == pucRead[uiBytesReadOffset]) { assert(0); } #else if (2 <= uiZeroCount && 0x02 == pucRead[uiBytesReadOffset]) { pucWrite[uiWriteOffset] = ((pucRead[uiBytesReadOffset] >> 2) << (uiBitsReadOffset + 2)); uiBitsReadOffset += 2; uiZeroCount = 0; if (uiBitsReadOffset >= 8) { uiBitsReadOffset = 0; continue; } if (uiBytesReadOffset >= uiBytesRead) { break; } } #endif else if (2 <= uiZeroCount && 0x01 == pucRead[uiBytesReadOffset]) { #if !NAL uiBitsReadOffset = 0; #endif pucWrite[uiWriteOffset] = pucRead[uiBytesReadOffset]; } else { #if NAL pucWrite[uiWriteOffset] = pucRead[uiBytesReadOffset]; #else pucWrite[uiWriteOffset] = (pucRead[uiBytesReadOffset] << uiBitsReadOffset); #endif } #if !NAL if (uiBytesReadOffset + 1 < uiBytesRead) { pucWrite[uiWriteOffset] |= (pucRead[uiBytesReadOffset + 1] >> (8 - uiBitsReadOffset)); } #endif uiWriteOffset++; if (0x00 == ucCurByte) { uiZeroCount++; } else { uiZeroCount = 0; } } #if CU_LEVEL_PRIVACY if (privacy == 1) { privacy_size[0] = uiWriteOffset; uiWriteOffset_temp1 = uiWriteOffset; } else { uiWriteOffset_temp0 = uiWriteOffset; privacy_size[0] = uiWriteOffset_temp1; } //uiWriteOffset = uiWriteOffset_temp0 + uiWriteOffset_temp1; //// th just clear the remaining bits in the buffer //for (unsigned int ui = uiWriteOffset; ui < uiBytesRead; ui++) //{ // pBuffer2[uiWriteOffset_temp0++] = 0; // bs_buf3[uiWriteOffset_temp1++] = 0; //} uiWriteOffset = uiWriteOffset_temp0; #else // th just clear the remaining bits in the buffer for (unsigned int ui = uiWriteOffset; ui < uiBytesRead; ui++) { pucWrite[ui] = 0; } #endif memcpy(pBuffer, pBuffer2, uiWriteOffset); pBuffer[uiWriteOffset] = 0x00; pBuffer[uiWriteOffset + 1] = 0x00; pBuffer[uiWriteOffset + 2] = 0x01; #if FIX_DEAD_LOOP pBuffer[uiWriteOffset + 3] = 0x00; #endif #if LIB_PIC_ERR_TOL bs_real_size = uiWriteOffset + 4; #endif return uiBytesRead; } static int read_a_bs(FILE * fp, int * pos, unsigned char * bs_buf, unsigned char * bs_buf2 #if CU_LEVEL_PRIVACY , unsigned char * bs_buf3,int *bs_buf3_size #endif #if SVAC_UD_MD5_STREAM , COM_BITB * bitb #endif ) { int read_size, bs_size; unsigned char b = 0; bs_size = 0; read_size = 0; if (!fseek(fp, *pos, SEEK_SET)) { int ret = 0; ret = xFindNextStartCode(fp, &bs_size, bs_buf); if (ret == -1) { v2print("End of file\n"); return -1; } #if SVAC_UD_MD5_STREAM memcpy(bitb->addr3, bs_buf, bs_size); bitb->addr3 = (unsigned char *)bitb->addr3 + (unsigned int)bs_size; assert(((u8 *)bitb->addr3 - (u8 *)bitb->addr3_beg) <= MAX_BS_BUF); #endif read_size = initParsingConvertPayloadToRBSP(bs_size, bs_buf, bs_buf2 #if CU_LEVEL_PRIVACY , bs_buf3, bs_buf3_size #endif ); } else { v0print("Cannot seek bitstream!\n"); return -1; } return read_size; } static int print_stat(DEC_STAT * stat, int ret) { #if LIBVC_ON char *stype = NULL; #else char stype = 0; #endif int i, j; if(COM_SUCCEEDED(ret)) { if (stat->ctype == COM_CT_SLICE || stat->ctype == COM_CT_PICTURE) { #if LIBVC_ON if (stat->is_RLpic_flag) { stype = "RL"; } else { switch (stat->stype) { case COM_ST_I: stype = "I"; break; case COM_ST_P: stype = "P"; break; case COM_ST_B: stype = "B"; break; #if SVAC_NAL case COM_ST_IDR: stype = "IDR"; break; case COM_ST_CRA: stype = "CRA"; break; #endif case COM_ST_UNKNOWN: default: stype = "U"; break; } } #else switch (stat->stype) { case COM_ST_I: stype = 'I'; break; case COM_ST_P: stype = 'P'; break; case COM_ST_B: stype = 'B'; break; case COM_ST_UNKNOWN: default: stype = 'U'; break; } #endif } if(stat->ctype == COM_CT_SLICE) { #if LIBVC_ON v1print("%2s-slice", stype); #else v1print("%c-slice", stype); #endif v1print(" (poc=%d) ", (int)stat->poc); #if TSVC_OPT v1print("(temporal_id = %d)", (int)stat->temporal_id); #endif } #if TSVC_OPT else if (stat->ctype == COM_CT_SIGN) { v1print("sei message\n"); printf(" num_of_temporal_level %d\n", stat->temporal_layer_num); for (int i = 0; i < stat->temporal_layer_num; i++) { printf(" temporal_fps %d ", stat->temporal_fps[i]); printf(" temporal_bitrate_low %d ", stat->temporal_bitrate_low[i]); printf(" temporal_bitrate_up %d \n", stat->temporal_bitrate_up[i]); } } #endif else if(stat->ctype == COM_CT_SQH) { #if HLS_OPT_PPS v1print("SPS"); #else v1print("Sequence header"); #endif #if PRINT_SQH_PARAM_DEC printf( "\n*** HLS Params: bitDep %d", stat->internal_bit_depth ); #if PHASE_2_PROFILE printf(" profile 0x%x", stat->profile_id); #endif #if CFG_LEVEL_ID printf(" level_id 0x%x", stat->level_id); #endif #if ENHANCE_TSPCM printf("\n*** Intra tools: TSCPM %d Enhance_TSCPM %d IPF %d IntraDT %d IPCM %d", (stat->intra_tools >> 0) & 0x1, (stat->intra_tools >> 1) & 0x1, (stat->intra_tools >> 2) & 0x1, (stat->intra_tools >> 3) & 0x1, (stat->intra_tools >> 4) & 0x1); #if MIPF printf(" MIPF %d", (stat->intra_tools >> 5) & 0x1); #endif #else printf( "\n*** Intra tools: TSCPM %d IPF %d IntraDT %d IPCM %d", (stat->intra_tools >> 0) & 0x1, (stat->intra_tools >> 1) & 0x1, (stat->intra_tools >> 2) & 0x1, (stat->intra_tools >> 3) & 0x1 ); #if MIPF printf(" MIPF %d", (stat->intra_tools >> 4) & 0x1); #endif #endif #if PMC || EPMC printf(" PMC %d", (stat->intra_tools >> 6) & 0x1); #endif #if IPF_CHROMA printf(" IPF_CHROMA %d", (stat->intra_tools >> 7) & 0x01); #endif #if IIP printf(" IIP %d", (stat->intra_tools >> 8) & 0x01); #endif #if SAWP printf(" SAWP %d", (stat->intra_tools >> 9) & 0x01); #endif // SAWP #if AWP printf("\n*** Inter tools: AFFINE %d AMVR %d UMVE %d EMVR %d SMVD %d AWP %d HMVP %d ", (stat->inter_tools >> 0) & 0x1, (stat->inter_tools >> 1) & 0x1, (stat->inter_tools >> 2) & 0x1, (stat->inter_tools >> 3) & 0x1, (stat->inter_tools >> 4) & 0x1, (stat->inter_tools >> 5) & 0x1, (stat->inter_tools >> 10) & 0xf); #else printf( "\n*** Inter tools: AFFINE %d AMVR %d UMVE %d EMVR %d SMVD %d HMVP %d ", (stat->inter_tools >> 0) & 0x1, (stat->inter_tools >> 1) & 0x1, (stat->inter_tools >> 2) & 0x1, (stat->inter_tools >> 3) & 0x1, (stat->inter_tools >> 4) & 0x1, (stat->inter_tools >> 10) & 0xf ); #endif printf( "\n*** Trans tools: NSST %d PBT %d ", (stat->trans_tools >> 0) & 0x1, (stat->trans_tools >> 1) & 0x1 ); printf("\n*** Filter tools: SAO %d ALF %d ", (stat->filte_tools >> 0) & 0x1, (stat->filte_tools >> 1) & 0x1); printf( "\n*** SCC tools: "); #if FIMC printf( " FIMC %d ", (stat->scc_tools >> 0) & 0x1); #endif #if IBC_BVP printf(" HBVP %d ", (stat->scc_tools >> 1) & 0xf); #endif #endif } #if HLS_OPT_PPS else if (stat->ctype == COM_CT_PPS) { v1print("PPS"); #if HLS_OPT_PPS printf(" pps_id %d", stat->pps_id); #endif } #endif else if (stat->ctype == COM_CT_PICTURE) { #if LIBVC_ON v1print("%2s-picture header", stype); #else v1print("%c-picture header", stype); #endif #if HLS_OPT_PPS printf(" pic_pps_id %d", stat->pic_pps_id); #endif } else if( stat->ctype == COM_CT_SEQ_END ) { v1print( "video_sequence_end_code" ); } #if LIB_PIC_MIXBIN else if (stat->ctype == COM_CT_CRR_SLICE_IMCOPLETE || stat->ctype == COM_CT_CRR_SLICE) { v0print("L-slice"); #if LIBPIC_DISPLAY if (!stat->is_dp_crr) #endif v1print(" (patch_idx=%d) ", (int)stat->patch_idx); } #endif #if SVAC_SECURITY_PARAM_SET else if (stat->ctype == COM_CT_SEC_PARA_SET) { v1print("security parameter set"); } #endif #if SVAC_AUTHENTICATION else if (stat->ctype == COM_CT_AUTH) { v1print("authentication data"); } #endif else { v0print("Unknown bitstream"); } if (stat->ctype == COM_CT_SLICE) { for (i = 0; i < 2; i++) { #if LIBVC_ON if (stat->is_RLpic_flag) { v1print("[Lib%d ", i); } else #endif { v1print("[L%d ", i); } #if MULTI_LAYER_FRAMEWORK for (j = 0; j < stat->refpic_num[i]; j++) { if (stat->reflib[i][j] == 1) v1print("LIB"); if (stat->reflib[i][j] == 2) v1print("(l%d)", stat->reflayer[i][j]); v1print("%d ", stat->refpic[i][j]); } #else for (j = 0; j < stat->refpic_num[i]; j++) v1print("%d ", stat->refpic[i][j]); #endif v1print("] "); } } if (ret == COM_OK) { v1print("\n"); } else if(ret == COM_OK_FRM_DELAYED) { v1print("->Frame delayed\n"); } else if(ret == COM_OK_DIM_CHANGED) { v1print("->Resolution changed\n"); } else { v1print("->Unknown OK code = %d\n", ret); } } else { v0print("Decoding error = %d\n", ret); } return 0; } static int set_extra_config(DEC id) { int ret, size, value; if(op_use_pic_signature) { value = 1; size = 4; ret = dec_config(id, DEC_CFG_SET_USE_PIC_SIGNATURE, &value, &size); if(COM_FAILED(ret)) { v0print("failed to set config for picture signature\n"); return -1; } } #if CU_LEVEL_PRIVACY if (op_user_permission) { value = 1; size = 4; ret = dec_config(id, DEC_CFG_SET_USER_PERMISSION, &value, &size); if (COM_FAILED(ret)) { v0print("failed to set config for picture signature\n"); return -1; } } #endif return 0; } static int write_dec_img(DEC id, char * fname, COM_IMGB * img, int bit_depth_internal) { COM_IMGB* imgb_t = NULL; if (imgb_t == NULL) { imgb_t = imgb_alloc(img->width[0], img->height[0], COM_COLORSPACE_YUV420, bit_depth_internal); if (imgb_t == NULL) { v0print("failed to allocate temporay image buffer\n"); return -1; } } if (op_bit_depth_output_cfg == 0) { op_bit_depth_output = bit_depth_internal; } else { op_bit_depth_output = op_bit_depth_output_cfg; } imgb_cpy_conv_rec(imgb_t, img, op_bit_depth_output, bit_depth_internal); DEC_CTX *ctx = (DEC_CTX *)id; int dec_width = imgb_t->width[0]; int dec_height = imgb_t->height[0]; if (op_clip_org_size) { #if MULTI_LAYER_FRAMEWORK dec_width = ctx->info.sqh.horizontal_size[ctx->layer_id]; dec_height = ctx->info.sqh.vertical_size[ctx->layer_id]; #else dec_width = ctx->info.sqh.horizontal_size; dec_height = ctx->info.sqh.vertical_size; #endif } #if LIBVC_ON if (imgb_write(fname, imgb_t, op_bit_depth_output, dec_width, dec_height)) return -1; #else if (imgb_write(op_fname_out, img, dec_width, dec_height)) return -1; #endif if (imgb_t) { imgb_free(imgb_t); } return COM_OK; } #if LIBVC_ON void set_livcdata_dec(DEC id_lib, LibVCData *libvc_data) { DEC_CTX * tmp_ctx = (DEC_CTX *)id_lib; tmp_ctx->dpm.libvc_data = libvc_data; } int decode_libpics(DEC_CDSC * cdsc, LibVCData* libvc_data) { STATES state_lib = STATE_DECODING; unsigned char * bs_buf_lib = NULL; unsigned char * bs_buf_lib2 = NULL; DEC id_lib = NULL; COM_BITB bitb_lib; COM_IMGB * imgb_lib; DEC_STAT stat_lib; int ret; COM_CLK clk_beg_lib, clk_tot_lib; int bs_cnt_lib, pic_cnt_lib; int bs_size_lib, bs_read_pos_lib = 0; int width_lib, height_lib; FILE * fp_bs_lib = NULL; #if LINUX signal(SIGSEGV, handler); // install our handler #endif #if DECODING_TIME_TEST clk_beg_lib = com_clk_get(); #endif /* open input bitstream */ fp_bs_lib = fopen(op_fname_inp_libpics, "rb"); if (fp_bs_lib == NULL) { v0print("ERROR: cannot open libpics bitstream file = %s\n", op_fname_inp_libpics); print_usage(); return -1; } if (op_flag[OP_FLAG_FNAME_OUT_LIBPICS]) { /* remove decoded file contents if exists */ FILE * fp; fp = fopen(op_fname_out_libpics, "wb"); if (fp == NULL) { v0print("ERROR: cannot create a decoded libpics file\n"); print_usage(); return -1; } fclose(fp); } bs_buf_lib = malloc(MAX_BS_BUF); if (bs_buf_lib == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } bs_buf_lib2 = malloc(MAX_BS_BUF); if (bs_buf_lib2 == NULL) { v0print("ERROR: cannot allocate bit buffer, size2=%d\n", MAX_BS_BUF); return -1; } #if CU_LEVEL_PRIVACY unsigned char *bs_buf_lib3 = malloc(MAX_BS_BUF); if (bs_buf_lib3 == NULL) { v0print("ERROR: cannot allocate bit buffer, size2=%d\n", MAX_BS_BUF); return -1; } #endif #if SVAC_UD_MD5_STREAM unsigned char * bs_buf4 = NULL; unsigned char * bs_buf5 = NULL; bs_buf5 = malloc(MAX_BS_BUF); if (bs_buf5 == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } bitb_lib.addr3 = bs_buf5; bitb_lib.addr3_beg = bs_buf5; bs_buf4 = malloc(MAX_BS_BUF); if (bs_buf4 == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } unsigned char * buf4_p = bs_buf4; unsigned char * buf4_beg = bs_buf4; #endif id_lib = dec_create(cdsc, NULL); if (id_lib == NULL) { v0print("ERROR: cannot create decoder\n"); return -1; } set_livcdata_dec(id_lib, libvc_data); if (set_extra_config(id_lib)) { v0print("ERROR: cannot set extra configurations\n"); return -1; } pic_cnt_lib = 0; clk_tot_lib = 0; bs_cnt_lib = 0; width_lib = height_lib = 0; #if CU_LEVEL_PRIVACY int bs_buf3_size = 0; #endif while (1) { if (state_lib == STATE_DECODING) { bs_size_lib = read_a_bs(fp_bs_lib, &bs_read_pos_lib, bs_buf_lib, bs_buf_lib2 #if CU_LEVEL_PRIVACY , bs_buf_lib3, &bs_buf3_size #endif #if SVAC_UD_MD5_STREAM , &bitb_lib #endif ); if (bs_size_lib <= 0) { state_lib = STATE_BUMPING; v1print("bumping process starting...\n"); continue; } bs_read_pos_lib += (bs_size_lib); bitb_lib.addr = bs_buf_lib; bitb_lib.ssize = bs_size_lib; bitb_lib.bsize = MAX_BS_BUF; #if CU_LEVEL_PRIVACY bitb_lib.addr2 = bs_buf_lib3; bitb_lib.ssize2 = bs_buf3_size; #endif #if !DECODING_TIME_TEST clk_beg_lib = com_clk_get(); #endif /* main decoding block */ ret = dec_cnk((DEC_CTX *)id_lib, &bitb_lib, &stat_lib); if (COM_FAILED(ret)) { v0print("failed to decode bitstream\n"); return -1; } #if !DECODING_TIME_TEST clk_tot_lib += com_clk_from(clk_beg_lib); #endif } if (stat_lib.fnum >= 0 || state_lib == STATE_BUMPING) { ret = dec_pull_frm((DEC_CTX *)id_lib, &imgb_lib, state_lib); if (ret == COM_ERR_UNEXPECTED) { v1print("bumping process completed\n"); goto END; } else if (COM_FAILED(ret)) { v0print("failed to pull the decoded image\n"); return -1; } } else { imgb_lib = NULL; } if (imgb_lib) { width_lib = imgb_lib->width[0]; height_lib = imgb_lib->height[0]; if (op_flag[OP_FLAG_FNAME_OUT_LIBPICS]) { write_dec_img(id_lib, op_fname_out_libpics, imgb_lib, ((DEC_CTX *)id_lib)->info.bit_depth_internal); } imgb_lib->release(imgb_lib); pic_cnt_lib++; } } END: #if DECODING_TIME_TEST clk_tot_lib += com_clk_from(clk_beg_lib); #endif libvc_data->num_lib_pic = pic_cnt_lib; #if CU_LEVEL_PRIVACY if (bs_buf_lib3) { free(bs_buf_lib3); bs_buf_lib3 = NULL; } #endif if (id_lib) dec_delete(id_lib); if (fp_bs_lib) fclose(fp_bs_lib); if (bs_buf_lib) free(bs_buf_lib); return 0; } #endif int main(int argc, const char **argv) { FILE *fp = fopen("dec_decode_cu.log", "w"); if (fp) fclose(fp); STATES state = STATE_DECODING; unsigned char * bs_buf = NULL; unsigned char * bs_buf2 = NULL; #if SVAC_UD_MD5_STREAM unsigned char * bs_buf4 = NULL; unsigned char * bs_buf5 = NULL; #endif #if MULTI_LAYER_FRAMEWORK DEC id[MAX_LAYER] = { NULL, NULL }; DEC_CDSC cdsc[MAX_LAYER]; #else DEC id = NULL; DEC_CDSC cdsc; #endif COM_BITB bitb; COM_IMGB * imgb; DEC_STAT stat; int ret; COM_CLK clk_beg, clk_tot; int bs_cnt, pic_cnt; int bs_size = 0, bs_read_pos = 0; int width, height; FILE * fp_bs = NULL; #if LIB_PIC_ERR_TOL int libpic_num_patch = 0; int *libpic_bs_size = NULL; unsigned char * libpic_bs_buf = NULL; int num_nalu = 0; int collect_libpic_state = 0; unsigned int libpic_addr = 0; #endif #if SVAC_AI_SEG_EXT fp_seg = fopen("dec_aiseg.bin", "wb"); #endif #if ENC_DEC_TRACE fp_trace = NULL; #endif #if CU_LEVEL_PRIVACY unsigned int libpic_addr_privacy = 0; int *libpic_bs_size_privacy = NULL; unsigned char * libpic_bs_buf_privacy = NULL; int num_nalu_privacy = 0; #endif #if LINUX signal(SIGSEGV, handler); // install our handler #endif #if DECODING_TIME_TEST clk_beg = com_clk_get(); #endif /* parse options */ ret = com_args_parse_all(argc, argv, options); if(ret != 0) { if(ret > 0) v0print("-%c argument should be set\n", ret); print_usage(); return -1; } /* open input bitstream */ fp_bs = fopen(op_fname_inp, "rb"); if(fp_bs == NULL) { v0print("ERROR: cannot open bitstream file = %s\n", op_fname_inp); print_usage(); return -1; } if(op_flag[OP_FLAG_FNAME_OUT]) { /* remove decoded file contents if exists */ FILE * fp; #if MULTI_LAYER_FRAMEWORK fp = fopen(op_fname_out[0], "wb"); #else fp = fopen(op_fname_out, "wb"); #endif if(fp == NULL) { v0print("ERROR: cannot create a decoded file\n"); print_usage(); return -1; } fclose(fp); } #if MULTI_LAYER_FRAMEWORK if (op_flag[OP_FLAG_FNAME_OUT1]) { /* remove decoded file contents if exists */ FILE* fp; fp = fopen(op_fname_out[1], "wb"); if (fp == NULL) { v0print("ERROR: cannot create a EL decoded file\n"); print_usage(); return -1; } fclose(fp); } #endif bs_buf = malloc(MAX_BS_BUF); if(bs_buf == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } bs_buf2 = malloc(MAX_BS_BUF); if (bs_buf2 == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } #if SVAC_UD_MD5_STREAM bs_buf5 = malloc(MAX_BS_BUF); if (bs_buf5 == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } bitb.addr3 = bs_buf5; bitb.addr3_beg = bs_buf5; bs_buf4 = malloc(MAX_BS_BUF); if (bs_buf4 == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } unsigned char * buf4_p = bs_buf4; unsigned char * buf4_beg = bs_buf4; #endif #if CU_LEVEL_PRIVACY unsigned char *bs_buf3 = malloc(MAX_BS_BUF); if (bs_buf3 == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } #endif #if LIBVC_ON #if MULTI_LAYER_FRAMEWORK LibVCData libvc_data[MAX_LAYER]; for (int i = 0; i < MAX_LAYER; i++) { init_libvcdata(&libvc_data[i]); } #else LibVCData libvc_data; init_libvcdata(&libvc_data); #endif if (op_flag[OP_FLAG_FNAME_INP_LIBPICS]) { #if MULTI_LAYER_FRAMEWORK int err; for (int i = 0; i < MAX_LAYER; i++) { err = decode_libpics(&cdsc[i], &libvc_data[i]); if (err) { v0print("Error when decode lib pic!"); return -1; } libvc_data[i].is_libpic_prepared = 1; } #else int err = decode_libpics(&cdsc, &libvc_data); if (err) { v0print("Error when decode lib pic!"); return -1; } libvc_data.is_libpic_prepared = 1; #endif } #endif #if MULTI_LAYER_FRAMEWORK for (int i = 0; i < MAX_LAYER; i++) { id[i] = dec_create(&cdsc[i], NULL); dec_setlayer(id[i],i); if (id[i] == NULL) { v0print("ERROR: cannot create decoder\n"); return -1; } } #else id = dec_create(&cdsc, NULL); if(id == NULL) { v0print("ERROR: cannot create decoder\n"); return -1; } #endif #if LIBVC_ON #if MULTI_LAYER_FRAMEWORK for (int i = 0; i < MAX_LAYER; i++) { set_livcdata_dec(id[i], &libvc_data[i]); } #else set_livcdata_dec(id, &libvc_data); #endif #endif #if MULTI_LAYER_FRAMEWORK for (int i = 0; i < MAX_LAYER; i++) { if (set_extra_config(id[i])) { v0print("ERROR: cannot set extra configurations\n"); return -1; } } #else if (set_extra_config(id)) { v0print("ERROR: cannot set extra configurations\n"); return -1; } #endif pic_cnt = 0; clk_tot = 0; bs_cnt = 0; width = height = 0; #if MULTI_LAYER_FRAMEWORK for (int i = 0; i < MAX_LAYER; i++) { g_CountDOICyCleTime[i] = 0; // initialized the number . g_DOIPrev[i] = 0; } #else g_CountDOICyCleTime = 0; // initialized the number . g_DOIPrev = 0; #endif #if CU_LEVEL_PRIVACY int bs_buf3_size = 0; #endif while (1) { #if MULTI_LAYER_FRAMEWORK int nal_layer_id = 0; #endif if (state == STATE_DECODING) { bs_size = read_a_bs(fp_bs, &bs_read_pos, bs_buf, bs_buf2 #if CU_LEVEL_PRIVACY , bs_buf3, &bs_buf3_size #endif #if SVAC_UD_MD5_STREAM , &bitb #endif ); if (bs_size <= 0) { state = STATE_BUMPING; v1print("bumping process starting...\n"); continue; } bs_read_pos += bs_size; bitb.addr = bs_buf; #if CU_LEVEL_PRIVACY bitb.addr2 = bs_buf3; bitb.ssize2 = bs_buf3_size; bitb.ssize = bs_size - bs_buf3_size; #else bitb.ssize = bs_size; #endif bitb.bsize = MAX_BS_BUF; #if MULTI_LAYER_FRAMEWORK nal_layer_id = (bs_buf[4] >> 1) & 0x07; if (nal_layer_id == 0) { v1print("BL---[%4d]-th BS (%07dbytes) --> ", bs_cnt++, bs_size); } else { v1print("EL---[%4d]-th BS (%07dbytes) --> ", bs_cnt++, bs_size); } #else v1print("[%4d]-th BS (%07dbytes) --> ", bs_cnt++, bs_size); #endif #if LIB_PIC_ERR_TOL #if SVAC_PROGRESSIVE // 7 6 5 4 3 & 2 // temporal_nesting library_picture_enable library_stream duplicate_sqh library_picture_mode_index int library_picture_enable = bs_buf[7] & 0x40; int library_stream_flag = bs_buf[7] & 0x20; int library_picture_mode_index = (bs_buf[7] >> 2) & 3; #else // 7 6 5 4 3 2 1 & 0 // progressive_sequence field_coded_sequence temporal_nesting library_picture_enable library_stream duplicate_sqh library_picture_mode_index int library_picture_enable = bs_buf[7] & 0x10; int library_picture_enable_flag = bs_buf[7] & 8; #if EMULATION_PREVENT_BUGFIX int library_picture_mode_index = bs_buf[7] & 3; #else int library_picture_mode_index = ((bs_buf[7] & 1) << 1) + (bs_buf[8] >> 7); #endif #endif if (bs_buf[3] == SVAC_SPS && library_stream_flag && library_picture_mode_index == 0) { if (libpic_bs_buf == NULL) { libpic_bs_buf = malloc(MAX_BS_BUF); if (libpic_bs_buf == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } } if (libpic_bs_size == NULL) { libpic_bs_size = malloc(sizeof(int) * 260); if (libpic_bs_size == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } } #if CU_LEVEL_PRIVACY if (libpic_bs_buf_privacy == NULL) { libpic_bs_buf_privacy = malloc(MAX_BS_BUF); if (libpic_bs_buf_privacy == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } } if (libpic_bs_size_privacy == NULL) { libpic_bs_size_privacy = malloc(sizeof(int) * 260); if (libpic_bs_size_privacy == NULL) { v0print("ERROR: cannot allocate bit buffer, size=%d\n", MAX_BS_BUF); return -1; } } num_nalu_privacy = 0; #endif memcpy(libpic_bs_buf, bs_buf, bs_real_size); state = STATE_LIBPIC_COLLECTING; libpic_bs_size[0] = bs_real_size; collect_libpic_state = 1; num_nalu = 1; libpic_addr = bs_real_size; #if SVAC_UD_MD5_STREAM unsigned int tmp_bs_size = (unsigned int)((unsigned char *)bitb.addr3 - (unsigned char *)bitb.addr3_beg); memcpy(buf4_p, bitb.addr3_beg, tmp_bs_size); buf4_p = buf4_p + tmp_bs_size; bitb.addr3 = (unsigned char *)bitb.addr3_beg; #endif continue; } else if (bs_buf[3] == SVAC_SPS && library_picture_enable && library_stream_flag == 0 && library_picture_mode_index == 0) { libpic_addr = 0; #if CU_LEVEL_PRIVACY libpic_addr_privacy = 0; #endif #if SVAC_UD_MD5_STREAM bitb.addr3_beg = buf4_beg; buf4_beg = bs_buf5; unsigned char * tmp_p = buf4_p; buf4_p = bitb.addr3; bitb.addr3 = tmp_p; #endif for (int i = 0; i < num_nalu; i++) { #if !DECODING_TIME_TEST clk_beg = com_clk_get(); #endif /* main decoding block */ bitb.addr = libpic_bs_buf + libpic_addr; bitb.ssize = libpic_bs_size[i] - 4; bitb.bsize = MAX_BS_BUF; libpic_addr += libpic_bs_size[i]; #if CU_LEVEL_PRIVACY if (i >= num_nalu - num_nalu_privacy) { bitb.addr2 = libpic_bs_buf_privacy + libpic_addr_privacy; bitb.ssize2 = libpic_bs_size_privacy[i - num_nalu + num_nalu_privacy] + 4 ; libpic_addr_privacy += libpic_bs_size_privacy[i - num_nalu + num_nalu_privacy]; } #endif #if MULTI_LAYER_FRAMEWORK ret = dec_cnk((DEC_CTX*)id[0], &bitb, &stat); #else ret = dec_cnk((DEC_CTX*)id, &bitb, &stat); #endif if (stat.ctype == COM_CT_SEQ_END) { state = STATE_BUMPING; v1print("bumping process starting...\n"); continue; } if (COM_FAILED(ret)) { v0print("failed to decode bitstream\n"); return -1; } #if !DECODING_TIME_TEST clk_tot += com_clk_from(clk_beg); #endif print_stat(&stat, ret); } #if SVAC_UD_MD5_STREAM bitb.addr3_beg = buf4_beg; bitb.addr3 = buf4_p; buf4_beg = bs_buf4; buf4_p = bs_buf4; #endif num_nalu = 0; libpic_addr = 0; bitb.addr = bs_buf; bitb.ssize = bs_size; bitb.bsize = MAX_BS_BUF; } #endif #if !DECODING_TIME_TEST clk_beg = com_clk_get(); #endif /* main decoding block */ #if MULTI_LAYER_FRAMEWORK if (nal_layer_id == 0) { DEC_CTX* ctx_t = (DEC_CTX*)id[0]; ctx_t->ctx_e = id[1]; ret = dec_cnk((DEC_CTX*)id[0], &bitb, &stat); } else { DEC_CTX* ctx_e = (DEC_CTX*)id[nal_layer_id]; assert(ctx_e->layer_id == nal_layer_id); if (!ctx_e->init_sps_pps) { DEC_CTX* ctx_b = (DEC_CTX*)id[0]; ctx_e->ctx_b =id[ctx_b->info.sqh.ref_layer_id[nal_layer_id]]; COM_SQH* sqh_e = &ctx_e->info.sqh; COM_SQH* sqh_b = &ctx_b->info.sqh; memcpy(sqh_e, sqh_b, sizeof(COM_SQH)); COM_PIC_PARA_SET* pps_e = &ctx_e->info.pps[0]; memcpy(pps_e, ctx_b->info.pps, sizeof(COM_PIC_PARA_SET)); #if LIBVC_ON ctx_e->dpm.libvc_data->is_libpic_processing = sqh_b->library_stream_flag; ctx_e->dpm.libvc_data->library_picture_enable_flag = sqh_b->library_picture_enable_flag; #endif #if HIGH_LEVEL_PRIVACY COM_PRIVACY* pri_e = &ctx_e->ctx_privacy_data; COM_PRIVACY* pri_b = &ctx_b->ctx_privacy_data; memcpy(pri_e, pri_b, sizeof(COM_PRIVACY)); #endif } ret = dec_cnk((DEC_CTX*)id[nal_layer_id], &bitb, &stat); } #else ret = dec_cnk((DEC_CTX*)id, &bitb, &stat); #endif if (stat.ctype == COM_CT_SEQ_END) { state = STATE_BUMPING; v1print("bumping process starting...\n"); continue; } if (COM_FAILED(ret)) { v0print("failed to decode bitstream\n"); return -1; } #if !DECODING_TIME_TEST clk_tot += com_clk_from(clk_beg); #endif print_stat(&stat, ret); } #if LIB_PIC_ERR_TOL if (state == STATE_LIBPIC_COLLECTING) { bs_size = read_a_bs(fp_bs, &bs_read_pos, bs_buf, bs_buf2 #if CU_LEVEL_PRIVACY , bs_buf3, &bs_buf3_size #endif #if SVAC_UD_MD5_STREAM , &bitb #endif ); if (bs_size <= 0) { state = STATE_BUMPING; v1print("bumping process starting...\n"); continue; } bs_read_pos += bs_size; bitb.addr = bs_buf; bitb.ssize = bs_size; bitb.bsize = MAX_BS_BUF; #if CU_LEVEL_PRIVACY bitb.addr2 = bs_buf3; bitb.ssize2 = bs_buf3_size; #endif v1print("[%4d]-th BS (%07dbytes) --> ", bs_cnt++, bs_size); if (bs_buf[3] == SVAC_PPS && collect_libpic_state == 1) { memcpy(libpic_bs_buf + libpic_addr, bs_buf, bs_real_size); libpic_bs_size[num_nalu++] = bs_real_size; collect_libpic_state = 2; libpic_addr += bs_real_size; #if SVAC_UD_MD5_STREAM unsigned int tmp_bs_size = (unsigned int)((unsigned char *)bitb.addr3 - (unsigned char *)bitb.addr3_beg); memcpy(buf4_p, bitb.addr3_beg, tmp_bs_size); buf4_p = buf4_p + tmp_bs_size; bitb.addr3 = (unsigned char *)bitb.addr3_beg; #endif continue; } else if (bs_buf[3] == SVAC_PH && collect_libpic_state == 2) { memcpy(libpic_bs_buf + libpic_addr, bs_buf, bs_real_size); libpic_bs_size[num_nalu++] = bs_real_size; collect_libpic_state = 3; libpic_addr += bs_real_size; #if SVAC_UD_MD5_STREAM unsigned int tmp_bs_size = (unsigned int)((unsigned char *)bitb.addr3 - (unsigned char *)bitb.addr3_beg); memcpy(buf4_p, bitb.addr3_beg, tmp_bs_size); buf4_p = buf4_p + tmp_bs_size; bitb.addr3 = (unsigned char *)bitb.addr3_beg; #endif continue; } else if (bs_buf[3] == SVAC_CRR_DL) { memcpy(libpic_bs_buf + libpic_addr, bs_buf, bs_real_size); libpic_bs_size[num_nalu++] = bs_real_size; assert(collect_libpic_state == 3 || collect_libpic_state == 4); libpic_addr += bs_real_size; #if SVAC_UD_MD5_STREAM unsigned int tmp_bs_size = (unsigned int)((unsigned char *)bitb.addr3 - (unsigned char *)bitb.addr3_beg); memcpy(buf4_p, bitb.addr3_beg, tmp_bs_size); buf4_p = buf4_p + tmp_bs_size; bitb.addr3 = (unsigned char *)bitb.addr3_beg; #endif #if CU_LEVEL_PRIVACY memcpy(libpic_bs_buf_privacy + libpic_addr_privacy, bs_buf3, bs_buf3_size); libpic_bs_size_privacy[num_nalu_privacy++] = bs_buf3_size; libpic_addr_privacy += bs_buf3_size; #endif if (collect_libpic_state == 3) collect_libpic_state = 4; else if (collect_libpic_state == 4) { state = STATE_DECODING; } continue; } else if (bs_buf[3] == SVAC_CRR_L) { memcpy(libpic_bs_buf + libpic_addr, bs_buf, bs_real_size); libpic_bs_size[num_nalu++] = bs_real_size; assert(collect_libpic_state == 3 || collect_libpic_state == 4); libpic_addr += bs_real_size; #if CU_LEVEL_PRIVACY memcpy(libpic_bs_buf_privacy + libpic_addr_privacy, bs_buf3, bs_buf3_size); libpic_bs_size_privacy[num_nalu_privacy++] = bs_buf3_size; libpic_addr_privacy += bs_buf3_size; #endif #if SVAC_UD_MD5_STREAM unsigned int tmp_bs_size = (unsigned int)((unsigned char *)bitb.addr3 - (unsigned char *)bitb.addr3_beg); memcpy(buf4_p, bitb.addr3_beg, tmp_bs_size); buf4_p = buf4_p + tmp_bs_size; bitb.addr3 = (unsigned char *)bitb.addr3_beg; #endif if (collect_libpic_state == 3) { state = STATE_DECODING; } continue; } else if (bs_buf[3] == SVAC_SPS && (bs_buf[7] & 16) && (bs_buf[7] & 8) == 0) { v0print("ERROR: not recieve enough libpic NALU\n"); return -1; } #if !DECODING_TIME_TEST clk_beg = com_clk_get(); #endif /* main decoding block */ #if MULTI_LAYER_FRAMEWORK ret = dec_cnk((DEC_CTX*)id[0], &bitb, &stat); #else ret = dec_cnk((DEC_CTX*)id, &bitb, &stat); #endif if (stat.ctype == COM_CT_SEQ_END) { state = STATE_BUMPING; v1print("bumping process starting...\n"); continue; } if (COM_FAILED(ret)) { v0print("failed to decode bitstream\n"); return -1; } #if !DECODING_TIME_TEST clk_tot += com_clk_from(clk_beg); #endif print_stat(&stat, ret); } #endif if (stat.fnum >= 0 || state == STATE_BUMPING) { #if MULTI_LAYER_FRAMEWORK ret = dec_pull_frm((DEC_CTX*)id[nal_layer_id], &imgb, state); #else ret = dec_pull_frm((DEC_CTX*)id, &imgb, state); #endif if (ret == COM_ERR_UNEXPECTED) { v1print("bumping process completed\n"); if (bs_size <= 0) { goto END; } else { state = STATE_DECODING; } } else if (COM_FAILED(ret)) { v0print("failed to pull the decoded image\n"); return -1; } } else { imgb = NULL; } if (imgb) { width = imgb->width[0]; height = imgb->height[0]; #if LIB_PIC_MIXBIN #if MULTI_LAYER_FRAMEWORK if (!((DEC_CTX*)id[0])->info.sqh.library_stream_flag #else if (!((DEC_CTX*)id)->info.sqh.library_stream_flag #endif #if LIBPIC_DISPLAY #if MULTI_LAYER_FRAMEWORK || (((DEC_CTX*)id[0])->info.sqh.library_stream_flag && ((DEC_CTX*)id[0])->info.sqh.library_picture_mode_index == 1) #else || (((DEC_CTX*)id)->info.sqh.library_stream_flag && ((DEC_CTX*)id)->info.sqh.library_picture_mode_index == 1) #endif #endif ) { #endif #if MULTI_LAYER_FRAMEWORK if (op_flag[OP_FLAG_FNAME_OUT] && nal_layer_id == 0) { write_dec_img(id[0], op_fname_out[0], imgb, ((DEC_CTX*)id[0])->info.bit_depth_internal); } if (op_flag[OP_FLAG_FNAME_OUT1] && nal_layer_id == 1) { write_dec_img(id[1], op_fname_out[1], imgb, ((DEC_CTX*)id[1])->info.bit_depth_internal); } #else if (op_flag[OP_FLAG_FNAME_OUT]) { write_dec_img(id, op_fname_out, imgb, ((DEC_CTX*)id)->info.bit_depth_internal); } #endif imgb->release(imgb); pic_cnt++; #if LIB_PIC_MIXBIN } else if (op_flag[OP_FLAG_FNAME_OUT_LIBPICS]) { #if MULTI_LAYER_FRAMEWORK write_dec_img(id[0], op_fname_out_libpics, imgb, ((DEC_CTX*)id[0])->info.bit_depth_internal); #else write_dec_img(id, op_fname_out_libpics, imgb, ((DEC_CTX*)id)->info.bit_depth_internal); #endif } #endif } } END: #if DECODING_TIME_TEST clk_tot += com_clk_from(clk_beg); #endif v1print("===========================================================\n"); v1print("Resolution (decoding) = %d x %d\n", width, height); #if MULTI_LAYER_FRAMEWORK v1print("BL Resolution (output) = %d x %d\n", ((DEC_CTX*)id[0])->info.sqh.horizontal_size[0], ((DEC_CTX*)id[0])->info.sqh.vertical_size[0]); v1print("EL1 Resolution (output) = %d x %d\n", ((DEC_CTX*)id[0])->info.sqh.horizontal_size[1], ((DEC_CTX*)id[0])->info.sqh.vertical_size[1]); #else v1print("Resolution (output) = %d x %d\n", ((DEC_CTX *)id)->info.sqh.horizontal_size, ((DEC_CTX *)id)->info.sqh.vertical_size); #endif v1print("Processed BS count = %d\n", bs_cnt); v1print("Decoded frame count = %d\n", pic_cnt); if(pic_cnt > 0) { v1print("total decoding time = %d msec,", (int)com_clk_msec(clk_tot)); v1print(" %.3f sec\n", (float)(com_clk_msec(clk_tot) /1000.0)); v1print("Average decoding time for a frame = %d msec\n", (int)com_clk_msec(clk_tot)/pic_cnt); v1print("Average decoding speed = %.3f frames/sec\n", ((float)pic_cnt*1000)/((float)com_clk_msec(clk_tot))); } v1print("===========================================================\n"); if (op_flag[OP_FLAG_USE_PIC_SIGN] && pic_cnt > 0) { v1print("Decode Match: 1 (HASH)\n"); #if SVAC_UD_MD5_STREAM #if MULTI_LAYER_FRAMEWORK if (((DEC_CTX *)id[0])->stream_sign_check_flag) #else if (((DEC_CTX *)id)->stream_sign_check_flag) #endif v1print("Stream Decode Match: 1 (HASH)\n"); #endif v1print("===========================================================\n"); } #if MULTI_LAYER_FRAMEWORK for (int i = 0; i < MAX_LAYER; i++) { if (id[i]) dec_delete(id[i]); } #else if(id) dec_delete(id); #endif if(fp_bs) fclose(fp_bs); if(bs_buf) free(bs_buf); if (bs_buf2) { free(bs_buf2); bs_buf2 = NULL; } #if CU_LEVEL_PRIVACY if (bs_buf3) { free(bs_buf3); bs_buf3 = NULL; } #endif #if SVAC_UD_MD5_STREAM if (bs_buf5) { free(bs_buf5); bs_buf5 = NULL; } if (bs_buf4) { free(bs_buf4); bs_buf4 = NULL; } #endif #if LIBVC_ON #if MULTI_LAYER_FRAMEWORK for (int i = 0; i < MAX_LAYER; i++) { delete_libvcdata(&libvc_data[i]); } #else delete_libvcdata(&libvc_data); #endif #endif #if ENC_DEC_TRACE if( fp_trace ) { fclose( fp_trace ); fp_trace = NULL; } #endif #if SVAC_AI_SEG_EXT if (fp_seg) { fclose(fp_seg); fp_seg = NULL; } #endif return 0; }解释这个代码的逻辑关系

大家在看

recommend-type

libssl-1_1-x64.zip

如题,放到软件安装目录bin文件夹下即可。 在anaconda更新包时遇到了这个问题,找了了X64位可以用的,之后成功更新
recommend-type

IEC 61400-25风力发电标准-英文版

IEC61400风电国际标准,分为5个部分,内容包括总则、模型、通信协议、风机构成与控制等。
recommend-type

基于GFFT的LFSR序列生成多项式估计方法

针对线性反馈移位寄存器(LFSR)序列生成多项式的估计问题,提出了一种基于LFSR序列有限域傅里叶变换(GFFT)的估计方法。首先证明了LFSR序列GFFT的非零点与LFSR序列生成多项式的零点之间的对应关系,进而利用该性质实现 LFSR 序列生成多项式的快速估计,并给出了算法在误码环境下的改进方法。仿真实验验证了算法的有效性,并对算法的计算复杂度进行了理论分析。和已有算法相比较,本文提出的算法具有更高的计算效率。
recommend-type

IFIX 4.5 MB1 驱动

 MB1:有两个版本,6.x 和 7.x 版,通过串行口连接所有支持 Modbus 串行通讯协议的设备。主要有 Modicon PLC 和其它控制仪表如:Honeywell UDC,UMC,Moore 的控制仪表等。支持 Mobus RTU 和 ASCII 两种通讯协议。当使用其与其它兼容设备通讯时,注意数据类型会与 Modicon 的数据类型有所差别。7.x 版本支持电话拨号连接和无线电连接。
recommend-type

buliding\horse\pig\rabbit\table\wolf等各种点云数据集pcd文件

这里面包含了很多数据集,有buliding\horse\pig\rabbit\table\wolf等点云pcd文件,感兴趣的可以下载。

最新推荐

recommend-type

【Java使用配置文件连接mysql】

mysql使用druid配置连接mysql
recommend-type

Java课程设计画随机圆(1).pdf

Java课程设计画随机圆(1).pdf
recommend-type

python 一个用py3写的数据库自动备份管理系统.zip

python 一个用py3写的数据库自动备份管理系统
recommend-type

电子商务的应用论文(1).docx

电子商务的应用论文(1).docx
recommend-type

“计算机软件著作权”登记【可编辑范本】(1).doc

“计算机软件著作权”登记【可编辑范本】(1).doc
recommend-type

获取本机IP地址的程序源码分析

从给定文件信息中我们可以提取出的关键知识点是“取本机IP”的实现方法以及与之相关的编程技术和源代码。在当今的信息技术领域中,获取本机IP地址是一项基本技能,广泛应用于网络通信类的软件开发中,下面将详细介绍这一知识点。 首先,获取本机IP地址通常需要依赖于编程语言和操作系统的API。不同的操作系统提供了不同的方法来获取IP地址。在Windows操作系统中,可以通过调用Windows API中的GetAdaptersInfo()或GetAdaptersAddresses()函数来获取网络适配器信息,进而得到IP地址。在类Unix操作系统中,可以通过读取/proc/net或是使用系统命令ifconfig、ip等来获取网络接口信息。 在程序设计过程中,获取本机IP地址的源程序通常会用到网络编程的知识,比如套接字编程(Socket Programming)。网络编程允许程序之间进行通信,套接字则是在网络通信过程中用于发送和接收数据的接口。在许多高级语言中,如Python、Java、C#等,都提供了内置的网络库和类来简化网络编程的工作。 在网络通信类中,IP地址是区分不同网络节点的重要标识,它是由IP协议规定的,用于在网络中唯一标识一个网络接口。IP地址可以是IPv4,也可以是较新的IPv6。IPv4地址由32位二进制数表示,通常分为四部分,每部分由8位构成,并以点分隔,如192.168.1.1。IPv6地址则由128位二进制数表示,其表示方法与IPv4有所不同,以冒号分隔的8组16进制数表示,如2001:0db8:85a3:0000:0000:8a2e:0370:7334。 当编写源代码以获取本机IP地址时,通常涉及到以下几个步骤: 1. 选择合适的编程语言和相关库。 2. 根据目标操作系统的API或系统命令获取网络接口信息。 3. 分析网络接口信息,提取出IP地址。 4. 将提取的IP地址转换成适合程序内部使用的格式。 5. 在程序中提供相应功能,如显示IP地址或用于网络通信。 例如,在Python中,可以使用内置的socket库来获取本机IP地址。一个简单的示例代码如下: ```python import socket # 获取主机名 hostname = socket.gethostname() # 获取本机IP local_ip = socket.gethostbyname(hostname) print("本机IP地址是:", local_ip) ``` 在实际应用中,获取本机IP地址通常是为了实现网络通信功能,例如建立客户端与服务器的连接,或者是在开发涉及到IP地址的其他功能时使用。 关于文件名称“getIP”,这是一个自解释的文件名,明显表示该文件或程序的作用是获取本机的IP地址。从标签“控件 源码 网络通信类 资源”中我们可以看出,这个文件很可能是一个可以嵌入其他软件中的代码片段,用以实现网络通信功能的一部分,具有较高的灵活性和重用性。 综上所述,获取本机IP地址是一个涉及到操作系统API、网络编程以及特定编程语言知识的技能。它不仅需要对编程语言提供的库函数有深入的理解,还要对操作系统的网络配置和IP协议有足够的认识。通过阅读和分析相关的源代码,如“getIP”,可以加深对网络编程实现细节的理解,并能够在实际开发中快速地应用这一技术。
recommend-type

【权威指南】:Win11笔记本上RTX4080驱动的安装与调试秘籍

# 1. Win11笔记本与RTX4080显卡介绍 随着技术的不断发展,笔记本电脑已不再是仅仅满足办公需求的移动设备,而是逐渐成为可以胜任复杂图形处理和游戏任务的强大工具。微软推出的Windows 11操作系统,以其全新的用户界面和改进的系统性能,为用户提供了更为流畅的操作体验。而在硬件方面,NVIDIA的RTX 4080显卡以其卓越的图形处理能力和AI支持,为笔记本电脑带来了前所未有的性能提升。本章节将带您初步了解Windows 11笔记本与NVIDIA RTX 4080显卡的基础信息,为进一步深入探讨它们的优化和调试技巧奠定基础。 ## 1.1 Win11笔记本的优势 Windows
recommend-type

windows环境举例

<think>好的,用户现在想在Windows环境下创建C函数库,需要具体的方法和示例代码。我需要结合之前的回答和用户提供的引用内容来给出合适的指导。 首先回顾之前的回答,用户已经了解了在Linux下创建静态库和动态库的方法,现在需要切换到Windows环境。根据引用[2],Windows下的C标准库和动态链接库的处理与Linux不同,比如使用dlfcn.h在Linux,而Windows可能需要其他方式。另外,引用[1]提到了在Windows下配置gcc环境(MinGW-w64),这可能是一个关键点,因为用户可能需要使用MinGW来编译库。 用户提供的引用[3]提到了使用MSVC编译器,这
recommend-type

QQ自动发送/回复系统源代码开放

根据提供的文件信息,我们可以了解到以下几点关键的知识点: ### 标题:“qqhelp” 1. **项目类型**: 标题“qqhelp”暗示这是一个与QQ相关的帮助工具或项目。QQ是中国流行的即时通讯软件,因此这个标题表明项目可能提供了对QQ客户端功能的辅助或扩展。 2. **用途**: “help”表明此项目的主要目的是提供帮助或解决问题。由于它提到了QQ,并且涉及“autosend/reply”功能,我们可以推测该项目可能用于自动化发送消息回复,或提供某种形式的自动回复机制。 ### 描述:“I put it to my web, but nobody sendmessage to got the source, now I public it. it supply qq,ticq autosend/reply ,full sourcecode use it as you like” 1. **发布情况**: 描述提到该项目原先被放置在某人的网站上,并且没有收到请求源代码的消息。这可能意味着项目不够知名或者需求不高。现在作者决定公开发布,这可能是因为希望项目能够被更多人了解和使用,或是出于开源共享的精神。 2. **功能特性**: 提到的“autosend/reply”表明该项目能够实现自动发送和回复消息。这种功能对于需要进行批量或定时消息沟通的应用场景非常有用,例如客户服务、自动化的营销通知等。 3. **代码可用性**: 作者指出提供了“full sourcecode”,意味着源代码完全开放,用户可以自由使用,无论是查看、学习还是修改,用户都有很大的灵活性。这对于希望学习编程或者有特定需求的开发者来说是一个很大的优势。 ### 标签:“综合系统类” 1. **项目分类**: 标签“综合系统类”表明这个项目可能是一个多功能的集成系统,它可能不仅限于QQ相关的功能,还可能包含了其他类型的综合服务或特性。 2. **技术范畴**: 这个标签可能表明该项目的技术实现比较全面,可能涉及到了多个技术栈或者系统集成的知识点,例如消息处理、网络编程、自动化处理等。 ### 压缩包子文件的文件名称列表: 1. **Unit1.dfm**: 这是一个Delphi或Object Pascal语言的窗体定义文件,用于定义应用程序中的用户界面布局。DFM文件通常用于存储组件的属性和位置信息,使得开发者可以快速地进行用户界面的设计和调整。 2. **qqhelp.dpr**: DPR是Delphi项目文件的扩展名,包含了Delphi项目的核心设置,如程序入口、使用的单元(Units)等。这个文件是编译和构建Delphi项目的起点,它能够帮助开发者了解项目的组织结构和编译指令。 3. **Unit1.pas**: PAS是Delphi或Object Pascal语言的源代码文件。这个文件可能包含了与QQ帮助工具相关的核心逻辑代码,例如处理自动发送和回复消息的算法等。 4. **readme.txt**: 这是一个常见的文本文件,包含项目的基本说明和使用指导,帮助用户了解如何获取、安装、运行和定制该项目。README文件通常是用户与项目首次交互时首先阅读的文件,因此它对于一个开源项目的用户友好度有着重要影响。 通过以上分析,我们可以看出“qqhelp”项目是一个针对QQ通讯工具的自动化消息发送与回复的辅助工具。项目包含完整的源代码,用户可以根据自己的需要进行查看、修改和使用。它可能包含Delphi语言编写的窗体界面和后端逻辑代码,具有一定的综合系统特性。项目作者出于某种原因将其开源,希望能够得到更广泛的使用和反馈。
recommend-type

【7步打造Win11深度学习利器】:Tensorflow-GPU与RTX4080终极优化指南

# 1. 深度学习与Windows 11的融合 在人工智能时代,深度学习已渗透到生活的方方面面,而Windows 11作为最新一代的操作系统,为深度学习提供了一个高效的工作平台。本章节将探讨深度学习技术如何与Windows 11系统融合,以及这一