活动介绍

New https://pypi.org/project/ultralytics/8.3.163 available  Update with 'pip install -U ultralytics' Ultralytics 8.3.162  Python-3.10.18 torch-2.6.0 cu124 CUDA:0 (NVIDIA GeForce RTX 3070, 7747MiB) engine/trainer: agnostic_nms=False, amp=True, augment=False, auto_augment=randaugment, batch=16, bgr=0.0, box=7.5, cache=False, cfg=None, classes=None, close_mosaic=10, cls=0.5, conf=None, copy_paste=0.0, copy_paste_mode=flip, cos_lr=False, cutmix=0.0, data=VisDroneSOT.yaml, degrees=0.0, deterministic=True, device=0, dfl=1.5, dnn=False, dropout=0.0, dynamic=False, embed=None, epochs=100, erasing=0.4, exist_ok=False, fliplr=0.5, flipud=0.0, format=torchscript, fraction=1.0, freeze=None, half=False, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, imgsz=640, int8=False, iou=0.7, keras=False, kobj=1.0, line_width=None, lr0=0.01, lrf=0.01, mask_ratio=4, max_det=300, mixup=0.0, mode=train, model=../yolo11n.pt, momentum=0.937, mosaic=1.0, multi_scale=False, name=train, nbs=64, nms=False, opset=None, optimize=False, optimizer=auto, overlap_mask=True, patience=100, perspective=0.0, plots=True, pose=12.0, pretrained=True, profile=False, project=None, rect=False, resume=False, retina_masks=False, save=True, save_conf=False, save_crop=False, save_dir=runs/detect/train, save_frames=False, save_json=False, save_period=-1, save_txt=False, scale=0.5, seed=0, shear=0.0, show=False, show_boxes=True, show_conf=True, show_labels=True, simplify=True, single_cls=False, source=None, split=val, stream_buffer=False, task=detect, time=None, tracker=botsort.yaml, translate=0.1, val=True, verbose=True, vid_stride=1, visualize=False, warmup_bias_lr=0.1, warmup_epochs=3.0, warmup_momentum=0.8, weight_decay=0.0005, workers=4, workspace=None Traceback (most recent call last): File "/home/a305/anaconda3/envs/lysenv/lib/python3.10/site-packages/ultralytics/engine/trainer.py", line 607, in get_dataset data = check_det_dataset(self.args.data) File "/home/a305/anaconda3/envs/lysenv/lib/python3.10/site-packages/

时间: 2025-07-22 14:17:40 浏览: 6
在使用 Ultralytics 框架进行目标检测模型训练时,`check_det_dataset` 是一个用于验证数据集配置和文件完整性的函数。如果在运行过程中出现错误,通常表明数据集的结构、标注或路径配置存在问题。 ### 常见问题与排查方法 #### 1. 数据集路径配置错误 Ultralytics 使用 `.yaml` 文件来定义数据集的路径和类别信息。如果 `path`、`train` 或 `val` 字段指向的目录或文件不存在,程序将无法找到对应图像文件并抛出异常。 ```yaml path: ./data/NEU-DET train: images/train val: images/val ``` 确保该路径为相对路径或绝对路径,并且实际目录中包含对应的图像和标签文件[^2]。 #### 2. 标签文件格式不正确 YOLO 系列模型要求标签文件(`.txt`)遵循特定格式:每行代表一个目标,格式为: ``` <class_id> <x_center> <y_center> <width> <height> ``` 其中坐标值为归一化后的浮点数。若标签文件中存在非法字符、超出范围的数值或类别 ID 越界,将导致解析失败。例如: ``` 0 0.5 0.5 0.2 0.2 ``` #### 3. 类别数量不匹配 YAML 文件中的 `nc`(number of classes)字段必须与标签文件中的最大类别 ID 匹配。例如,若 `names` 列表有 6 个类别,则标签中只能使用 0~5 的整数作为 `class_id`。否则会触发类别越界的错误[^2]。 #### 4. 图像与标签文件不匹配 每个图像文件(如 `image.jpg`)应有一个同名的 `.txt` 标签文件(如 `image.txt`)。若缺少标签文件或文件名不一致,`check_det_dataset` 会报错指出数据不完整[^1]。 #### 5. 权限或文件锁定问题 在某些系统环境下,若标签文件或图像文件被其他进程占用或没有读取权限,也会导致检查失败。可尝试更改文件权限或关闭相关编辑器以释放文件锁。 --- ### 示例代码:手动验证数据集完整性 可以编写脚本验证图像与标签的一致性: ```python import os def check_dataset_integrity(image_dir, label_dir): image_files = set(os.listdir(image_dir)) label_files = set(os.listdir(label_dir)) # 获取对应的文件名(去除扩展名) image_names = set([os.path.splitext(f)[0] for f in image_files]) label_names = set([os.path.splitext(f)[0] for f in label_files]) missing_labels = image_names - label_names missing_images = label_names - image_names if missing_labels: print(f"警告:以下图像缺少对应的标签文件:{missing_labels}") if missing_images: print(f"警告:以下标签缺少对应的图像文件:{missing_images}") # 示例调用 check_dataset_integrity('data/images/train', 'data/labels/train') ``` --- ### 调试建议 - 启用日志输出,查看详细的错误堆栈,定位具体出错的文件路径。 - 使用小型子集测试数据集配置是否正确,避免大规模扫描带来的性能开销。 - 在 `build_dataset` 函数中加入打印语句,跟踪加载过程中的文件路径和标签内容[^1]。 ---
阅读全文

相关推荐

Traceback (most recent call last): File "e:\development_tool\models\yolov5-master\dataset\train.py", line 4, in <module> results = model.train(data='E:\development_tool\models\yolov5-master\yolov5-master\data\data.yaml',batch=8,epochs=100,imgsz=384) File "C:\Users\32723\.conda\envs\pytorch\lib\site-packages\ultralytics\engine\model.py", line 804, in train self.trainer = (trainer or self._smart_load("trainer"))(overrides=args, _callbacks=self.callbacks) File "C:\Users\32723\.conda\envs\pytorch\lib\site-packages\ultralytics\engine\trainer.py", line 134, in __init__ self.trainset, self.testset = self.get_dataset() File "C:\Users\32723\.conda\envs\pytorch\lib\site-packages\ultralytics\engine\trainer.py", line 568, in get_dataset raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error ❌ {e}")) from e RuntimeError: Dataset 'E://development_tool/models/yolov5-master/yolov5-master/data/data.yaml' error Dataset 'E://development_tool/models/yolov5-master/yolov5-master/data/data.yaml' images not found , missing path 'E:\development_tool\models\yolov5-master\yolov5-master\data\valid\images' Note dataset download directory is 'E:\development_tool\models\yolov5-master\yolov5-master\datasets'. You can update this in 'C:\Users\32723\AppData\Roaming\Ultralytics\settings.json' PS E:\development_tool\models\yolov5-master> & C:/Users/32723/.conda/envs/pytorch/python.exe e:/development_tool/models/yolov5-master/dataset/train.py New https://pypi.org/project/ultralytics/8.3.88 available 😃 Update with 'pip install -U ultralytics' Ultralytics 8.3.85 🚀 Python-3.9.21 torch-2.6.0+cu118 CUDA:0 (NVIDIA GeForce RTX 3050 Laptop GPU, 4096MiB) engine\trainer: task=detect, mode=train, model=yolov5su.pt, data=E:\development_tool\models\yolov5-master\yolov5-master\data\data.yaml, epochs=100, time=None, patience=100, batch=8, imgsz=384, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train10, exist_ok=False, pretrained=True, op

A module that was compiled using NumPy 1.x cannot be run in NumPy 2.1.1 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "F:\ultralytics-8.3.89\train.py", line 1, in <module> from ultralytics import YOLO File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\__init__.py", line 11, in <module> from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\models\__init__.py", line 3, in <module> from .fastsam import FastSAM File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\models\fastsam\model.py", line 5, in <module> from ultralytics.engine.model import Model File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\engine\model.py", line 12, in <module> from ultralytics.engine.results import Results File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\engine\results.py", line 15, in <module> from ultralytics.data.augment import LetterBox File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\data\__init__.py", line 3, in <module> from .base import BaseDataset File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\data\base.py", line 17, in <module> from ultralytics.data.utils import FORMATS_HELP_MSG, HELP_URL, IMG_FORMATS File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\data\utils.py", line 18, in <module> from ultralytics.nn.autobackend import check_class_names File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\nn\autobackend.py", line 54, in <module> class AutoBackend(nn.Module): File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\nn\autobackend.py", line 89, in AutoBackend device=torch.device("cpu"), F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\nn\autobackend.py:89: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ..\torch\csrc\utils\tensor_numpy.cpp:84.) device=torch.device("cpu"), New https://pypi.org/project/ultralytics/8.3.165 available 😃 Update with 'pip install -U ultralytics' Ultralytics 8.3.89 🚀 Python-3.11.13 torch-2.3.1+cu121 CUDA:0 (NVIDIA GeForce RTX 4080 Laptop GPU, 12282MiB) engine\trainer: task=detect, mode=train, model=yolo11n.pt, data=data.yaml, epochs=200, time=None, patience=100, batch=20, imgsz=640, save=True, save_period=-1, cache=False, device=0, workers=8, project=None, name=train2, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train2 Overriding model.yaml nc=80 with nc=1 from n params module arguments 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 2 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25] 3 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 4 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25] 5 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 6 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True] 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] 8 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True] 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] 10 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1] 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 12 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 13 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False] 14 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 15 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 16 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False] 17 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 18 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1] 19 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False] 20 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 21 [-1, 10] 1 0 ultralytics.nn.modules.conv.Concat [1] 22 -1 1 378880 ultralytics.nn.modules.block.C3k2 [384, 256, 1, True] 23 [16, 19, 22] 1 430867 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]] YOLO11n summary: 181 layers, 2,590,035 parameters, 2,590,019 gradients, 6.4 GFLOPs Transferred 448/499 items from pretrained weights Freezing layer 'model.23.dfl.conv.weight' AMP: running Automatic Mixed Precision (AMP) checks... Traceback (most recent call last): File "F:\ultralytics-8.3.89\train.py", line 20, in <module> main() File "F:\ultralytics-8.3.89\train.py", line 8, in main results = model.train( ^^^^^^^^^^^^ File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\engine\model.py", line 810, in train self.trainer.train() File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\engine\trainer.py", line 208, in train self._do_train(world_size) File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\engine\trainer.py", line 323, in _do_train self._setup_train(world_size) File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\engine\trainer.py", line 265, in _setup_train self.amp = torch.tensor(check_amp(self.model), device=self.device) ^^^^^^^^^^^^^^^^^^^^^ File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\utils\checks.py", line 698, in check_amp assert amp_allclose(YOLO("yolo11n.pt"), im) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\utils\checks.py", line 686, in amp_allclose a = m(batch, imgsz=imgsz, device=device, verbose=False)[0].boxes.data # FP32 inference ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\engine\model.py", line 182, in __call__ return self.predict(source, stream, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\engine\model.py", line 560, in predict return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\engine\predictor.py", line 175, in __call__ return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\anaconda\envs\model\Lib\site-packages\torch\utils\_contextlib.py", line 35, in generator_context response = gen.send(None) ^^^^^^^^^^^^^^ File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\engine\predictor.py", line 257, in stream_inference im = self.preprocess(im0s) ^^^^^^^^^^^^^^^^^^^^^ File "F:\ultralytics-8.3.89\ultralytics-8.1.0\ultralytics\engine\predictor.py", line 130, in preprocess im = torch.from_numpy(im) ^^^^^^^^^^^^^^^^^^^^ RuntimeError: Numpy is not available

WARNING ⚠️ no model scale passed. Assuming scale='n'. New https://pypi.org/project/ultralytics/8.3.144 available 😃 Update with 'pip install -U ultralytics' Ultralytics 8.3.18 🚀 Python-3.11.11 torch-2.7.0+cu126 CUDA:0 (NVIDIA GeForce RTX 4090, 24111MiB) engine/trainer: task=detect, mode=train, model=ultralytics/cfg/models/11/yolo11-DCNv2.yaml, data=data/NEU-DET.yaml, epochs=100, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=0, workers=0, project=runs/train, name=exp, exist_ok=False, pretrained=True, optimizer=SGD, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs/train/exp Traceback (most recent call last): File "/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/ultralytics/engine/trainer.py", line 557, in get_dataset data = check_det_dataset(self.args.data) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/ultralytics/data/utils.py", line 329, in check_det_dataset raise FileNotFoundError(m) FileNotFoundError: Dataset 'data/NEU-DET.yaml' images not found ⚠️, missing path '/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/datasets/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/data/NEU-DET/val.txt' Note dataset download directory is '/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/datasets'. You can update this in '/root/.config/Ultralytics/settings.json' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/train.py", line 8, in <module> model.train(data='data/NEU-DET.yaml', File "/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/ultralytics/engine/model.py", line 796, in train self.trainer = (trainer or self._smart_load("trainer"))(overrides=args, _callbacks=self.callbacks) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/ultralytics/engine/trainer.py", line 133, in __init__ self.trainset, self.testset = self.get_dataset() ^^^^^^^^^^^^^^^^^^ File "/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/ultralytics/engine/trainer.py", line 561, in get_dataset raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error ❌ {e}")) from e RuntimeError: Dataset 'data/NEU-DET.yaml' error ❌ Dataset 'data/NEU-DET.yaml' images not found ⚠️, missing path '/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/datasets/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/data/NEU-DET/val.txt' Note dataset download directory is '/root/autodl-tmp/ultralytics-yolo11/ultralytics-yolo11/datasets'. You can update this in '/root/.config/Ultralytics/settings.json'

E:\anaconda\envs\cycy\python.exe C:\Users\14480\Desktop\毕设\ultralytics\ultralytics-main\train.py New https://pypi.org/project/ultralytics/8.3.90 available 😃 Update with 'pip install -U ultralytics' Ultralytics YOLOv8.2.50 🚀 Python-3.10.16 torch-2.6.0+cu118 CUDA:0 (GeForce GTX 1650 Ti, 4096MiB) Traceback (most recent call last): File "C:\Users\14480\Desktop\毕设\ultralytics\ultralytics-main\ultralytics\engine\trainer.py", line 551, in get_dataset data = check_det_dataset(self.args.data) File "C:\Users\14480\Desktop\毕设\ultralytics\ultralytics-main\ultralytics\data\utils.py", line 269, in check_det_dataset file = check_file(dataset) File "C:\Users\14480\Desktop\毕设\ultralytics\ultralytics-main\ultralytics\utils\checks.py", line 509, in check_file raise FileNotFoundError(f"'{file}' does not exist") FileNotFoundError: 'C://Users//14480//Desktop//毕设//ultralytics//ultralytics - main//dataset//data.yaml' does not exist The above exception was the direct cause of the following exception: Traceback (most recent call last): File "C:\Users\14480\Desktop\毕设\ultralytics\ultralytics-main\train.py", line 12, in <module> model.train(data="C://Users//14480//Desktop//毕设//ultralytics//ultralytics - main//dataset//data.yaml", File "C:\Users\14480\Desktop\毕设\ultralytics\ultralytics-main\ultralytics\engine\model.py", line 644, in train self.trainer = (trainer or self._smart_load("trainer"))(overrides=args, _callbacks=self.callbacks) File "C:\Users\14480\Desktop\毕设\ultralytics\ultralytics-main\ultralytics\engine\trainer.py", line 133, in __init__ self.trainset, self.testset = self.get_dataset() File "C:\Users\14480\Desktop\毕设\ultralytics\ultralytics-main\ultralytics\engine\trainer.py", line 555, in get_dataset raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error ❌ {e}")) from e RuntimeError: Dataset 'C://Users/14480/Desktop//ultralytics/ultralytics - main/dataset/data.yaml' error 'C://Users//14480//Desktop////ultralytics//ultralytics - main//dataset//data.yaml' does not exist engine\trainer: task=detect, mode=train, model=ultralytics/cfg/models/v8/yolov8n.yaml, data=C://Users//14480//Desktop//毕设//ultralytics//ultralytics - main//dataset//data.yaml, epochs=300, time=None, patience=100, batch=32, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=runs/train, name=exp6, exist_ok=False, pretrained=True, optimizer=SGD, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=0, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\train\exp6 进程已结束,退出代码为 1

E:\conda\envs\yolo\python.exe "E:\py cs\data\ultralytics-main\111.py" WARNING ⚠️ no model scale passed. Assuming scale='n'. New https://pypi.org/project/ultralytics/8.3.160 available 😃 Update with 'pip install -U ultralytics' Ultralytics 8.3.15 🚀 Python-3.12.10 torch-2.2.0+cu118 CUDA:0 (NVIDIA GeForce RTX 4060, 8188MiB) Traceback (most recent call last): File "E:\py cs\data\ultralytics-main\ultralytics\engine\trainer.py", line 558, in get_dataset data = check_det_dataset(self.args.data) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\py cs\data\ultralytics-main\ultralytics\data\utils.py", line 269, in check_det_dataset file = check_file(dataset) ^^^^^^^^^^^^^^^^^^^ File "E:\py cs\data\ultralytics-main\ultralytics\utils\checks.py", line 521, in check_file raise FileNotFoundError(f"'{file}' does not exist") FileNotFoundError: 'E:\py cs\data\ultralytics-main\ultralytics\cfg\datase ts\zongsi.yaml' does not exist The above exception was the direct cause of the following exception: Traceback (most recent call last): File "E:\py cs\data\ultralytics-main\111.py", line 13, in <module> model.train(data=r'E:\py cs\data\ultralytics-main\ultralytics\cfg\datase ts\zongsi.yaml', File "E:\py cs\data\ultralytics-main\ultralytics\engine\model.py", line 796, in train self.trainer = (trainer or self._smart_load("trainer"))(overrides=args, _callbacks=self.callbacks) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\py cs\data\ultralytics-main\ultralytics\engine\trainer.py", line 133, in __init__ self.trainset, self.testset = self.get_dataset() ^^^^^^^^^^^^^^^^^^ File "E:\py cs\data\ultralytics-main\ultralytics\engine\trainer.py", line 562, in get_dataset raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error ❌ {e}")) from e RuntimeError: Dataset 'E://py cs/data/ultralytics-main/ultralytics/cfg/datase ts/zongsi.ya

(D:\.conda\yolov12) C:\Users\lenovo>yolo pose train ^ More? model="D:\YOLO pig\yolov12n.pt" ^ More? data="D:\YOLO pig\pig.yaml" ^ More? epochs=75 ^ More? imgsz=640 ^ More? device=0 FlashAttention is not available on this device. Using scaled_dot_product_attention instead. WARNING ⚠️ conflicting 'task=pose' passed with 'task=detect' model. Ignoring 'task=pose' and updating to 'task=detect' to match model. New https://pypi.org/project/ultralytics/8.3.169 available 😃 Update with 'pip install -U ultralytics' Ultralytics 8.3.63 🚀 Python-3.12.11 torch-2.7.1+cpu Traceback (most recent call last): File "<frozen runpy>", line 198, in _run_module_as_main File "<frozen runpy>", line 88, in _run_code File "D:\.conda\yolov12\Scripts\yolo.exe\__main__.py", line 7, in <module> File "D:\YOLO pig\yolov12-main\ultralytics\cfg\__init__.py", line 983, in entrypoint getattr(model, mode)(**overrides) # default args from model ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\YOLO pig\yolov12-main\ultralytics\engine\model.py", line 802, in train self.trainer = (trainer or self._smart_load("trainer"))(overrides=args, _callbacks=self.callbacks) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\YOLO pig\yolov12-main\ultralytics\engine\trainer.py", line 103, in __init__ self.device = select_device(self.args.device, self.args.batch) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\YOLO pig\yolov12-main\ultralytics\utils\torch_utils.py", line 188, in select_device raise ValueError( ValueError: Invalid CUDA 'device=0' requested. Use 'device=cpu' or pass valid CUDA device(s) if available, i.e. 'device=0' or 'device=0,1,2,3' for Multi-GPU. torch.cuda.is_available(): False torch.cuda.device_count(): 0 os.environ['CUDA_VISIBLE_DEVICES']: None See https://pytorch.org/get-started/locally/ for up-to-date torch install instructions if no CUDA devices are seen by torch.

我复制的源码from ultralytics import YOLO # Create a new YOLO model from scratch model = YOLO("yolo11n.yaml") # Load a pretrained YOLO model (recommended for training) model = YOLO("yolo11n.pt") # Train the model using the 'coco8.yaml' dataset for 3 epochs results = model.train(data="coco8.yaml", epochs=3) # Evaluate the model's performance on the validation set results = model.val() # Perform object detection on an image using the model results = model("https://ultralytics.com/images/bus.jpg") # Export the model to ONNX format success = model.export(format="onnx")。但出现了一堆报错D:\anaconda3\envs\pytorch\python.exe E:\桌面\ultralytics-main\mytrain.py New https://pypi.org/project/ultralytics/8.3.92 available 😃 Update with 'pip install -U ultralytics' Ultralytics 8.3.81 🚀 Python-3.9.21 torch-2.5.0+cu118 CUDA:0 (NVIDIA GeForce RTX 3060 Laptop GPU, 6144MiB) engine\trainer: task=detect, mode=train, model=yolo11n.pt, data=coco8.yaml, epochs=3, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train101, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup

Transferred 355/355 items from pretrained weights New https://pypi.org/project/ultralytics/8.3.99 available 😃 Update with 'pip install -U ultralytics' Ultralytics 8.3.88 🚀 Python-3.8.8 torch-2.4.1+cpu CPU (Intel Xeon Silver 4216 2.10GHz) engine\trainer: task=detect, mode=train, model=yolov8n.yaml, data=datasets/bvn/lw.yaml, epochs=100, time=None, patience=100, batch=4, imgsz=640, save=True, save_ period=-1, cache=False, device=None, workers=8, project=None, name=train3, exist_ok=False, pretrained=ultralytics/yolov8n.pt, optimizer=auto, verbose=True, seed= 0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=None, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale= False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=Fa lse, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None , show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=tor chscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weigh t_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v =0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train3 Traceback (most recent call last): File "d:\lammps\anaconda\lib\site-packages\ultralytics\engine\trainer.py", line 570, in get_dataset data = check_det_dataset(self.args.dat

F:\anaconda\envs\yolov8\python.exe F:/downloads/ultralytics-main/yolov8_train.py Transferred 355/355 items from pretrained weights New https://pypi.org/project/ultralytics/8.3.163 available Update with 'pip install -U ultralytics' Ultralytics 8.3.161 Python-3.9.12 torch-2.6.0+cu124 CUDA:0 (NVIDIA GeForce RTX 4090, 24564MiB) Traceback (most recent call last): File "F:\anaconda\envs\yolov8\lib\site-packages\ultralytics\engine\trainer.py", line 607, in get_dataset data = check_det_dataset(self.args.data) File "F:\anaconda\envs\yolov8\lib\site-packages\ultralytics\data\utils.py", line 425, in check_det_dataset raise SyntaxError(emojis(f"{dataset} 'names' length {len(data['names'])} and 'nc: {data['nc']}' must match.")) SyntaxError: data.yaml 'names' length 3 and 'nc: 2' must match. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "F:\downloads\ultralytics-main\yolov8_train.py", line 9, in <module> results = model.train( File "F:\anaconda\envs\yolov8\lib\site-packages\ultralytics\engine\model.py", line 793, in train self.trainer = (trainer or self._smart_load("trainer"))(overrides=args, _callbacks=self.callbacks) File "F:\anaconda\envs\yolov8\lib\site-packages\ultralytics\engine\trainer.py", line 153, in __init__ self.data = self.get_dataset() File "F:\anaconda\envs\yolov8\lib\site-packages\ultralytics\engine\trainer.py", line 611, in get_dataset raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error ❌ {e}")) from e RuntimeError: Dataset 'data.yaml' error data.yaml 'names' length 3 and 'nc: 2' must match. engine\trainer: agnostic_nms=False, amp=True, augment=False, auto_augment=randaugment, batch=16, bgr=0.0, box=7.5, cache=False, cfg=None, classes=None, close_mosaic=10, cls=0.5, conf=None, copy_paste=0.0, copy_paste_mode=flip, cos_lr=False, cutmix=0.0, data=data.yaml, degrees=0.0, deterministic=True, device=0, dfl=1.5, dnn=False, dropout=0.0, dynamic=False, embed=None, epochs=200, erasing=0.4, exist_ok=False, fliplr=0.5, flipud=0.0, format=torchscript, fraction=1.0, freeze=None, half=False, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, imgsz=640, int8=False, iou=0.7, keras=False, kobj=1.0, line_width=None, lr0=0.01, lrf=0.01, mask_ratio=4, max_det=300, mixup=0.0, mode=train, model=ultralytics/cfg/models/v8/yolov8n.yaml, momentum=0.937, mosaic=1.0, multi_scale=False, name=train16, nbs=64, nms=False, opset=None, optimize=False, optimizer=SGD, overlap_mask=True, patience=100, perspective=0.0, plots=True, pose=12.0, pretrained=yolov8n.pt, profile=False, project=None, rect=False, resume=False, retina_masks=False, save=True, save_conf=False, save_crop=False, save_dir=runs\detect\train16, save_frames=False, save_json=False, save_period=-1, save_txt=False, scale=0.5, seed=0, shear=0.0, show=False, show_boxes=True, show_conf=True, show_labels=True, simplify=True, single_cls=False, source=None, split=val, stream_buffer=False, task=detect, time=None, tracker=botsort.yaml, translate=0.1, val=True, verbose=True, vid_stride=1, visualize=False, warmup_bias_lr=0.1, warmup_epochs=3.0, warmup_momentum=0.8, weight_decay=0.0005, workers=8, workspace=None Process finished with exit code 1

root@autodl-container-768d419687-d943df15:~# python /tmp/pycharm_project_490/train_v8.py WARNING ⚠️ no model scale passed. Assuming scale='n'. Transferred 319/391 items from pretrained weights New https://pypi.org/project/ultralytics/8.3.86 available 😃 Update with 'pip install -U ultralytics' Ultralytics 8.3.8 🚀 Python-3.12.3 torch-2.3.0+cu121 CPU (Intel Xeon Platinum 8352V 2.10GHz) engine/trainer: task=detect, mode=train, model=ultralytics/cfg/models/v8/yolov8.yaml, data=datasets/data.yaml, epochs=150, time=None, patience=100, batch=4, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train_v84, exist_ok=False, pretrained=yolov8n.pt, optimizer=SGD, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs/detect/train_v84 Tra

D:\00000\envs\yolo\python.exe D:\00000\envs\yolo\Lib\site-packages\ultralytics\ultralytics\run.py New https://pypi.org/project/ultralytics/8.3.97 available 😃 Update with 'pip install -U ultralytics' Ultralytics 8.3.96 🚀 Python-3.9.21 torch-2.0.1 CUDA:0 (NVIDIA GeForce GTX 1650 Ti, 4096MiB) engine\trainer: task=segment, mode=train, model=yolov8n-seg.pt, data=data.yaml, epochs=100, time=None, patience=100, batch=4, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=D:\00000\envs\yolo\Lib\site-packages\ultralytics\runs\segment\train Overriding model.yaml nc=80 with nc=1 from n params module

C:\conda\envs\yolo\python.exe E:\YOLOv11\code\yolov11\train.py New https://pypi.org/project/ultralytics/8.3.159 available 😃 Update with 'pip install -U ultralytics' Ultralytics 8.3.21 🚀 Python-3.10.16 torch-2.1.0+cu118 CUDA:0 (NVIDIA GeForce RTX 3050 Laptop GPU, 4096MiB) engine\trainer: task=detect, mode=train, model=E:\YOLOv11\code\yolov11\runs\detect\train\weights\last.pt, data=E:/YOLOv11/code/yolov11/mydata.yaml, epochs=150, time=None, patience=100, batch=1, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=0, project=None, name=train2, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=E:\YOLOv11\code\yolov11\runs\detect\train\weights\last.pt, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.0, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train2 TensorBoard: Start with 'tensorboard --logdir runs\detect\train2', view at http://localhost:6006/ from n params module arguments 0 -1 1 928 ultralytics.nn.modules.conv.Conv [3, 32, 3, 2] 1 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] 2 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25] 3 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 4 -1 1 103360 ultralytics.nn.modules.block.C3k2 [128, 256, 1, False, 0.25] 5 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2] 6 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True] 7 -1 1 1180672 ultralytics.nn.modules.conv.Conv [256, 512, 3, 2] 8 -1 1 1380352 ultralytics.nn.modules.block.C3k2 [512, 512, 1, True] 9 -1 1 656896 ultralytics.nn.modules.block.SPPF [512, 512, 5] 10 -1 1 990976 ultralytics.nn.modules.block.C2PSA [512, 512, 1] 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 12 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 13 -1 1 443776 ultralytics.nn.modules.block.C3k2 [768, 256, 1, False] 14 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 15 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 16 -1 1 127680 ultralytics.nn.modules.block.C3k2 [512, 128, 1, False] 17 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 18 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1] 19 -1 1 345472 ultralytics.nn.modules.block.C3k2 [384, 256, 1, False] 20 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2] 21 [-1, 10] 1 0 ultralytics.nn.modules.conv.Concat [1] 22 -1 1 1511424 ultralytics.nn.modules.block.C3k2 [768, 512, 1, True] 23 [16, 19, 22] 1 821730 ultralytics.nn.modules.head.Detect [6, [128, 256, 512]] YOLO11s summary: 319 layers, 9,430,114 parameters, 9,430,098 gradients, 21.6 GFLOPs Transferred 499/499 items from pretrained weights Freezing layer 'model.23.dfl.conv.weight' AMP: running Automatic Mixed Precision (AMP) checks... AMP: checks passed ✅ train: Scanning E:\YOLOv11\code\yolov11\datasets\dataset-1\labels\train... 5178 images, 1 backgrounds, 3 corrupt: 100%|██████████| 5181/5181 [00:05<00:00, 905.20it/s] train: WARNING ⚠️ E:\YOLOv11\code\yolov11\datasets\dataset-1\images\train\120.jpg: ignoring corrupt image/label: invalid image format GIF. Supported formats are: images: {'png', 'heic', 'mpo', 'dng', 'bmp', 'pfm', 'jpeg', 'jpg', 'tif', 'tiff', 'webp'} videos: {'mpeg', 'mov', 'gif', 'wmv', 'mpg', 'avi', 'ts', 'mp4', 'm4v', 'webm', 'asf', 'mkv'} train: WARNING ⚠️ E:\YOLOv11\code\yolov11\datasets\dataset-1\images\train\655.jpg: ignoring corrupt image/label: invalid image format GIF. Supported formats are: images: {'png', 'heic', 'mpo', 'dng', 'bmp', 'pfm', 'jpeg', 'jpg', 'tif', 'tiff', 'webp'} videos: {'mpeg', 'mov', 'gif', 'wmv', 'mpg', 'avi', 'ts', 'mp4', 'm4v', 'webm', 'asf', 'mkv'} train: WARNING ⚠️ E:\YOLOv11\code\yolov11\datasets\dataset-1\images\train\91.jpg: ignoring corrupt image/label: invalid image format GIF. Supported formats are: images: {'png', 'heic', 'mpo', 'dng', 'bmp', 'pfm', 'jpeg', 'jpg', 'tif', 'tiff', 'webp'} videos: {'mpeg', 'mov', 'gif', 'wmv', 'mpg', 'avi', 'ts', 'mp4', 'm4v', 'webm', 'asf', 'mkv'} train: New cache created: E:\YOLOv11\code\yolov11\datasets\dataset-1\labels\train.cache val: Scanning E:\YOLOv11\code\yolov11\datasets\dataset-1\labels\val... 1295 images, 0 backgrounds, 0 corrupt: 100%|██████████| 1295/1295 [00:01<00:00, 1032.66it/s] val: New cache created: E:\YOLOv11\code\yolov11\datasets\dataset-1\labels\val.cache Plotting labels to runs\detect\train2\labels.jpg... optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... optimizer: SGD(lr=0.01, momentum=0.9) with parameter groups 81 weight(decay=0.0), 88 weight(decay=0.0005), 87 bias(decay=0.0) Traceback (most recent call last): File "E:\YOLOv11\code\yolov11\train.py", line 5, in <module> model.train(data=r"E:\YOLOv11\code\yolov11\datasets\dataset-2\dataset.yaml", File "E:\YOLOv11\code\yolov11\ultralytics\engine\model.py", line 802, in train self.trainer.train() File "E:\YOLOv11\code\yolov11\ultralytics\engine\trainer.py", line 207, in train self._do_train(world_size) File "E:\YOLOv11\code\yolov11\ultralytics\engine\trainer.py", line 327, in _do_train self._setup_train(world_size) File "E:\YOLOv11\code\yolov11\ultralytics\engine\trainer.py", line 319, in _setup_train self.resume_training(ckpt) File "E:\YOLOv11\code\yolov11\ultralytics\engine\trainer.py", line 730, in resume_training assert start_epoch > 0, ( AssertionError: E:\YOLOv11\code\yolov11\runs\detect\train\weights\last.pt training to 150 epochs is finished, nothing to resume. Start a new training without resuming, i.e. 'yolo train model=E:\YOLOv11\code\yolov11\runs\detect\train\weights\last.pt' 进程已结束,退出代码为 1

我在训练数据集是map50-95只有0.4左右,下面是我的训练过程,为我分析原因及改进方法New https://pypi.org/project/ultralytics/8.3.162 available 😃 Update with 'pip install -U ultralytics' Ultralytics 8.3.104 🚀 Python-3.10.16 torch-2.5.1+cu121 CUDA:0 (NVIDIA GeForce RTX 3050, 6144MiB) engine\trainer: task=detect, mode=train, model=C:/fang/ultralytics/ultralytics/ultralytics/yolo11n.pt, data=C:/fang/ultralytics/ultralytics/ultralytics/cfg/datasets/hat_yolo11.yaml, epochs=100, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=0, workers=0, project=None, name=train26, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train26 Overriding model.yaml nc=80 with nc=2 from n params module arguments 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] 2 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25] 3 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 4 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25] 5 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 6 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True] 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] 8 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True] 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] 10 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1] 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 12 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 13 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False] 14 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 15 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 16 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False] 17 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] 18 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1] 19 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False] 20 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] 21 [-1, 10] 1 0 ultralytics.nn.modules.conv.Concat [1] 22 -1 1 378880 ultralytics.nn.modules.block.C3k2 [384, 256, 1, True] 23 [16, 19, 22] 1 431062 ultralytics.nn.modules.head.Detect [2, [64, 128, 256]] YOLO11n summary: 181 layers, 2,590,230 parameters, 2,590,214 gradients, 6.4 GFLOPs Transferred 448/499 items from pretrained weights Freezing layer 'model.23.dfl.conv.weight' AMP: running Automatic Mixed Precision (AMP) checks... AMP: checks passed ✅ train: Scanning C:\shujuji\train\labels... 598 images, 0 backgrounds, 0 corrupt: 100%|██████████| 598/598 [00:00<00:00, 1616.10it/s] train: New cache created: C:\shujuji\train\labels.cache val: Scanning C:\shujuji\val\labels... 91 images, 0 backgrounds, 0 corrupt: 100%|██████████| 91/91 [00:00<00:00, 1495.74it/s] val: New cache created: C:\shujuji\val\labels.cache Plotting labels to runs\detect\train26\labels.jpg... optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... optimizer: AdamW(lr=0.001667, momentum=0.9) with parameter groups 81 weight(decay=0.0), 88 weight(decay=0.0005), 87 bias(decay=0.0) Image sizes 640 train, 640 val Using 0 dataloader workers Logging results to runs\detect\train26 Starting training for 100 epochs... Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 1/100 2.18G 1.986 3.433 1.898 14 640: 100%|██████████| 38/38 [01:19<00:00, 2.09s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.70s/it] all 91 117 0.00412 0.957 0.269 0.0971 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 2/100 2.64G 1.835 2.735 1.659 14 640: 100%|██████████| 38/38 [01:17<00:00, 2.03s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.71s/it] all 91 117 0.741 0.19 0.455 0.167 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 3/100 2.64G 1.814 2.501 1.689 18 640: 100%|██████████| 38/38 [01:16<00:00, 2.00s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.64s/it] all 91 117 0.498 0.498 0.517 0.184 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 4/100 2.64G 1.815 2.296 1.69 17 640: 100%|██████████| 38/38 [01:16<00:00, 2.00s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.76s/it] all 91 117 0.305 0.687 0.531 0.23 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 5/100 2.64G 1.818 2.188 1.713 8 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.64s/it] all 91 117 0.524 0.565 0.527 0.249 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 6/100 2.65G 1.8 2.04 1.677 15 640: 100%|██████████| 38/38 [01:15<00:00, 1.99s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.68s/it] all 91 117 0.609 0.569 0.626 0.228 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 7/100 2.65G 1.81 1.914 1.66 15 640: 100%|██████████| 38/38 [01:14<00:00, 1.97s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.70s/it] all 91 117 0.726 0.589 0.619 0.26 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 8/100 2.65G 1.748 1.749 1.629 9 640: 100%|██████████| 38/38 [01:16<00:00, 2.00s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.68s/it] all 91 117 0.536 0.701 0.596 0.242 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 9/100 2.65G 1.756 1.714 1.626 16 640: 100%|██████████| 38/38 [01:14<00:00, 1.95s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.62s/it] all 91 117 0.696 0.553 0.644 0.288 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 10/100 2.65G 1.731 1.706 1.65 15 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.62s/it] all 91 117 0.7 0.567 0.636 0.268 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 11/100 2.65G 1.76 1.648 1.66 12 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.64s/it] all 91 117 0.655 0.689 0.697 0.31 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 12/100 2.65G 1.71 1.598 1.623 13 640: 100%|██████████| 38/38 [01:15<00:00, 1.99s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.82s/it] all 91 117 0.555 0.628 0.685 0.31 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 13/100 2.65G 1.667 1.596 1.605 14 640: 100%|██████████| 38/38 [01:13<00:00, 1.94s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.64s/it] all 91 117 0.612 0.651 0.648 0.266 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 14/100 2.65G 1.67 1.513 1.586 15 640: 100%|██████████| 38/38 [01:16<00:00, 2.01s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.69s/it] all 91 117 0.693 0.634 0.702 0.307 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 15/100 2.65G 1.642 1.401 1.552 19 640: 100%|██████████| 38/38 [01:15<00:00, 2.00s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.65s/it] all 91 117 0.688 0.722 0.76 0.38 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 16/100 2.65G 1.632 1.404 1.526 17 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.65s/it] all 91 117 0.818 0.648 0.747 0.356 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 17/100 2.65G 1.646 1.427 1.563 11 640: 100%|██████████| 38/38 [01:15<00:00, 2.00s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.61s/it] all 91 117 0.818 0.688 0.78 0.343 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 18/100 2.65G 1.65 1.413 1.54 13 640: 100%|██████████| 38/38 [01:16<00:00, 2.00s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.62s/it] all 91 117 0.634 0.693 0.706 0.289 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 19/100 2.65G 1.62 1.401 1.517 17 640: 100%|██████████| 38/38 [01:14<00:00, 1.97s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.64s/it] all 91 117 0.686 0.796 0.771 0.338 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 20/100 2.65G 1.61 1.354 1.538 14 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.64s/it] all 91 117 0.816 0.743 0.795 0.363 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 21/100 2.65G 1.596 1.353 1.534 17 640: 100%|██████████| 38/38 [01:14<00:00, 1.95s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.64s/it] all 91 117 0.726 0.745 0.801 0.393 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 22/100 2.65G 1.606 1.269 1.505 18 640: 100%|██████████| 38/38 [01:14<00:00, 1.96s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.66s/it] all 91 117 0.705 0.71 0.706 0.339 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 23/100 2.65G 1.637 1.311 1.543 15 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.66s/it] all 91 117 0.813 0.672 0.752 0.35 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 24/100 2.65G 1.545 1.267 1.491 16 640: 100%|██████████| 38/38 [01:15<00:00, 1.99s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.62s/it] all 91 117 0.719 0.728 0.795 0.356 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 25/100 2.65G 1.536 1.184 1.449 14 640: 100%|██████████| 38/38 [01:15<00:00, 1.99s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.66s/it] all 91 117 0.692 0.669 0.762 0.348 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 26/100 2.65G 1.587 1.257 1.502 12 640: 100%|██████████| 38/38 [01:14<00:00, 1.97s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.63s/it] all 91 117 0.748 0.744 0.757 0.359 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 27/100 2.65G 1.549 1.266 1.49 8 640: 100%|██████████| 38/38 [01:15<00:00, 1.97s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.66s/it] all 91 117 0.769 0.796 0.836 0.394 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 28/100 2.65G 1.507 1.172 1.444 14 640: 100%|██████████| 38/38 [01:14<00:00, 1.97s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.70s/it] all 91 117 0.766 0.742 0.761 0.346 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 29/100 2.65G 1.536 1.173 1.452 20 640: 100%|██████████| 38/38 [01:13<00:00, 1.94s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.63s/it] all 91 117 0.752 0.775 0.794 0.372 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 30/100 2.65G 1.518 1.177 1.434 13 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.74s/it] all 91 117 0.767 0.775 0.803 0.371 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 31/100 2.65G 1.526 1.179 1.451 15 640: 100%|██████████| 38/38 [01:14<00:00, 1.97s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.64s/it] all 91 117 0.758 0.75 0.794 0.378 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 32/100 2.65G 1.542 1.143 1.476 12 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.69s/it] all 91 117 0.79 0.673 0.774 0.337 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 33/100 2.65G 1.486 1.152 1.414 7 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.69s/it] all 91 117 0.806 0.783 0.827 0.411 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 34/100 2.65G 1.475 1.104 1.435 14 640: 100%|██████████| 38/38 [01:14<00:00, 1.97s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.58s/it] all 91 117 0.787 0.727 0.81 0.374 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 35/100 2.65G 1.482 1.08 1.423 15 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.64s/it] all 91 117 0.792 0.735 0.766 0.362 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 36/100 2.65G 1.466 1.102 1.425 13 640: 100%|██████████| 38/38 [01:16<00:00, 2.00s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.80s/it] all 91 117 0.774 0.719 0.828 0.386 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 37/100 2.65G 1.455 1.087 1.405 15 640: 100%|██████████| 38/38 [01:15<00:00, 2.00s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.65s/it] all 91 117 0.754 0.801 0.808 0.376 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 38/100 2.65G 1.465 1.066 1.414 14 640: 100%|██████████| 38/38 [01:14<00:00, 1.95s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.71s/it] all 91 117 0.794 0.761 0.817 0.405 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 39/100 2.65G 1.486 1.068 1.424 13 640: 100%|██████████| 38/38 [01:15<00:00, 2.00s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.64s/it] all 91 117 0.826 0.753 0.831 0.371 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 40/100 2.65G 1.43 1.03 1.392 20 640: 100%|██████████| 38/38 [01:14<00:00, 1.95s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.65s/it] all 91 117 0.733 0.776 0.836 0.39 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 41/100 2.65G 1.456 0.9995 1.398 12 640: 100%|██████████| 38/38 [01:13<00:00, 1.94s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.63s/it] all 91 117 0.765 0.77 0.821 0.381 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 42/100 2.65G 1.442 1.041 1.406 12 640: 100%|██████████| 38/38 [01:15<00:00, 1.99s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.65s/it] all 91 117 0.8 0.77 0.795 0.368 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 43/100 2.65G 1.44 1.02 1.402 12 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.68s/it] all 91 117 0.77 0.685 0.779 0.363 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 44/100 2.65G 1.363 0.9528 1.353 15 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.61s/it] all 91 117 0.733 0.694 0.75 0.376 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 45/100 2.65G 1.394 0.9573 1.368 7 640: 100%|██████████| 38/38 [01:16<00:00, 2.02s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.63s/it] all 91 117 0.75 0.748 0.804 0.372 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 46/100 2.65G 1.396 0.994 1.38 12 640: 100%|██████████| 38/38 [01:15<00:00, 1.99s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.65s/it] all 91 117 0.788 0.77 0.819 0.384 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 47/100 2.65G 1.333 0.951 1.352 13 640: 100%|██████████| 38/38 [01:15<00:00, 1.99s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.72s/it] all 91 117 0.751 0.754 0.808 0.399 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 48/100 2.65G 1.379 0.9755 1.375 18 640: 100%|██████████| 38/38 [01:14<00:00, 1.95s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.64s/it] all 91 117 0.749 0.702 0.792 0.388 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 49/100 2.65G 1.32 0.9175 1.325 17 640: 100%|██████████| 38/38 [01:14<00:00, 1.96s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.67s/it] all 91 117 0.706 0.812 0.819 0.405 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 50/100 2.65G 1.361 0.9391 1.355 12 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.67s/it] all 91 117 0.742 0.729 0.8 0.38 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 51/100 2.65G 1.317 0.9002 1.317 15 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.59s/it] all 91 117 0.843 0.643 0.791 0.362 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 52/100 2.65G 1.306 0.9226 1.316 12 640: 100%|██████████| 38/38 [01:15<00:00, 1.99s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.84s/it] all 91 117 0.836 0.695 0.819 0.401 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 53/100 2.65G 1.277 0.8677 1.313 12 640: 100%|██████████| 38/38 [01:15<00:00, 1.99s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.68s/it] all 91 117 0.723 0.764 0.82 0.401 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 54/100 2.65G 1.271 0.8629 1.308 14 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.63s/it] all 91 117 0.749 0.813 0.811 0.381 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 55/100 2.65G 1.301 0.8974 1.321 16 640: 100%|██████████| 38/38 [01:14<00:00, 1.96s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.62s/it] all 91 117 0.874 0.719 0.852 0.42 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 56/100 2.65G 1.258 0.8796 1.293 9 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.65s/it] all 91 117 0.824 0.767 0.836 0.412 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 57/100 2.65G 1.267 0.8426 1.3 12 640: 100%|██████████| 38/38 [01:15<00:00, 1.99s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.63s/it] all 91 117 0.77 0.761 0.83 0.411 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 58/100 2.65G 1.263 0.8428 1.3 15 640: 100%|██████████| 38/38 [01:14<00:00, 1.96s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.63s/it] all 91 117 0.789 0.787 0.844 0.411 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 59/100 2.65G 1.26 0.8352 1.283 8 640: 100%|██████████| 38/38 [01:16<00:00, 2.01s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.85s/it] all 91 117 0.691 0.79 0.803 0.384 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 60/100 2.65G 1.269 0.8396 1.287 18 640: 100%|██████████| 38/38 [01:15<00:00, 1.99s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.62s/it] all 91 117 0.774 0.753 0.816 0.398 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 61/100 2.65G 1.246 0.8354 1.291 19 640: 100%|██████████| 38/38 [01:14<00:00, 1.97s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.65s/it] all 91 117 0.777 0.812 0.859 0.44 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 62/100 2.65G 1.232 0.8395 1.282 15 640: 100%|██████████| 38/38 [01:14<00:00, 1.96s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.68s/it] all 91 117 0.833 0.77 0.806 0.404 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 63/100 2.65G 1.197 0.8222 1.238 14 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.63s/it] all 91 117 0.763 0.825 0.838 0.413 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 64/100 2.65G 1.201 0.7954 1.25 12 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.66s/it] all 91 117 0.822 0.753 0.823 0.387 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 65/100 2.65G 1.18 0.7758 1.247 15 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.68s/it] all 91 117 0.743 0.802 0.805 0.39 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 66/100 2.65G 1.184 0.8063 1.261 12 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.74s/it] all 91 117 0.763 0.808 0.84 0.408 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 67/100 2.65G 1.167 0.7602 1.227 13 640: 100%|██████████| 38/38 [01:14<00:00, 1.97s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.66s/it] all 91 117 0.722 0.788 0.817 0.389 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 68/100 2.65G 1.165 0.7822 1.231 12 640: 100%|██████████| 38/38 [01:13<00:00, 1.94s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.67s/it] all 91 117 0.761 0.813 0.804 0.394 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 69/100 2.65G 1.174 0.7886 1.225 12 640: 100%|██████████| 38/38 [01:14<00:00, 1.96s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.64s/it] all 91 117 0.819 0.744 0.801 0.395 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 70/100 2.65G 1.133 0.7599 1.226 7 640: 100%|██████████| 38/38 [01:15<00:00, 1.99s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.77s/it] all 91 117 0.803 0.771 0.81 0.39 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 71/100 2.65G 1.18 0.7645 1.229 13 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.64s/it] all 91 117 0.758 0.753 0.804 0.384 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 72/100 2.65G 1.134 0.7348 1.211 10 640: 100%|██████████| 38/38 [01:14<00:00, 1.97s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.78s/it] all 91 117 0.771 0.804 0.797 0.387 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 73/100 2.65G 1.112 0.7809 1.206 11 640: 100%|██████████| 38/38 [01:15<00:00, 2.00s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.67s/it] all 91 117 0.755 0.779 0.819 0.41 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 74/100 2.65G 1.107 0.7326 1.207 12 640: 100%|██████████| 38/38 [01:14<00:00, 1.96s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.64s/it] all 91 117 0.771 0.762 0.806 0.397 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 75/100 2.65G 1.099 0.7421 1.19 14 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.63s/it] all 91 117 0.715 0.755 0.789 0.385 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 76/100 2.65G 1.124 0.7524 1.22 8 640: 100%|██████████| 38/38 [01:15<00:00, 1.97s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.67s/it] all 91 117 0.788 0.779 0.838 0.39 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 77/100 2.65G 1.104 0.7243 1.183 13 640: 100%|██████████| 38/38 [01:15<00:00, 1.99s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.65s/it] all 91 117 0.767 0.702 0.798 0.377 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 78/100 2.65G 1.097 0.7281 1.192 18 640: 100%|██████████| 38/38 [01:16<00:00, 2.01s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.67s/it] all 91 117 0.719 0.728 0.767 0.361 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 79/100 2.65G 1.09 0.7245 1.187 17 640: 100%|██████████| 38/38 [01:15<00:00, 1.98s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.65s/it] all 91 117 0.7 0.788 0.795 0.397 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 80/100 2.65G 1.028 0.6991 1.158 7 640: 100%|██████████| 38/38 [01:14<00:00, 1.97s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.63s/it] all 91 117 0.802 0.719 0.799 0.4 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 81/100 2.65G 1.034 0.6942 1.154 10 640: 100%|██████████| 38/38 [01:15<00:00, 1.99s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.61s/it] all 91 117 0.767 0.744 0.79 0.388 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 82/100 2.65G 1.036 0.6758 1.148 12 640: 100%|██████████| 38/38 [01:13<00:00, 1.92s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.60s/it] all 91 117 0.762 0.77 0.798 0.389 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 83/100 2.65G 1.038 0.7002 1.145 17 640: 100%|██████████| 38/38 [01:12<00:00, 1.90s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.65s/it] all 91 117 0.705 0.782 0.793 0.386 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 84/100 2.65G 1.025 0.6978 1.132 17 640: 100%|██████████| 38/38 [01:12<00:00, 1.90s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.60s/it] all 91 117 0.747 0.71 0.759 0.373 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 85/100 2.65G 1.031 0.6615 1.139 11 640: 100%|██████████| 38/38 [01:11<00:00, 1.89s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.65s/it] all 91 117 0.785 0.693 0.774 0.382 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 86/100 2.65G 0.9924 0.672 1.126 11 640: 100%|██████████| 38/38 [01:11<00:00, 1.88s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.60s/it] all 91 117 0.705 0.796 0.796 0.392 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 87/100 2.65G 0.9982 0.6549 1.125 13 640: 100%|██████████| 38/38 [01:11<00:00, 1.89s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.62s/it] all 91 117 0.834 0.717 0.793 0.385 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 88/100 2.65G 1.028 0.6633 1.147 12 640: 100%|██████████| 38/38 [01:11<00:00, 1.88s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.95s/it] all 91 117 0.749 0.813 0.824 0.397 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 89/100 2.65G 0.97 0.6275 1.11 10 640: 100%|██████████| 38/38 [01:11<00:00, 1.88s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.63s/it] all 91 117 0.802 0.778 0.813 0.392 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 90/100 2.65G 0.9733 0.6426 1.107 9 640: 100%|██████████| 38/38 [01:12<00:00, 1.91s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.64s/it] all 91 117 0.825 0.757 0.814 0.398 Closing dataloader mosaic Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 91/100 2.65G 0.9683 0.5735 1.111 8 640: 100%|██████████| 38/38 [01:11<00:00, 1.87s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.71s/it] all 91 117 0.735 0.753 0.769 0.376 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 92/100 2.65G 0.9147 0.5439 1.094 6 640: 100%|██████████| 38/38 [01:12<00:00, 1.91s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.63s/it] all 91 117 0.778 0.759 0.785 0.37 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 93/100 2.65G 0.8719 0.5142 1.06 7 640: 100%|██████████| 38/38 [01:11<00:00, 1.88s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.84s/it] all 91 117 0.792 0.704 0.761 0.358 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 94/100 2.65G 0.8813 0.5243 1.073 6 640: 100%|██████████| 38/38 [01:09<00:00, 1.84s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.63s/it] all 91 117 0.827 0.7 0.778 0.358 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 95/100 2.65G 0.8565 0.5106 1.055 7 640: 100%|██████████| 38/38 [01:10<00:00, 1.87s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.66s/it] all 91 117 0.839 0.736 0.77 0.353 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 96/100 2.65G 0.8602 0.4968 1.058 6 640: 100%|██████████| 38/38 [01:09<00:00, 1.83s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.63s/it] all 91 117 0.833 0.736 0.793 0.367 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 97/100 2.65G 0.8496 0.5 1.049 8 640: 100%|██████████| 38/38 [01:10<00:00, 1.87s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:11<00:00, 3.70s/it] all 91 117 0.776 0.746 0.787 0.365 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 98/100 2.65G 0.8445 0.5118 1.062 6 640: 100%|██████████| 38/38 [01:10<00:00, 1.86s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.64s/it] all 91 117 0.779 0.741 0.785 0.371 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 99/100 2.65G 0.8184 0.4891 1.039 6 640: 100%|██████████| 38/38 [01:11<00:00, 1.87s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.62s/it] all 91 117 0.82 0.705 0.779 0.371 Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size 100/100 2.65G 0.8382 0.497 1.044 6 640: 100%|██████████| 38/38 [01:10<00:00, 1.86s/it] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.64s/it] all 91 117 0.837 0.699 0.774 0.371 100 epochs completed in 2.390 hours. Optimizer stripped from runs\detect\train26\weights\last.pt, 5.5MB Optimizer stripped from runs\detect\train26\weights\best.pt, 5.5MB Validating runs\detect\train26\weights\best.pt... Ultralytics 8.3.104 🚀 Python-3.10.16 torch-2.5.1+cu121 CUDA:0 (NVIDIA GeForce RTX 3050, 6144MiB) YOLO11n summary (fused): 100 layers, 2,582,542 parameters, 0 gradients, 6.3 GFLOPs Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 3/3 [00:10<00:00, 3.37s/it] all 91 117 0.778 0.812 0.859 0.438 without-safetybelt 47 59 0.797 0.763 0.829 0.41 safetybelt 53 58 0.758 0.862 0.889 0.467 Speed: 0.7ms preprocess, 9.1ms inference, 0.0ms loss, 1.1ms postprocess per image Results saved to runs\detect\train26

最新推荐

recommend-type

MATLAB常用函数说明(1).doc

MATLAB常用函数说明(1).doc
recommend-type

电子商务下的物流仓储管理教材(1).pptx

电子商务下的物流仓储管理教材(1).pptx
recommend-type

鉴于云计算下计算机基础课程教学的研究思索(1).docx

鉴于云计算下计算机基础课程教学的研究思索(1).docx
recommend-type

吉林省人事人才编制管理系统软件培训资料样本(1).doc

吉林省人事人才编制管理系统软件培训资料样本(1).doc
recommend-type

精选Java案例开发技巧集锦

从提供的文件信息中,我们可以看出,这是一份关于Java案例开发的集合。虽然没有具体的文件名称列表内容,但根据标题和描述,我们可以推断出这是一份包含了多个Java编程案例的开发集锦。下面我将详细说明与Java案例开发相关的一些知识点。 首先,Java案例开发涉及的知识点相当广泛,它不仅包括了Java语言的基础知识,还包括了面向对象编程思想、数据结构、算法、软件工程原理、设计模式以及特定的开发工具和环境等。 ### Java基础知识 - **Java语言特性**:Java是一种面向对象、解释执行、健壮性、安全性、平台无关性的高级编程语言。 - **数据类型**:Java中的数据类型包括基本数据类型(int、short、long、byte、float、double、boolean、char)和引用数据类型(类、接口、数组)。 - **控制结构**:包括if、else、switch、for、while、do-while等条件和循环控制结构。 - **数组和字符串**:Java数组的定义、初始化和多维数组的使用;字符串的创建、处理和String类的常用方法。 - **异常处理**:try、catch、finally以及throw和throws的使用,用以处理程序中的异常情况。 - **类和对象**:类的定义、对象的创建和使用,以及对象之间的交互。 - **继承和多态**:通过extends关键字实现类的继承,以及通过抽象类和接口实现多态。 ### 面向对象编程 - **封装、继承、多态**:是面向对象编程(OOP)的三大特征,也是Java编程中实现代码复用和模块化的主要手段。 - **抽象类和接口**:抽象类和接口的定义和使用,以及它们在实现多态中的不同应用场景。 ### Java高级特性 - **集合框架**:List、Set、Map等集合类的使用,以及迭代器和比较器的使用。 - **泛型编程**:泛型类、接口和方法的定义和使用,以及类型擦除和通配符的应用。 - **多线程和并发**:创建和管理线程的方法,synchronized和volatile关键字的使用,以及并发包中的类如Executor和ConcurrentMap的应用。 - **I/O流**:文件I/O、字节流、字符流、缓冲流、对象序列化的使用和原理。 - **网络编程**:基于Socket编程,使用java.net包下的类进行网络通信。 - **Java内存模型**:理解堆、栈、方法区等内存区域的作用以及垃圾回收机制。 ### Java开发工具和环境 - **集成开发环境(IDE)**:如Eclipse、IntelliJ IDEA等,它们提供了代码编辑、编译、调试等功能。 - **构建工具**:如Maven和Gradle,它们用于项目构建、依赖管理以及自动化构建过程。 - **版本控制工具**:如Git和SVN,用于代码的版本控制和团队协作。 ### 设计模式和软件工程原理 - **设计模式**:如单例、工厂、策略、观察者、装饰者等设计模式,在Java开发中如何应用这些模式来提高代码的可维护性和可扩展性。 - **软件工程原理**:包括软件开发流程、项目管理、代码审查、单元测试等。 ### 实际案例开发 - **项目结构和构建**:了解如何组织Java项目文件,合理使用包和模块化结构。 - **需求分析和设计**:明确项目需求,进行系统设计,如数据库设计、系统架构设计等。 - **代码编写和实现**:根据设计编写符合要求的代码,实现系统的各个模块功能。 - **测试和维护**:进行单元测试、集成测试,确保代码质量,对项目进行维护和升级。 ### 其他相关知识点 - **Java虚拟机(JVM)**:了解JVM的基本工作原理,包括类加载机制、内存管理、垃圾回收算法等。 - **常用Java框架**:比如Spring、Hibernate、MyBatis等,在实际开发中常常与Java基础结合使用,提高开发效率。 以上知识点可以作为学习Java案例开发的基础框架。在实际的开发实践中,开发者需要结合具体的项目需求,对这些知识点进行灵活运用。通过反复的案例实践,可以加深对Java编程的理解,并逐步提升开发技能。这份集锦可能包含的案例可能涉及上述知识点的具体应用,能够帮助学习者更好地理解理论与实践的结合,从而快速提升个人的Java开发能力。
recommend-type

【VASP报错深度解析】:5大技巧识别并永久解决离子距离太近警告

# 1. VASP软件简介及离子距离太近问题概述 ## 1.1 VASP软件简介 **VASP(Vienna Ab initio Simulation Package)** 是一款广泛应用于计算材料科学的软件,它基于密度泛函理论(DFT)计算固体、表面和分子的电子结构和性质。
recommend-type

npm error A complete log of this run can be found in: D:\Program Files\nodejs\node_cache\_logs\2025-04-20T15_11_51_454Z-debug-0.log

<think>好的,我需要帮助用户找到npm的错误调试日志位置,并解决他们遇到的npm错误。首先,用户已经提供了一个具体的日志路径:'D:\Program Files\nodejs\node_cache\_logs\2025-04-20T15_11_51_454Z-debug-0.log',但看起来这个路径可能有问题,因为日期是2025年,这可能是一个示例或输入错误。我需要确认正确的日志路径生成方式。 根据npm的默认配置,日志文件通常位于npm的缓存目录下的_logs文件夹中。默认情况下,Windows系统中npm的缓存路径是%AppData%\npm-cache,而日志文件会以当前日期和
recommend-type

深入理解内存技术文档详解

由于文件内容无法查看,仅能根据文件的标题、描述、标签以及文件名称列表来构建相关知识点。以下是对“内存详解”这一主题的详细知识点梳理。 内存,作为计算机硬件的重要组成部分,负责临时存放CPU处理的数据和指令。理解内存的工作原理、类型、性能参数等对优化计算机系统性能至关重要。本知识点将从以下几个方面来详细介绍内存: 1. 内存基础概念 内存(Random Access Memory,RAM)是易失性存储器,这意味着一旦断电,存储在其中的数据将会丢失。内存允许计算机临时存储正在执行的程序和数据,以便CPU可以快速访问这些信息。 2. 内存类型 - 动态随机存取存储器(DRAM):目前最常见的RAM类型,用于大多数个人电脑和服务器。 - 静态随机存取存储器(SRAM):速度较快,通常用作CPU缓存。 - 同步动态随机存取存储器(SDRAM):在时钟信号的同步下工作的DRAM。 - 双倍数据速率同步动态随机存取存储器(DDR SDRAM):在时钟周期的上升沿和下降沿传输数据,大幅提升了内存的传输速率。 3. 内存组成结构 - 存储单元:由存储位构成的最小数据存储单位。 - 地址总线:用于选择内存中的存储单元。 - 数据总线:用于传输数据。 - 控制总线:用于传输控制信号。 4. 内存性能参数 - 存储容量:通常用MB(兆字节)或GB(吉字节)表示,指的是内存能够存储多少数据。 - 内存时序:指的是内存从接受到请求到开始读取数据之间的时间间隔。 - 内存频率:通常以MHz或GHz为单位,是内存传输数据的速度。 - 内存带宽:数据传输速率,通常以字节/秒为单位,直接关联到内存频率和数据位宽。 5. 内存工作原理 内存基于电容器和晶体管的工作原理,电容器存储电荷来表示1或0的状态,晶体管则用于读取或写入数据。为了保持数据不丢失,动态内存需要定期刷新。 6. 内存插槽与安装 - 计算机主板上有专用的内存插槽,常见的有DDR2、DDR3、DDR4和DDR5等不同类型。 - 安装内存时需确保兼容性,并按照正确的方向插入内存条,避免物理损坏。 7. 内存测试与优化 - 测试:可以使用如MemTest86等工具测试内存的稳定性和故障。 - 优化:通过超频来提高内存频率,但必须确保稳定性,否则会导致数据损坏或系统崩溃。 8. 内存兼容性问题 不同内存条可能由于制造商、工作频率、时序、电压等参数的不匹配而产生兼容性问题。在升级或更换内存时,必须检查其与主板和现有系统的兼容性。 9. 内存条的常见品牌与型号 诸如金士顿(Kingston)、海盗船(Corsair)、三星(Samsung)和芝奇(G.Skill)等知名品牌提供多种型号的内存条,针对不同需求的用户。 由于“内存详解.doc”是文件标题指定的文件内容,我们可以预期在该文档中将详细涵盖以上知识点,并有可能包含更多的实践案例、故障排查方法以及内存技术的最新发展等高级内容。在实际工作中,理解并应用这些内存相关的知识点对于提高计算机性能、解决计算机故障有着不可估量的价值。
recommend-type

【机械特性分析进阶秘籍】:频域与时域对比的全面研究

# 1. 机械特性分析的频域与时域概述 ## 1.1 频域与时域分析的基本概念 机械特性分析是通
recommend-type

dslicsrv安装报错Too many errors

<think>好的,用户遇到了安装dslicsrv时出现“Too many errors”的问题,需要帮助解决。首先,我需要明确dslicsrv是什么。可能是指某个特定的软件服务,但根据常见软件库和搜索引擎的信息,没有直接对应的结果。可能是拼写错误,或者是某个特定领域的专有软件?比如,可能与Dell的某个服务有关?例如,Dell System License Manager Service(dsLicSvc)可能更接近。假设用户可能拼写错误,将dslicsrv理解为dsLicSvc,即Dell的系统许可证管理服务。 接下来,用户遇到的错误是安装时出现“Too many errors”,这通常