critic权重法python代码
时间: 2025-01-17 08:08:04 浏览: 84
critic权重法是一种常用的强化学习方法,用于在训练过程中评估和更新策略网络。以下是一个简单的Python实现示例,使用TensorFlow库:
```python
import tensorflow as tf
import numpy as np
class Critic:
def __init__(self, state_dim, action_dim):
self.state_dim = state_dim
self.action_dim = action_dim
self.model = self.build_model()
def build_model(self):
state_input = tf.keras.layers.Input(shape=(self.state_dim,))
action_input = tf.keras.layers.Input(shape=(self.action_dim,))
concat = tf.keras.layers.Concatenate()([state_input, action_input])
dense1 = tf.keras.layers.Dense(64, activation='relu')(concat)
dense2 = tf.keras.layers.Dense(64, activation='relu')(dense1)
output = tf.keras.layers.Dense(1, activation='linear')(dense2)
model = tf.keras.models.Model(inputs=[state_input, action_input], outputs=output)
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mse')
return model
def train(self, states, actions, targets, epochs=1):
self.model.fit([states, actions], targets, epochs=epochs, verbose=0)
def predict(self, state, action):
return self.model.predict([np.array([state]), np.array([action])])[0]
class Actor:
def __init__(self, state_dim, action_dim):
self.state_dim = state_dim
self.action_dim = action_dim
self.model = self.build_model()
def build_model(self):
state_input = tf.keras.layers.Input(shape=(self.state_dim,))
dense1 = tf.keras.layers.Dense(64, activation='relu')(state_input)
dense2 = tf.keras.layers.Dense(64, activation='relu')(dense1)
output = tf.keras.layers.Dense(self.action_dim, activation='tanh')(dense2)
model = tf.keras.models.Model(inputs=state_input, outputs=output)
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001))
return model
def act(self, state):
return self.model.predict(np.array([state]))[0]
def update_critic(actor, critic, state, action, reward, next_state, done, gamma=0.99):
target = reward + (1 - done) * gamma * critic.predict(next_state, actor.act(next_state))
critic.train(state, action, target)
def main():
state_dim = 4
action_dim = 2
actor = Actor(state_dim, action_dim)
critic = Critic(state_dim, action_dim)
state = np.random.rand(state_dim)
action = actor.act(state)
reward = np.random.rand()
next_state = np.random.rand(state_dim)
done = False
update_critic(actor, critic, state, action, reward, next_state, done)
if __name__ == "__main__":
main()
```
这个示例展示了如何使用TensorFlow库实现一个简单的critic权重法。代码中包含了一个Critic类和Actor类,分别用于评估策略和生成动作。update_critic函数用于更新critic网络的权重。
阅读全文
相关推荐


















