C:\编程软件\python\python.exe C:\Users\31864\Desktop\math\a.py 2025-05-22 20:02:10.584193: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. 2025-05-22 20:02:11.251475: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. Training model... Traceback (most recent call last): File "C:\Users\31864\Desktop\math\a.py", line 185, in <module> lstm_model.train_model() File "C:\Users\31864\Desktop\math\a.py", line 93, in train_model grid_result = grid_search.fit( ^^^^^^^^^^^^^^^^ File "C:\编程软件\python\Lib\site-packages\sklearn\base.py", line 1389, in wrapper return fit_method(estimator, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\编程软件\python\Lib\site-packages\sklearn\model_selection\_search.py", line 933, in fit cv_orig = check_cv(self.cv, y, classifier=is_classifier(estimator)) ^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\编程软件\python\Lib\site-packages\sklearn\base.py", line 1237, in is_classifier return get_tags(estimator).estimator_type == "classifier" ^^^^^^^^^^^^^^^^^^^ File "C:\编程软件\python\Lib\site-packages\sklearn\utils\_tags.py", line 430, in get_tags sklearn_tags_provider[klass] = klass.__sklearn_tags__(estimator) # type: ignore[attr-defined] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\编程软件\python\Lib\site-packages\sklearn\base.py", line 613, in __sklearn_tags__ tags = super().__sklearn_tags__() ^^^^^^^^^^^^^^^^^^^^^^^^ AttributeError: 'super' object has no attribute '__sklearn_tags__'
时间: 2025-05-30 12:12:51 浏览: 21
从你的错误信息来看,问题出在 `grid_search.fit()` 方法调用时,`sklearn` 的某些内部方法无法正确识别模型的标签(tags)。这通常是因为自定义模型没有正确继承 `BaseEstimator` 和/或 `ClassifierMixin` 或 `RegressorMixin`,导致 `sklearn` 无法正确处理模型。
以下是一个解决方案,确保你的模型正确继承了 `BaseEstimator` 和适当的 Mixin,并且实现了必要的方法。
### 解决方案
假设你正在使用一个自定义的 LSTM 模型进行训练,以下是修正后的代码示例:
```python
from sklearn.base import BaseEstimator, ClassifierMixin
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
from sklearn.model_selection import GridSearchCV
import numpy as np
class LstmModel(BaseEstimator, ClassifierMixin):
def __init__(self, units=50, dropout=0.2, optimizer='adam'):
self.units = units
self.dropout = dropout
self.optimizer = optimizer
self.model = None
def build_model(self, input_shape):
model = Sequential()
model.add(LSTM(units=self.units, return_sequences=True, input_shape=input_shape))
model.add(LSTM(units=self.units))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer=self.optimizer, loss='binary_crossentropy', metrics=['accuracy'])
return model
def fit(self, X, y, **kwargs):
if self.model is None:
self.model = self.build_model(input_shape=(X.shape[1], X.shape[2]))
self.model.fit(X, y, **kwargs)
return self
def predict(self, X):
return (self.model.predict(X) > 0.5).astype("int32")
def score(self, X, y):
_, accuracy = self.model.evaluate(X, y, verbose=0)
return accuracy
# 示例数据
X = np.random.rand(100, 10, 1) # 假设有100个样本,每个样本有10个时间步长和1个特征
y = np.random.randint(0, 2, size=(100,))
# 网格搜索参数
param_grid = {
'units': [50, 100],
'dropout': [0.2, 0.5],
'optimizer': ['adam', 'rmsprop']
}
lstm_model = LstmModel()
grid_search = GridSearchCV(estimator=lstm_model, param_grid=param_grid, cv=3, scoring='accuracy')
grid_result = grid_search.fit(X, y)
print("Best parameters:", grid_search.best_params_)
print("Best score:", grid_search.best_score_)
```
### 代码解释
1. **继承 `BaseEstimator` 和 `ClassifierMixin`**:
- `BaseEstimator` 提供了 `get_params` 和 `set_params` 方法,这是 `GridSearchCV` 所需的基本功能。
- `ClassifierMixin` 提供了默认的 `score` 方法,用于评估分类器的性能。
2. **实现必要的方法**:
- `fit`: 训练模型。
- `predict`: 预测输出。
- `score`: 计算模型的准确率。
3. **构建模型**:
- 在 `build_model` 方法中定义了 LSTM 模型结构,并编译模型。
4. **网格搜索**:
- 使用 `GridSearchCV` 进行超参数优化。
### 错误原因分析
- 如果你的自定义模型没有继承 `BaseEstimator`,`sklearn` 的方法会尝试调用 `__sklearn_tags__`,但找不到该方法,从而抛出 `AttributeError`。
- 此外,如果没有实现 `fit`、`predict` 和 `score` 方法,`GridSearchCV` 也无法正常工作。
---
###
阅读全文
相关推荐















