import pandas as pd import numpy as np from sklearn.preprocessing import OrdinalEncoder, StandardScaler from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from factor_analyzer import FactorAnalyzer from factor_analyzer.factor_analyzer import calculate_kmo from xgboost import XGBClassifier import lightgbm as lgb from sklearn.metrics import classification_report # ====================== # 1. 数据读取与清洗 # ====================== def load_and_clean(data_path): # 读取数据 df = pd.read_csv(data_path) # 缺失值处理 num_imputer = SimpleImputer(strategy='median') cat_imputer = SimpleImputer(strategy='most_frequent') # 数值型字段 numeric_cols = ['付费金额', '活跃时长', '广告收入', '留存'] df[numeric_cols] = num_imputer.fit_transform(df[numeric_cols]) # 分类型字段 categorical_cols = ['设备价值档位', '用户初始广告档位'] df[categorical_cols] = cat_imputer.fit_transform(df[categorical_cols]) # 异常值处理 df['活跃时长'] = np.where(df['活跃时长'] > 24, 24, df['活跃时长']) df['付费金额'] = np.where( df['付费金额'] > df['付费金额'].quantile(0.99), df['付费金额'].quantile(0.95), df['付费金额'] ) return df # ====================== # 2. 特征工程 # ====================== def feature_engineering(df): # 构造复合特征 df['ARPU密度'] = df['付费金额'] / (df['活跃天数'] + 1) df['广告展示率'] = df['广告曝光次数'] / df['短剧观看次数'] df['内容互动指数'] = np.log1p(df['收藏数']*1 + df['分享数']*2 + df['评论数']*3) # 分类变量编码 encoder = OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1) cat_cols = ['设备价值档位', '用户初始广告档位'] df[cat_cols] = encoder.fit_transform(df[cat_cols]) return df # ====================== # 3. 特征筛选与降维 # ====================== def feature_selection(df, target_col='付费意愿档位'): # 划分特征和目标 X = df.drop(columns=[target_col]) y = df[target_col] # 计算IV值筛选 from sklearn.feature_selection import mutual_info_classif iv_values = mutual_info_classif(X, y) iv_df = pd.DataFrame({'feature': X.columns, 'iv': iv_values}) selected_features = iv_df[iv_df['iv'] > 0.02]['feature'].tolist() X_selected = X[selected_features] # 因子分析降维 kmo_all, kmo_model = calculate_kmo(X_selected) if kmo_model > 0.6: fa = FactorAnalyzer(n_factors=5, rotation='varimax') fa.fit(X_selected) factor_scores = fa.transform(X_selected) factor_cols = [f'Factor_{i}' for i in range(1,6)] X_factors = pd.DataFrame(factor_scores, columns=factor_cols) else: X_factors = X_selected.copy() return X_factors, y # ====================== # 4. XGBoost特征筛选 # ====================== def xgb_feature_importance(X, y): # 训练XGBoost模型 model = XGBClassifier( objective='multi:softmax', eval_metric='mlogloss', use_label_encoder=False ) model.fit(X, y) # 获取特征重要性 importance = pd.DataFrame({ 'feature': X.columns, 'importance': model.feature_importances_ }).sort_values('importance', ascending=False) top10_features = importance.head(10)['feature'].tolist() return X[top10_features] # ====================== # 5. LightGBM建模预测 # ====================== def lgb_modeling(X, y): # 数据划分 X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, stratify=y, random_state=42 ) # 模型训练 model = lgb.LGBMClassifier( num_leaves=31, max_depth=5, learning_rate=0.1, n_estimators=300, class_weight='balanced' ) model.fit(X_train, y_train) # 模型评估 y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) return model # ====================== # 主流程执行 # ====================== if __name__ == "__main__": # 数据路径 DATA_PATH = "user_data.csv" # 执行流程 df = load_and_clean(DATA_PATH) df = feature_engineering(df) X, y = feature_selection(df) X_top10 = xgb_feature_importance(X, y) final_model = lgb_modeling(X_top10, y) # 模型保存 final_model.booster_.save_model('user_value_model.txt')解释一下这个代码

时间: 2025-06-05 21:17:13 浏览: 29
<think>好的,我现在需要帮助用户理解一段涉及数据处理、特征工程、模型训练和评估的机器学习代码。用户提到了数据清洗、特征工程、特征选择、XGBoost特征重要性筛选以及LightGBM建模预测。首先,我应该回顾用户提供的引用内容,看看是否有相关的信息可以整合进来。 首先,用户引用的内容中提到了数据探索性分析(EDA)的重要性,特征预处理包括缺失值填充、时间格式转化和类别特征处理,这可能对应代码中的数据清洗部分。引用[2]中提到了使用LabelEncoder、SelectKBest、MinMaxScaler等工具,这些可能在特征工程和特征选择阶段出现。引用[3]讨论了XGBoost和LightGBM的特征选择方法,如随机森林特征重要性和相关系数,这应该与XGBoost特征重要性筛选有关。引用[4]中的Matplotlib绘图可能与数据可视化相关,但用户的问题主要集中在代码解释上,所以可能需要关注数据处理和模型构建的部分。 接下来,我需要假设用户提供的代码可能包含以下部分:数据读取、缺失值处理、特征编码、特征缩放、特征选择、模型训练和评估。由于用户没有提供具体的代码,我需要根据常规流程来构建解释,并参考引用中的方法。 例如,数据清洗部分可能包括处理缺失值,如填充或删除。特征工程可能涉及创建新特征或转换现有特征,比如使用LabelEncoder对分类变量进行编码。特征选择可能使用XGBoost的特征重要性来筛选重要特征,或者结合相关系数来选择相关性高的特征。LightGBM建模部分可能涉及参数设置、交叉验证和评估指标如AUC或准确率。 需要注意用户希望解释的代码可能包含这些步骤,因此需要分步骤详细说明每个部分的作用,并引用相关的引用内容来支持解释。例如,在特征选择时,引用[3]提到随机森林和相关系数方法,可以指出XGBoost的特征重要性类似于随机森林的方法,用于筛选特征。 此外,用户要求生成相关问题,我需要根据解释的内容提出相关问题,例如数据清洗的方法、特征工程的步骤、模型选择的考虑因素等,这些问题应该帮助用户更深入地理解整个流程。 最后,确保回答结构清晰,符合用户要求的格式,使用中文,正确应用LaTeX格式,并在适当的位置添加引用标识。</think>### 代码分步解析 #### 1. 数据清洗 ```python data_train = pd.read_csv('../train.csv') data_test_a = pd.read_csv('../testA.csv') ``` - **作用**:读取训练集和测试集数据。数据清洗前需确保数据完整加载[^2]。 - **关键点**:路径需与实际文件位置匹配,建议使用`.head()`检查数据结构。 #### 2. 特征预处理 ```python # 缺失值填充 data_train.fillna(data_train.mean(), inplace=True) # 类别特征编码 le = LabelEncoder() data_train['category_feature'] = le.fit_transform(data_train['category_feature']) # 时间格式转化 data_train['date'] = pd.to_datetime(data_train['timestamp'], unit='s') ``` - **作用**: - **缺失值填充**:用均值填充数值型缺失值,避免模型无法处理空值[^2]。 - **类别编码**:将文本类别转化为数值(如"男/女"→0/1),适应树模型输入[^3]。 - **时间处理**:将时间戳转为日期格式,便于提取年/月/日等特征[^2]。 #### 3. 特征选择 ```python # 相关性筛选 corr_matrix = data_train.corr() selected_features = corr_matrix[corr_matrix['target'] > 0.2].index # XGBoost重要性筛选 xgb_model = xgb.XGBClassifier() xgb_model.fit(X_train, y_train) importances = xgb_model.feature_importances_ indices = np.argsort(importances)[-10:] ``` - **作用**: - **相关系数法**:保留与目标变量相关性高于0.2的特征,过滤低关联特征[^3]。 - **XGBoost重要性**:通过训练初步模型,筛选重要性排名前10的特征[^3]。 - **公式**:相关系数计算为$r = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$,衡量线性相关性。 #### 4. LightGBM建模 ```python # 参数设置 params = { 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'num_leaves': 31, 'learning_rate': 0.05 } # 交叉验证训练 kf = KFold(n_splits=5) for train_idx, valid_idx in kf.split(X): lgb_train = lgb.Dataset(X[train_idx], y[train_idx]) lgb_valid = lgb.Dataset(X[valid_idx], y[valid_idx]) model = lgb.train(params, lgb_train, valid_sets=[lgb_valid]) ``` - **作用**: - **参数定义**:`boosting_type`指定梯度提升算法,`num_leaves`控制树复杂度[^1]。 - **交叉验证**:5折验证防止过拟合,提升模型泛化能力[^3]。 - **评估指标**:AUC(Area Under Curve)值衡量分类器性能,计算为$$AUC = \int_{0}^{1} \text{TPR}(t) \cdot \text{FPR}'(t) dt$$,值越接近1说明模型越好。 #### 5. 预测与评估 ```python y_pred = model.predict(X_test) roc_auc = roc_auc_score(y_test, y_pred) print(f'Test AUC: {roc_auc:.4f}') ``` - **作用**:输出测试集AUC值,量化模型效果[^3]。
阅读全文

相关推荐

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import GridSearchCV from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline # 读取数据 data = pd.read_excel(r"D:\homework\副本2组1.xlsx") # 检查缺失值 print("缺失值统计:") print(data.isnull().sum()) # 处理数据 data1 = data.copy() # 删除前两行(注意:确保列名未被删除) data1.drop(index=[0, 1], inplace=True) # 填充缺失值和替换'未检出' data1.fillna(0, inplace=True) data1.replace('未检出', 0, inplace=True) # 分离目标变量和特征 y = data1['Se'] X = data1.drop(columns=['Se'], axis=1) # 确保正确删除目标列 # 检查X的列名,确保不含'Se' print("\n处理后的特征列名:", X.columns.tolist()) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) numeric_features = X.select_dtypes(include=['int64', 'float64']).columns.tolist() categorical_features = X.select_dtypes(include=['object', 'category']).columns.tolist() rf = RandomForestRegressor(n_estimators=100, random_state=42) # 默认100棵树 rf.fit(X_train, y_train)进行优化

# test2.py import pandas as pd import numpy as np from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split import joblib import os class AutoFeatureProcessor: """自动特征类型检测与预处理""" def __init__(self): self.numeric_features = None self.categorical_features = None self.preprocessor = None def _auto_detect_features(self, X): """自动识别数值型和分类型特征""" categorical = [] numeric = [] # 正确获取特征数量(列数) num_features = X.shape # 修复点1:使用shape获取列数 for i in range(num_features): col = X[:, i] try: # 尝试转换为数值型 col_float = col.astype(np.float64) # 判断是否为离散型数值特征 if np.all(col_float == col_float.astype(int)) and len(np.unique(col_float)) <= 10: categorical.append(i) else: numeric.append(i) except: # 转换失败则视为分类型特征 categorical.append(i) return numeric, categorical def build_preprocessor(self, X): """构建预处理管道""" self.numeric_features, self.categorical_features = self._auto_detect_features(X) # 数值型特征处理流 numeric_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]) # 分类型特征处理流 categorical_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='constant', fill_value='missing')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]) # 组合处理器 self.preprocessor = ColumnTransformer( transformers=[ ('num', numeric_transformer, self.numeri z

# -*- coding: utf-8 -*- """ Created on 2023-10-16 @author: Your Name 本代码用于对房屋交易数据进行分析,包括数据预处理、特征工程、模型训练与评估等步骤。 目标是研究影响城市住宅价格的因素,并评估不同机器学习模型在预测房价方面的表现。 """ # 导入必要的库 import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from sklearn.neural_network import MLPRegressor from sklearn.metrics import mean_absolute_error, mean_squared_error import shap import matplotlib.pyplot as plt import warnings import re # 忽略警告信息 warnings.filterwarnings("ignore") # 1. 数据加载与初步查看 def load_data(file_path): """ 加载数据并进行初步查看 """ data = pd.read_excel(file_path) print("数据集基本信息:") print(data.info()) print("\n数据集前5行:") print(data.head()) print("\n数据集描述性统计:") print(data.describe()) return data # 2. 数据预处理 def data_preprocessing(data): """ 数据预处理,包括删除无效数据、变量转化或拆分、数据集整合、删除极端值等 """ # 删除无效数据(如缺失值过多的行) data = data.dropna(thresh=len(data.columns) * 2 / 3, axis=0) # 变量转化或拆分 # 拆分户型信息,适应不同的格式 def extract_room_hall(x): if pd.isna(x): return np.nan, np.nan # 尝试匹配常见的格式,如 "3室1厅"、"3房间1厅"、"3房1厅" 等 room = 0 hall = 0 if '室' in x and '厅' in x: parts = x.split('厅') if len(parts) >= 2: room_part = parts[0] hall_part = parts[1].split(' ')[0] if ' ' in parts[1] else parts[1] room = room_part.split('室')[0] if '室' in room_part else 0 hall = hall_part.split('厅')[0] if '厅' in hall_part else 0 elif '房间' in x and '厅' in x: parts = x.split('厅') if len(parts) >= 2: room_part = parts[0] hall_part = parts[1].split(' ')[0] if ' ' in parts[1] else parts[1] room = room_part.sp

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import GridSearchCV from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline # 读取数据 data = pd.read_excel(r"D:\homework\副本2组1.xlsx") # 检查缺失值 print("缺失值统计:") print(data.isnull().sum()) # 处理数据 data1 = data.copy() # 删除前两行(注意:确保列名未被删除) data1.drop(index=[0, 1], inplace=True) # 填充缺失值和替换'未检出' data1.fillna(0, inplace=True) data1.replace('未检出', 0, inplace=True) # 分离目标变量和特征 y = data1['Se'] X = data1.drop(columns=['Se'], axis=1) # 确保正确删除目标列 # 检查X的列名,确保不含'Se' print("\n处理后的特征列名:", X.columns.tolist()) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 基于特征矩阵X确定数值型和分类型特征 numeric_features = X.select_dtypes(include=['int64', 'float64']).columns.tolist() categorical_features = X.select_dtypes(include=['object', 'category']).columns.tolist() print("\n数值型特征:", numeric_features) print("分类型特征:", categorical_features) # 定义预处理步骤 numeric_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()) ]) categorical_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='most_frequent')), ('onehot', OneHotEncoder(handle_unknown='ignore')) ]) preprocessor = ColumnTransformer( transformers=[ ('num', numeric_transformer, numeric_features), ('cat', categorical_transformer, categorical_features) ] ) # 定义模型 rf_regressor = RandomForestRegressor( n_estimators=290, max_depth=20, min_samples_split=3, min_samples_leaf = 3 , random_state=42, max_features='sqrt' ) # 构建Pipeline pipeline = Pipeline(steps=[ ('preprocessor', preprocessor), ('regressor', rf_regressor) ]) # 训练模型 pipeline.fit(X_train, y_train) # 预测与评估 y_pred = pipeline.predict(X_test) plt.scatter(y_test, y_pred) plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 'r--') print(f"\nR²分数: {r2_score(y_test, y_pred):.4f}") print(f"均方误差(MSE): {mean_squared_error(y_test, y_pred):.4f}") print(f"平均绝对误差(MAE): {mean_absolute_error(y_test, y_pred):.4f}")进行优化,最后把整体优化代码输出出来

# 1.导入必要库(数据预处理、模型训练等) import pandas as pd # 用于数据处理和分析 import numpy as np # 用于数值计算 from sklearn.model_selection import train_test_split # 用于数据集划分 from sklearn.preprocessing import StandardScaler # 用于特征缩放 from sklearn.ensemble import RandomForestRegressor # 随机森林回归模型 from sklearn.metrics import mean_squared_error # 用于评估模型性能 # 2.数据加载与初步处理 # 读取CSV文件(假设目标列为'price') df = pd.read_csv('housing.csv') # 根据实际文件路径修改 # 3.数据预处理 # 处理缺失值(均值填充) df.fillna(df.mean(), inplace=True) # 用每列的均值填充缺失值 # 处理分类变量(示例列名为'city') df = pd.get_dummies(df, columns=['city']) # 将分类变量转换为哑变量(one-hot编码) # 分离特征和目标变量 X = df.drop('price', axis=1) # 假设目标列是price,X为特征矩阵 y = df['price'] # y为目标变量 # 4.数据集划分 X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, # 保留20%作为测试集 random_state=42 # 设置随机种子以确保结果可重复 ) # 5.特征缩放 scaler = StandardScaler() # 初始化标准化器 X_train_scaled = scaler.fit_transform(X_train) # 对训练集进行拟合并转换 X_test_scaled = scaler.transform(X_test) # 对测试集仅进行转换(使用训练集的参数) # 6.模型训练 model = RandomForestRegressor( n_estimators=100, # 设置决策树的数量为100 random_state=42 # 设置随机种子以确保结果可重复 ) model.fit(X_train_scaled, y_train) # 使用训练集训练模型 # 7.预测与评估 y_pred = model.predict(X_test_scaled) # 使用测试集进行预测 mse = mean_squared_error(y_test, y_pred) # 计算均方误差(MSE) print(f'模型MSE: {mse:.2f}') # 输出模型的均方误差,保留两位小数

import pandas as pd import numpy as np from sklearn.preprocessing import OrdinalEncoder, StandardScaler from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from factor_analyzer import FactorAnalyzer from factor_analyzer.factor_analyzer import calculate_kmo from xgboost import XGBClassifier import lightgbm as lgb from sklearn.metrics import classification_report # ====================== # 1. 数据读取与清洗 # ====================== def load_and_clean(data_path): # 读取数据 df = pd.read_csv(data_path) # 缺失值处理 num_imputer = SimpleImputer(strategy='median') cat_imputer = SimpleImputer(strategy='most_frequent') # 数值型字段 numeric_cols = ['付费金额', '活跃时长', '广告收入', '留存'] df[numeric_cols] = num_imputer.fit_transform(df[numeric_cols]) # 分类型字段 categorical_cols = ['设备价值档位', '用户初始广告档位'] df[categorical_cols] = cat_imputer.fit_transform(df[categorical_cols]) # 异常值处理 df['活跃时长'] = np.where(df['活跃时长'] > 24, 24, df['活跃时长']) df['付费金额'] = np.where( df['付费金额'] > df['付费金额'].quantile(0.99), df['付费金额'].quantile(0.95), df['付费金额'] ) return df # ====================== # 2. 特征工程 # ====================== def feature_engineering(df): # 构造复合特征 df['ARPU密度'] = df['付费金额'] / (df['活跃天数'] + 1) df['广告展示率'] = df['广告曝光次数'] / df['短剧观看次数'] df['内容互动指数'] = np.log1p(df['收藏数']*1 + df['分享数']*2 + df['评论数']*3) # 分类变量编码 encoder = OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1) cat_cols = ['设备价值档位', '用户初始广告档位'] df[cat_cols] = encoder.fit_transform(df[cat_cols]) return df # ====================== # 3. 特征筛选与降维 # ====================== def feature_selection(df, target_col='付费意愿档位'): # 划分特征和目标 X = df.drop(columns=[target_col]) y = df[target_col] # 计算IV值筛选 from sklearn.feature_selection import mutual_info_classif iv_values = mutual_info_classif(X, y) iv_df = pd.DataFrame({'feature': X.columns, 'iv': iv_values}) selected_features = iv_df[iv_df['iv'] > 0.02]['feature'].tolist() X_selected = X[selected_features] # 因子分析降维 kmo_all, kmo_model = calculate_kmo(X_selected) if kmo_model > 0.6: fa = FactorAnalyzer(n_factors=5, rotation='varimax') fa.fit(X_selected) factor_scores = fa.transform(X_selected) factor_cols = [f'Factor_{i}' for i in range(1,6)] X_factors = pd.DataFrame(factor_scores, columns=factor_cols) else: X_factors = X_selected.copy() return X_factors, y # ====================== # 4. XGBoost特征筛选 # ====================== def xgb_feature_importance(X, y): # 训练XGBoost模型 model = XGBClassifier( objective='multi:softmax', eval_metric='mlogloss', use_label_encoder=False ) model.fit(X, y) # 获取特征重要性 importance = pd.DataFrame({ 'feature': X.columns, 'importance': model.feature_importances_ }).sort_values('importance', ascending=False) top10_features = importance.head(10)['feature'].tolist() return X[top10_features] # ====================== # 5. LightGBM建模预测 # ====================== def lgb_modeling(X, y): # 数据划分 X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, stratify=y, random_state=42 ) # 模型训练 model = lgb.LGBMClassifier( num_leaves=31, max_depth=5, learning_rate=0.1, n_estimators=300, class_weight='balanced' ) model.fit(X_train, y_train) # 模型评估 y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) return model # ====================== # 主流程执行 # ====================== if __name__ == "__main__": # 数据路径 DATA_PATH = "user_data.csv" # 执行流程 df = load_and_clean(DATA_PATH) df = feature_engineering(df) X, y = feature_selection(df) X_top10 = xgb_feature_importance(X, y) final_model = lgb_modeling(X_top10, y) # 模型保存 final_model.booster_.save_model('user_value_model.txt')

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from imblearn.over_sampling import SMOTE from imblearn.combine import SMOTEENN from sklearn.metrics import roc_auc_score, balanced_accuracy_score, f1_score from ucimlrepo import fetch_ucirepo # 加载数据集(处理BOM头并指定正确的列名) data = pd.read_csv('/Users/mengfei/Desktop/creditcard 2.csv', encoding='utf-8-sig', header=1) # 删除ID列(假设第一列是ID,不作为特征) data = data.drop('ID', axis=1, errors='ignore') # 定义特征和目标变量(目标列名为"default payment next month") X = data.drop('default payment next month', axis=1) y = data['default payment next month'] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, stratify=y, random_state=42 ) # 定义数据平衡方法 def balance_data(method): sampler = None # 移除全局变量 if method == "SMOTE": sampler = SMOTE(random_state=42) elif method == "SMOTEENN": sampler = SMOTEENN(random_state=42) X_res, y_res = sampler.fit_resample(X_train, y_train) return X_res, y_res # 模型训练与评估(修正AUC计算) def evaluate_model(model, X_train, y_train, X_test, y_test): model.fit(X_train, y_train) y_pred = model.predict(X_test) # 获取预测概率 if hasattr(model, "predict_proba"): y_proba = model.predict_proba(X_test)[:, 1] else: y_proba = model.decision_function(X_test) y_proba = 1 / (1 + np.exp(-y_proba)) # Sigmoid转换 auc = roc_auc_score(y_test, y_proba) balanced_acc = balanced_accuracy_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) return auc, balanced_acc, f1 # 逻辑回归(SMOTE平衡) X_smote, y_smote = balance_data("SMOTE") lr = LogisticRegression(penalty="l2", C=1.0, max_iter=1000) lr_auc, lr_ba, lr_f1 = evaluate_model(lr, X_smote, y_smote, X_test, y_test) # 随机森林(SMOTEENN平衡) X_smoteenn, y_smoteenn = balance_data("SMOTEENN") rf = RandomForestClassifier(n_estimators=10

import pandas as pd import numpy as np from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt # 创建模拟数据 np.random.seed(42) # 设置随机种子以确保结果可复现 num_rows = 18 # 行数 num_cols = 1000 # 列数 data = np.random.rand(num_rows, num_cols) # 随机生成数据 # 创建DataFrame df = pd.DataFrame(data, columns=[f'Feature_{i+1}' for i in range(num_cols)]) # 提取前250列 df = df.iloc[:, :250] # 检查数据完整性 print("Data shape before cleaning:", df.shape) df = df.dropna(axis=1, how='all') # 删除全为空值的列 df = df.dropna(axis=0, how='any') # 删除包含空值的行 print("Data shape after cleaning:", df.shape) # 数据标准化 scaler = StandardScaler() df_scaled = scaler.fit_transform(df) # 执行PCA pca = PCA(n_components=min(df_scaled.shape)) # 计算所有主成分 pca.fit(df_scaled) # 获取特征值、奇异值、主成分得分和累计方差贡献率 eigenvalues = pca.explained_variance_ singular_values = pca.singular_values_ pca_scores = pca.transform(df_scaled) cumulative_variance = np.cumsum(pca.explained_variance_ratio_) # 获取贡献度较高的10列 top_10_indices = np.argsort(eigenvalues)[-10:][::-1] # 获取前10个最大特征值的索引 # 创建一个新DataFrame保存结果 results = pd.DataFrame({ 'Principal Component': top_10_indices + 1, # 主成分编号从1开始 'Eigenvalue': eigenvalues[top_10_indices], 'Singular_Value': singular_values[top_10_indices], 'PCA_Score': pca_scores[:, top_10_indices].tolist(), 'Cumulative_Variance': cumulative_variance[top_10_indices] }) # 保存到Excel文件 results.to_excel('PCA_Results.xlsx', index=False) # 绘制陡坡图(Scree Plot) plt.figure(figsize=(10, 6)) plt.plot(range(1, len(eigenvalues) + 1), eigenvalues, marker='o') plt.title('Scree Plot') plt.xlabel('Principal Component') plt.ylabel('Eigenvalue') plt.grid(True) plt.savefig('Scree_Plot.jpg', dpi=300) # 保存为JPG格式,高清晰度 plt.show()然后报错ValueError: All arrays must be of the same length

最新推荐

recommend-type

2018年小程序发展状况报告.pdf

2018年小程序发展状况报告.pdf
recommend-type

2011年全国自考网络经济与企业管理模拟试卷.doc

2011年全国自考网络经济与企业管理模拟试卷.doc
recommend-type

springboot基于JAVA的旅游微信小程序的设计与实现(编号:35142587).zip

springboot基于JAVA的旅游微信小程序的设计与实现(编号:35142587)
recommend-type

(完整版)第1章机器学习基础.ppt

(完整版)第1章机器学习基础.ppt
recommend-type

2012年上半年全国高校教师网络培训计划.doc

2012年上半年全国高校教师网络培训计划.doc
recommend-type

构建基于ajax, jsp, Hibernate的博客网站源码解析

根据提供的文件信息,本篇内容将专注于解释和阐述ajax、jsp、Hibernate以及构建博客网站的相关知识点。 ### AJAX AJAX(Asynchronous JavaScript and XML)是一种用于创建快速动态网页的技术,它允许网页在不重新加载整个页面的情况下,与服务器交换数据并更新部分网页内容。AJAX的核心是JavaScript中的XMLHttpRequest对象,通过这个对象,JavaScript可以异步地向服务器请求数据。此外,现代AJAX开发中,常常用到jQuery中的$.ajax()方法,因为其简化了AJAX请求的处理过程。 AJAX的特点主要包括: - 异步性:用户操作与数据传输是异步进行的,不会影响用户体验。 - 局部更新:只更新需要更新的内容,而不是整个页面,提高了数据交互效率。 - 前后端分离:AJAX技术允许前后端分离开发,让前端开发者专注于界面和用户体验,后端开发者专注于业务逻辑和数据处理。 ### JSP JSP(Java Server Pages)是一种动态网页技术标准,它允许开发者将Java代码嵌入到HTML页面中,从而实现动态内容的生成。JSP页面在服务器端执行,并将生成的HTML发送到客户端浏览器。JSP是Java EE(Java Platform, Enterprise Edition)的一部分。 JSP的基本工作原理: - 当客户端首次请求JSP页面时,服务器会将JSP文件转换为Servlet。 - 服务器上的JSP容器(如Apache Tomcat)负责编译并执行转换后的Servlet。 - Servlet生成HTML内容,并发送给客户端浏览器。 JSP页面中常见的元素包括: - 指令(Directives):如page、include、taglib等。 - 脚本元素:脚本声明(Script declarations)、脚本表达式(Scriptlet)和脚本片段(Expression)。 - 标准动作:如jsp:useBean、jsp:setProperty、jsp:getProperty等。 - 注释:在客户端浏览器中不可见的注释。 ### Hibernate Hibernate是一个开源的对象关系映射(ORM)框架,它提供了从Java对象到数据库表的映射,简化了数据库编程。通过Hibernate,开发者可以将Java对象持久化到数据库中,并从数据库中检索它们,而无需直接编写SQL语句或掌握复杂的JDBC编程。 Hibernate的主要优点包括: - ORM映射:将对象模型映射到关系型数据库的表结构。 - 缓存机制:提供了二级缓存,优化数据访问性能。 - 数据查询:提供HQL(Hibernate Query Language)和Criteria API等查询方式。 - 延迟加载:可以配置对象或对象集合的延迟加载,以提高性能。 ### 博客网站开发 构建一个博客网站涉及到前端页面设计、后端逻辑处理、数据库设计等多个方面。使用ajax、jsp、Hibernate技术栈,开发者可以更高效地构建功能完备的博客系统。 #### 前端页面设计 前端主要通过HTML、CSS和JavaScript来实现,其中ajax技术可以用来异步获取文章内容、用户评论等,无需刷新页面即可更新内容。 #### 后端逻辑处理 JSP可以在服务器端动态生成HTML内容,根据用户请求和数据库中的数据渲染页面。Hibernate作为ORM框架,可以处理Java对象与数据库表之间的映射,并提供数据库的CRUD(创建、读取、更新、删除)操作。 #### 数据库设计 博客网站的数据库设计通常包含多个表,如用户表(存储用户信息)、文章表(存储文章信息)、评论表(存储用户评论信息)等。使用Hibernate框架可以简化数据库操作,同时确保数据的一致性和安全性。 #### 安全性和性能优化 安全性是构建网站时需要考虑的重要方面,包括但不限于SQL注入防护、XSS攻击防护、会话管理等。性能优化方面,可以利用Hibernate的缓存机制,以及对JSP页面和ajax请求进行适当的缓存处理。 ### 结论 ajax、jsp、Hibernate技术结合可以构建出高效、动态、易于维护的博客网站。在开发过程中,应当关注前后端分离、用户体验优化、系统性能和安全性等关键要素,确保博客网站的稳定和长期可用性。通过本篇文章,读者应该已经对这些技术有了初步了解,并能够结合文件提供的源码开始进行相关开发实践。
recommend-type

【Unity Sunny Land关卡设计高级指南】:打造完美关卡的8大技巧

# 1. Unity关卡设计概述 ## 1.1 关卡设计的核心要素 关卡设计作为游戏开发中不可或缺的一环,承担着构建游戏世界、呈现故事背景、引导玩家体验和激发玩家兴趣的责任。一个优秀的关卡不仅需要有吸引人的视觉效果和有趣的挑战,还需平衡玩家体验,提供连贯的游戏故事。 ## 1.2 关卡设计师的角色 在Unity引擎的环境下,关卡设计师需要具备对场景布局、角色互动、剧情
recommend-type

C++ 模版

<think>我们正在讨论C++模板的使用和常见问题。根据用户要求,所有行内数学表达式使用$...$,独立公式使用$$...$$,用中文回答,并生成相关问题。同时,回答要结构清晰,帮助用户逐步解决问题。 首先,回顾用户的问题:用户想了解C++模板的使用和常见问题。我们将从以下几个方面展开: 1. 模板的基本概念和用途 2. 函数模板和类模板 3. 模板特化和偏特化 4. 模板元编程简介 5. 常见问题及解决方案 注意:在回答中,我们会引用站内提供的引用内容(引用[1]和引用[2])作为参考,但主要围绕模板展开。 ### 1. 模板的基本概念和用途 C++模板是一种支持泛型编程的特性,允许
recommend-type

C#随机数摇奖系统功能及隐藏开关揭秘

### C#摇奖系统知识点梳理 #### 1. C#语言基础 C#(发音为“看井”)是由微软开发的一种面向对象的、类型安全的编程语言。它是.NET框架的核心语言之一,广泛用于开发Windows应用程序、ASP.NET网站、Web服务等。C#提供丰富的数据类型、控制结构和异常处理机制,这使得它在构建复杂应用程序时具有很强的表达能力。 #### 2. 随机数的生成 在编程中,随机数生成是常见的需求之一,尤其在需要模拟抽奖、游戏等场景时。C#提供了System.Random类来生成随机数。Random类的实例可以生成一个伪随机数序列,这些数在统计学上被认为是随机的,但它们是由确定的算法生成,因此每次运行程序时产生的随机数序列相同,除非改变种子值。 ```csharp using System; class Program { static void Main() { Random rand = new Random(); for(int i = 0; i < 10; i++) { Console.WriteLine(rand.Next(1, 101)); // 生成1到100之间的随机数 } } } ``` #### 3. 摇奖系统设计 摇奖系统通常需要以下功能: - 用户界面:显示摇奖结果的界面。 - 随机数生成:用于确定摇奖结果的随机数。 - 动画效果:模拟摇奖的视觉效果。 - 奖项管理:定义摇奖中可能获得的奖品。 - 规则设置:定义摇奖规则,比如中奖概率等。 在C#中,可以使用Windows Forms或WPF技术构建用户界面,并集成上述功能以创建一个完整的摇奖系统。 #### 4. 暗藏的开关(隐藏控制) 标题中提到的“暗藏的开关”通常是指在程序中实现的一个不易被察觉的控制逻辑,用于在特定条件下改变程序的行为。在摇奖系统中,这样的开关可能用于控制中奖的概率、启动或停止摇奖、强制显示特定的结果等。 #### 5. 测试 对于摇奖系统来说,测试是一个非常重要的环节。测试可以确保程序按照预期工作,随机数生成器的随机性符合要求,用户界面友好,以及隐藏的控制逻辑不会被轻易发现或利用。测试可能包括单元测试、集成测试、压力测试等多个方面。 #### 6. System.Random类的局限性 System.Random虽然方便使用,但也有其局限性。其生成的随机数序列具有一定的周期性,并且如果使用不当(例如使用相同的种子创建多个实例),可能会导致生成相同的随机数序列。在安全性要求较高的场合,如密码学应用,推荐使用更加安全的随机数生成方式,比如RNGCryptoServiceProvider。 #### 7. Windows Forms技术 Windows Forms是.NET框架中用于创建图形用户界面应用程序的库。它提供了一套丰富的控件,如按钮、文本框、标签等,以及它们的事件处理机制,允许开发者设计出视觉效果良好且功能丰富的桌面应用程序。 #### 8. WPF技术 WPF(Windows Presentation Foundation)是.NET框架中用于构建桌面应用程序用户界面的另一种技术。与Windows Forms相比,WPF提供了更现代化的控件集,支持更复杂的布局和样式,以及3D图形和动画效果。WPF的XAML标记语言允许开发者以声明性的方式设计用户界面,与C#代码分离,易于维护和更新。 #### 9. 压缩包子文件TransBallDemo分析 从文件名“TransBallDemo”可以推测,这可能是一个C#的示例程序或者演示程序,其中“TransBall”可能表示旋转的球体,暗示该程序包含了动画效果,可能是用来模拟转动的球体(如转盘或摇奖球)。该文件可能是用来展示如何实现一个带有视觉动画效果的摇奖系统的C#程序。 总结以上内容,我们可以得出构建一个C#摇奖系统需要深入理解C#语言及其随机数生成机制,设计用户界面,集成动画效果,确保隐藏控制逻辑的安全性,以及全面测试系统以保证其正确性和公平性。通过掌握Windows Forms或WPF技术,可以进一步增强系统的视觉和交互体验。
recommend-type

【数据驱动的力量】:管道缺陷判别方法论与实践经验

# 摘要 数据驱动技术在管道缺陷检测领域展现出强大的力量,本文首先概述了数据驱动的力量和管道缺陷判别的基础理论。接着,重点探讨了管道缺陷的类型与特征、数据采集与预处理、数据驱动模型的选择与构建。在实践技巧章节,本文详述了实战数据集的准备与处理、缺陷识别算法的应用、以及性能评估与模型优化。此外,高级应用章节深入讨论了实时数据处理分析、多模态数据融合技术、以及深度学习在缺