mamba ssm代码
时间: 2025-05-17 22:08:29 浏览: 15
### Mamba SSM Framework Code Example
The `Mamba` model, as referenced within the Hugging Face Transformers library[^1], is primarily designed for causal language modeling tasks. However, when discussing state-space models (SSMs), these are typically used in time-series analysis and control systems rather than directly tied to transformer architectures like Mamba.
Below is an example of how one might implement a basic State-Space Model (SSM) framework using PyTorch. This implementation does not specifically relate to the Mamba architecture but demonstrates general principles that could be adapted or integrated into more complex frameworks:
#### Basic Implementation of an SSM Framework
```python
import torch
import torch.nn as nn
class SSMLayer(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(SSMLayer, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
# Transition matrix A
self.A = nn.Parameter(torch.randn(hidden_dim, hidden_dim))
# Input-to-state matrix B
self.B = nn.Parameter(torch.randn(hidden_dim, input_dim))
# Output matrix C
self.C = nn.Parameter(torch.randn(output_dim, hidden_dim))
def forward(self, x, h_prev=None):
batch_size, seq_len, _ = x.size()
if h_prev is None:
h_prev = torch.zeros(batch_size, self.hidden_dim).to(x.device)
outputs = []
h_t = h_prev
for t in range(seq_len):
u_t = x[:, t, :] # Current input at time step t
# Update hidden state based on transition dynamics
h_t = torch.matmul(h_t, self.A) + torch.matmul(u_t, self.B.T)
# Compute output from current hidden state
y_t = torch.matmul(h_t, self.C.T)
outputs.append(y_t.unsqueeze(1)) # Append with sequence dimension
return torch.cat(outputs, dim=1), h_t
# Example usage
if __name__ == "__main__":
input_dim = 5
hidden_dim = 10
output_dim = 3
ss_model = SSMLayer(input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim)
# Generate random data
batch_size = 8
seq_length = 20
inputs = torch.rand((batch_size, seq_length, input_dim))
# Forward pass through the SSM layer
outputs, final_hidden_state = ss_model(inputs)
print(f"Outputs shape: {outputs.shape}") # Expected: [batch_size, seq_length, output_dim]
print(f"Final Hidden State shape: {final_hidden_state.shape}") # Expected: [batch_size, hidden_dim]
```
This code defines a simple State-Space Model (SSM) where matrices \(A\), \(B\), and \(C\) represent the system's internal transitions, external influences, and observation mappings respectively. The provided script initializes parameters randomly; however, they would generally need training via optimization techniques such as gradient descent depending upon specific application requirements.
阅读全文
相关推荐


















