比vgg16更好的网络模型
时间: 2025-01-13 18:38:37 浏览: 38
### 更优的神经网络模型
#### ResNet (Residual Network)
ResNet引入了残差连接的概念,解决了深层网络中的梯度消失问题。通过跳跃连接(skip connections),允许信息绕过某些层直接传递给后续层。这种设计使得训练非常深的网络成为可能,并显著提高了图像分类的效果[^1]。
```python
import torch.nn as nn
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
```
#### DenseNet (Densely Connected Convolutional Networks)
DenseNet进一步改进了特征传播机制,在每一层与其后的所有层之间建立直接连接。这不仅增强了特征重用,还减少了参数数量并改善了正则化效果。实验表明,DenseNet在多个基准测试集上均取得了优异的成绩[^3]。
```python
def dense_block(net, num_layers, growth_rate, bn_size, drop_rate):
block = []
for i in range(num_layers):
layer = _DenseLayer(growth_rate=growth_rate,
bn_size=bn_size,
drop_rate=drop_rate,
efficient=self.efficient)
block.append(layer)
net.add_module('denseblock_%d' % (len(list(net.children())) + 1),
_DenseBlock(block))
def transition_layer(net, input_features, output_features):
net.add_module('transition_%d' % (len(list(net.children())) + 1),
Transition(input_channels=input_features,
output_channels=output_features))
```
#### EfficientNet
EfficientNet采用复合缩放的方法来优化网络宽度、深度以及分辨率之间的关系。相比于简单地增加层数或扩大滤波器尺寸的传统做法,这种方法能够在保持计算成本可控的同时大幅提升模型性能。研究表明,EfficientNet系列模型可以在多种任务中超越其他先进架构的表现[^4]。
```python
from tensorflow.keras.applications import EfficientNetB0
model = EfficientNetB0(weights='imagenet')
```
阅读全文
相关推荐


















